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Thinning is a classical problem for point processes. It is well-known that independent
homogeneous Poisson processes result from constant Bernoulli thinnings of homogeneous
Poisson processes. In fact, the conclusion remains true for non—constant Bernoulli thin-
nings of nonhomogeneous Poisson processes, though it seems that nowhere one could see
its serious proof. It is easy to see that the converse is also true, i.e., if the thinned processes
are independent nonhomogeneous Poisson processes, so are the original processes. But if
we only suppose the thinned processes are independent, nothing is concerned with their
distribution law, the problem whether or not the original processes are (nonhomogeneous)
Poisson becomes interesting and challenging. This is just the objective of this paper. It is
considerably surprising for us to arrive at the affirmative answer.

So far as to this problem, the most works were done under the renewal assumption.
For example, [1] showed that for arbitrary delayed renewal processes the existence of a
pair of uncorrelated thinned processes is sufficient to guarantee that the original process is
Poisson. It is natural that the mathematical tools to solve the problem in this case be typic
ones for renewal theory, such as renewal equations and Laplace-Stieltjes transformations.
Obviously, they are not available for non-renewal processes.

We find out that the martingale method is the most efficient one to solve this problem
in general case. More precisely, we use mainly the dual predictable projections of point
processes. In fact, the distribution law of a point process is determined uniquely by its dual
predictable projection (see [4]), and [5] offered us a very useful criterion of independence of
jump processes having no common jump time through their dual predictable projections.
Based on these results, it is not a distant way to reach at the destination.

1. Preliminaries.
The discussion will be proceeded on a fixed complete probability space (Q,3, P).

Let (Tn)n3>1 be a sequence of positive random variables (the value +oo is permitted)
such that (T = 0)

(1) for eachn >0, Ty, < Tpy1, and T, < 00 implies T}, < Tpy1,
(2) T, = o0 as n — oo.

Set

Xi=) 1r,<,t>0. (1.1)
n=1

(Obviously, Xo = 0). Then X = (Xt)s>0 or (Tw)n>1 is called a point process. Denote by
(F5)i>0 the natural filtration of X:

I =o{X,, s<t}, t>0.

(We denote by o{---} the complete o-field generated by {---}.) It is well-known (see [3]
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or [4]) that each T, is a stopping time with respect to (FX );>0, and
3 =o{Ty, - ,Tn}, n >0,
FX = ﬁogi{Tn <T < Tpyi}, t>0.
n=

Denote by H,(dt) the conditional distribution of T),, given ."7"%1_ . Then the dual

1

predictable projection of X with respect to (F):>o is

o~ Hy(dt)

A(dt) = 17, _ <T,
() n=1 Hn([t, 00]) Pis

(1.2)

Let (77n)n21 be a sequence of random variables such that for each n > 1
Mn =0 on {T, = oo}. (1.3)

(In fact, it is only needed to suppose 7, is constant on {T}, = o0}.) Then (Tn,Nn)n>1 is
called a marked point process. Its natural filtration is defined as follows:

o0
Fo=0{) 1r,<s n.ep,s<t, BEB}, t>0. (1.4)

n=1
In this case, we have

ng :U{Tl"" v Ty M1yt ,nn}a n2>1,
5';'Tn— =U{T1,"' 7Tna My 17717——1}, n > 17
F: = cljo.‘}"Tn{Tn St(Tn+1}, t>0.

Obviously, Fr, = F = 0{¢,Q}.
An equivalent representation of marked point process (Tn;Mn)n>1 is the following
integer—valued random measure on (Ry x R, By x B).

w(dt,dz) = " 8z, 4.y (dt, d2) 17, <o (1.5)

n=1

where §, is the unit measure concentrating on point a. Denote by v(dt,dz) the dual
predictable projection of pu(dt,dz) with respect to (F)e>o0:

= G(dt,de)
v(dt,dz) = Z m]—)lﬂ,_l <t<T,

n=1

(1.6)
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where G,(dt,dz) = P[T, € dt, n, € dz|F7,_,], n > 1, is the conditional distribution of
(Tn,m), given Fr.,_. .

Set -
Y=Y nalp,ce, t 2 0. (1.7)
n=1
If foreachn > 1
{T. = o} = {n, = 0}, (1'8)

then we have
Fi=o0{Y,,s<t}, t>0,

i.e., (Jt)t>0 is just the natural filtration of ¥ = (Y:)i>0. At this time, u(dt, dz) is the
jump measure of Y. Hence, under the assumption (1.8), the jump process ¥ = (Yi)e>o is
another equivalent representation of marked point process (7T, Mn)n>1-

THEOREM 1. Let N(z,t,dy) be a transition probability kernel from (R x Ry, Bx B,)
to (R, B). The following statements are equivalent:

(1) Forn>1, B;j€B, j=1,--- ,n, on {T,, < oo}
Plnj € Bj, j=1,---,n|F%] = /Rn jlellBj(yj)N(yj—lTj,dyj) (1.9)
(2) (i) Forn>1, A€ By
PT, € A|Ty, - ,Tpo1, M, - yMn—-1] = P[T, € A|Ty, -+, Tpn_1] (1.10)
(i) Forn >1, B € B, on {T, < o}
Plnn € BTy, ,Tny M1y ynei] = N(Mn-1,Tn, B) (1.11)

(3)
v(dlt,dz) = N(Y;_,t,dz) A (dt) (1.12)

where 19 = yo = 0.

Proof. By using the standard argument it is not difficult to show (1.9) is equivalent
to the following more general statement: for n > 1, fj € bB (bounded Borel functions),
J=1,---,n,on {T, < oo}

E(L f;0)155) = [ 1L f5(y;)N (y51T;, dy;) (1.13)
J=1 Rn J=1
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and (1.11) is equivalent to the following one, for n > 1, f € B, on {T}, < co}.

E[f(nn”Tla" : 7Tn, My ann—l] = N(n‘n—laTnaf) (1'14)

where as usual we have

N(w’t’ f)= /Rf(y)N(w, t,dy).

(1) = (2). Since the right side of (1.13) is only dependent on {T},- - , T,,}, conditioning
on {T1,--+,Ty}, from (1.13) we get

BLTL £in) 1951 = BLE fi(0p) T, Tl (1.15)
From (1.15) we also have
E[].Elfj(nj) I Tla e ’Tn+1] = E[J-Elfj(nj) ITl’ e ,Tn]- (116)

Notice that (1.16) and (1.10) formulate the same fact: for n > 1, {1, -- ,Mn} and Tphyq
are conditionally independent, given {T\,--- ,T,}. Hence, (1.10) has been shown.

On the other hand, forn > 1, f,f; € B, j=1,--- ,n—1, g € bB", we have

E{f () T £,(1)9(Tsy++ Tz, <o}
=E{g(T1, cr ,Tn) / - :E—;fj(yj)N(yj—ly Tj’ dyj)N(yn-—la Tn, f)lTn<oo}
: (by (1.13))

:E{g(Tla tot aTn)E[:li-[llfj(nj)N(nn—laTna f) ITla T, Tn]]'Tn<°°}
(by (1.13), (1.15))

n—1
:E{N(nn—laTn, f)jl;'[lfj(nj)g(Tl’ T aTn)lTn<oo}a

then (1.14) follows.

(2) = (1). By using the conditional independence (1.10) we obtain: for k¥ > n >
17 f] € bBa .7= 17 » 1,

B £ | Ty, Tl = BLE £5(17) 1 T3, -, Teca]
= (1.17)
= BUL £i(n) | Ty, - To].
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Letting k£ — oo in (1.17) yields (1.15). Now it is sufficient to show: on {T}, < oo}
B 5012, T = [ A0 N o, T ). (113)

We’ll make it by induction on n. In fact, forn = 1, (1.18) is identified with (1.14). Suppose
(1.18) holds for n — 1, then on {T},, < oo}

B f(n) 1T, | ]
=E[ I £5(15)Bl(10) | Ty = Ty mise00ca] | T+, T
=B( L £50)N (-t Tas fo) | T+, T (by (114)
=E(T, £i )N (st ) | Ty Tol o,

n—1
_E[ Elfj(nJ)N(nn—lta fn) | Tl, R Tn—l I t=T,
! (by conditional independence)

n—1 n—1
=/ L ].]-:-[1 fj(yj)N(yn—lt, fn)j]'z-‘[lN(yj—h Tj> dy]) | t=T,
R (by induction)

= / I fi(y;)N (yj-1, Tj, dy;).
R» J=1

(2) = (3). From (1.10) and (1.11) we have

Gn(dt,dz) = E[lr,catE(ly, caz | F1,-]| T3\, ]
= E[l1,e€a:N(Mn-1,Tn,dz) | F1, -1]
= N(fnos, t, do)Ha(d2).

By (1.2) and (1.6) we obtain

v(dt,dz) = f: N(n-1,1, de) Hn(dt)

n=1 Hn([t, OO]) Thno1<t<Ty,
= N(Y;-, t,dz) Z HH( [t(dt)])lTn_mthn

= N(Y;—,t,dz) A (dt).
(3) = (1). No loss generality, we may suppose (2,3, P) is the standard space of marked
point processes, and F = F,. We construct another probability measure P on F such that:

1) Under P and P, (T,).>1 has the same distribution law.
2) (1.9) holds with replacing P by P.



Then based on the results shown above, we conclude that under P the dual predictable
projection 7(dt, dz) of u(dt,dz) is just v(dt,dz):

v(dt,dz) = v(dt, dz).

Hence, P = P, because the law of a marked point process is determined uniquely by its
dual predictable projection (see [4]). Therefore, (1.9) comes true again. 0

COROLLARY. Suppose (1.8) holds.

(1) I X = (X¢)1»0 is a process with independent increments and (1.9) holds, then Y =
(Yt)e>o0 is a Markov process.

(2) Y = (Y})e>0 is a process with independent increments if and only if X = (X;)i>0
is a process with independent increments and for n > 1, B;e€eB, j=1,---,n, on
{T, < o0}

P[’h‘ EBj) j:l,--- 7n|g§o]=j1_11N(TjaBj) (119)
where N(1,dy) is a transition probability kernel from (Ry,By) to (R, B).

Proof. A jump process is a process with independent increments if and only if the dual
predictable projection of its jump measure is non-random. The conclusions (1) and (2)
follow immediately from Theorem 4 in [3] and Theorem 2 in [6] respectively. d

We point out that in general (1.10) cannot be deduced from (1.11). The following is
such an example.

Let (én)n>1 be a sequence of i.i.d. random variables, distributed uniformly on [0,1).

Set.
T1=1, Tn=n+§n_1,n22,

N = 1[%’1)(&,), n > 1.

Then forn > 1

1
P[T/n=1|T1, 7Tna M, ’7771—1]: 57

i.e. (1.11) holds with N(z,t,dy) = 180(dy) + 181(dy), and

P[Tn EAITI,"' 7Tn—17 /) PR 7771’&—1]

1 1 1.20
=2m(AN[n,n + 5))15,,:0 +2m(AN[n+ 5 Nt 1)1, =1 (1.20)

where m is Lebesgue measure. If (1.10) also holds, then P[T}, € A | Ty Tty M1, “Np—1]
is a function of {T},---, T}, 1}, which must be independent of &,_;. But this contradicts
(1.20). Hence, (1.10) does not hold.

For the sake of simplicity, we consider real mark sequences (7,)n>1 in the above.
Obviously, more general mark sequences can be considered as in [4].
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2. A criterion of independence of jump processes.

Let X' = (X})i>0 and X? = (X?);>¢ be two jump processes, i.e.

o0
Xi=> nilpic;,t>0, i=1,2 (2.1)
n=1
where (T%)n> and (ni)n>1, ¢ = 1,2, satisfy
1) T < Ti,y, and T¢ < oo implies T¢ < Tii, n =20, (T =0), and T! - o as
n—o00, 1=1,2.
) {Ti =} ={n} #0}, n 21, i =1,2.

The jump measure of X* is

pi(dt,dz) =D i piy(dt, de)1ri <onyi = 1,2. (2.2)
n=1
Set
Fi = o{X:, s <t} t>0,i=1,2, (2.3)
G =F VI, t>0. (2.4)

/
Denote by v;(dt, dz) the dual predictable projection of p;(dt,dz) with respect to (F)e>0-

THEOREM 2. Suppose AX'AX? = 0. Then X' and X? are independent if and only
if the following conditions are satisfied:

1) vi(dt,dz) is the dual predictable projection of u;(dt,dz) with respect to (Ft)t>0, 1 =
1,2.
2) Forrealt >0, 5,k >1
P(Tj = t)P(T; = t) =0. (2.5)

The proof of “only if” part can be referred to Lemma 4 and 5 in [2]. The proof of

“if” part is due to Zhiming Ma [5]. Since [5] is written in Chinese, we sketch the proof as
follows.

No loss generality, we may suppose (2, F, P) is the standard space of two—dimensional
marked point processes, i.e.

Q= {w=(w;, w0},
Xj(w)=wi, t>0,i=1,2,
F=9 vF



where w} and w? are step functions, right continuous and with left hand limits. On the
other hand, © can be considered as

Q=0'x0% F=9._ x 32

o0

QF = {wi = (w:)tzo}, 1=1,2.

Denote by P? the restriction of P on F,i=1,2.

Define a probability measure

P =Pl xP?

on F= F x F% . Because of (2.5), under P we also have AX'AX? = 0. Define
Xi(w) = (X3 (w), XF(w)), t20.
Then under both P and P we have
Fi=0{Xs,s<t}=F VI, t>0.

Set
H1 (dt, diL'l, d.’]’:z) = M1 (dt, d$1)50(d$2),

p2(dt,dzy, dzs) = po(dt, dz2)éo(dzy),
vy (dt, dzy,dzo) = v1(dt, dzy)6o(dzy),
va(dt,dzy,des) = vo(dt, dzy)6o(dzy),
p(dt,dzy, dzy) = py(dt, dzy, dzs) + pa(dt, dzy, dzs),
v(dt,dzy,des) = vy (dt,dzy, dzy) + vo(dt, dzy, dz,).
Under both P and P, v; and v, are the dual predictable projections of u; and uy with
respect to (J%)>0, respectively, and p is the jump measure of X. Hence, under P and

P the dual predictable projections of p with respect to (F¢)e>0 is the same. Therefore,
P =P, ie X! and X? are independent.

3. Thinning of point processes.
Now we turn to the non—constant Bernoulli thinning of point process X = (Xt)ezo0.

Suppose that (7, )s>1 is a sequence of random variables taking values 0 and 1, and for
alln

Ne =0 on {7, = co}. (3.1)

Ifforallk>1, 1<n; <ng <--- <ng, on {T,, < oo}

k
Plgn, =1, j=1,--- ,k|FX] = jE1p(T"5) (3.2)
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where p(t), t > 0, is a Borel function:
0<p(t)<1 (33)

then the following two point processes:

X = Znanﬂgt, t >0, (3.4)
n=1
oo

X2=> (1-nu)lme, 20, (3.5)
n=1

are called thinned processes obtained by non—constant Bernoulli thinning of X. Obviously,
we always have

AXIAX? = .

It is not difficult to verify that (3.2) is equivalent to (1.9) with the transition kernel
N(z,t, dy) = p(t)é1(dy) + (1 — p(t))bo(dy). (3.6)

In this cae, we still denote by (F;)¢>0 the natural filtration of marked point process
(Tnann)nZI, and by (3‘?5)1}20, t=1,2:

Fi=0{X! s<t}, t>0, i=12.
LEMMA 1. Forallt>0
F = VI (3.7)

Proof. Because for all n > 1, T, is a stopping time with respect to (Ft)t>0, and
Ne € I, X' and X? are adapted to (fft)tzo- Hence

FVIC T, t>0.

On the other hand, X = X' 4+ X? is obviously adapted to (31 Vv 32)i>0. Therefore,

each T, n > 1, is a stopping time with respect to (31 v F2)¢>0, either. Because of (3.1)
we have

Nn = AX'}n 1Tn<oo.

Hence,
FCHF VI t>0.
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LEMMA 2. The dual predictable projections of the thinned processes X! and X? with
respect to (Fy)e>o are

n= () A (ds), AZ = Ja-penas), ezo, (3.5)

respectively.
Proof. Immediately from (1.12) and (3.6). 0

'THEOREM 3. If X is a process with independent increments (with respect to (F5 )¢>q),

then the thinned processes (X}, Ft)e>0 and (X?, Fi)e>0 are processes with independent
increments.

Proof. Since A is non-random, A! and A? are non-random immediately from (3.8).

THEOREM 4. If X is a (nonhomogeneous) Poisson process, then the thinned processes
X! and X? are independent (nonhomogeneous) Poisson processes.

Proof. In this time, A is non-random and continuous, so are A' and A2. Hence, X
and X? are Poisson processes. Obviously, A’ is the dual predictable projection of X* with
respect to both (3%)>0 and (F; = Fi v F2)¢>0, ¢ = 1,2. On the other hand, all jump times
of X' are totally inaccessible, 7 = 1,2, and their distributions are continuous. Therefore,
two conditions in Theorem 2 are satisfied. And independence between X! and X2 follows
from Theorem 2. 0

Note that under the assumption of Theorem 3 we know only A is non-random, but A
may be discontinuous, and the independence between X! and X2 cannot be guaranteed.
Here is a simple example:

Suppose that T, = n, n > 1, and p(t) = p, 0 < p < 1. Then A(dt) = °§15n(dt) is
n=
non—-random but discontinuous. We have

P(X; =1)=P(X] = 0)= P(X] =1, X} =0)
=P(m =1)=p.

If X' and X? are independent, then
P(X{ =1, X{ =0)= P(X! =1)P(X? =0),
i.e., p? = p. This is impossible.
THEOREM 5. Suppose that
0<p(t) <1, t>0 (3.9)
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and the thinned processes X! and X? are independent. Then the original point process
X is Poisson.

Proof. Again using Theorem 2, we know that A’ is the dual predictable projection of
X* with respect to (3"‘,;)20, i = 1,2. Hence, (A} )s>0 and (A?)¢>0 are independent. Because
of (3.8) anad (3.9), A is independent of itself. Therefore, each A, £ > 0, is constant, and
A is non-random.

Now we show A is continuous. For eacht > 0,ifry = AA; = EAX, = P(AX; =1) >0,

then
P(AX] =1)=P(AX} =1, AX? =0)

= P(AX} = 1)P(AX? =0) (3.10)
— [P(AX} = 1)
On the other hand, by (3.9) we have
P(AX; =1)=P(AX} = AX;=1) = p(t)r; < 1.
From (3.9) and (3.10) it must be
P(AX; =1) = p(t)r; =0,
Ty = 0.

Therefore, X is Poisson. 0

It is understandable that for the validity of Theorem 5, the condition (3.9) is indis-
pensable.

Theorem 4 and § can be extended to multinomial thinnings of point processes. Suppose
that n%,--- ,n™, n > 1 are random variables taking values 0 and 1, and satisfy

Ml dngm=1n>1
and
e on {T, = o}, n > 1.
Put
o0
Xf=) nilncnt>0k=1,---,m.

n=1
Then X',...,X™ are the thinned processes obtained through multinomial thinning of

point process X, if (ni,--- s )Jn>1 are conditionally independent, given 3% and on
{T, < oo}

Pk =119%]=p"(T,), n>1, k=1,---,m

where p*(t), t >0, k=1,--- ,m, are positive Borel functions satisfying

pP)+--+p™@t)=1, t>0.
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THEOREM 6. If X is (nonhomogeneous) Poisson, then the thinned processes X', .. , X™

are mutually independent (nonhomogeneous) Poisson processes. Conversely, if 0 < p*(t) <
,t>0,k=1,---,m, and X*,--- | X™ are mutually independent, then X is (nonhomo-
geneous) Poisson.

The proof of Theorem 6, including the generalization of Theorem 2 to the case of

several jump processes, is completely similar. We omit it.

If in Theorem 6, instead of the mutual independence of X!,... , X™, we only assume

that there exists a pair of index (k,j), 1 < k < j7 < m, such that X* and X7 are
independent, is the original process X still a Poisson process? This is an interesting open
problem.
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