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1. Introduction and the main result.

The optimal parking problem, presented by Sakaguchi and Tamaki [4], is described as
follows. A motorist is driving his car along a street toward his destination, and is looking
for a parking place. If he finds an unoccupied parking place, he must decide either to park
there and to walk the distance to his destination or to continue driving, expecting to find
another parking place nearer to his destination. It is assumed that

1) The location of the destination 7' is a random variable, 0 < T < oo, with a known
distribution function F(z) and finite expectation;

2) The unoccupied parking places appear randomly in accordance with a Poisson pro-

cess with parameter A > 0, i.e. if denote the unoccupied + — —
0 T T, - T, T

parking places by 0 <71 < Tp < -+- < Ty < -+-, then T4, To — Ty, , Ty — Tp—1, - - - are
i.i.d. and the common distribution is exponential with rate A;

3) T and {T1,T%,--- ,Tn, - } are independent;
4) The speed of walking is 1, and the speed of driving is %, 0<r<l.

If the car stops at S, then the whole time duration spent to reach the destination is
rS+|T - S]|.

What we observe is the two stochastic processes,

X‘t = ZlTnSt’tZO, (1)
n=1
Y = 17, t > 0, (2)
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ie. at time ¢ we know if T or T},T3, - do appear. Therefore, S should be a stopping
time with respect to (X;,Y;);>0, and S = Ty, where N is random. Obviously, S is a finite
stopping time, so—called a stopping rule in [1].

Now the problem is to choose S to minimize the expected time
E{rS+|S-T}|}.

Let C = inf{z : F(z) = 1}, and

1 e A-)
= 2 F(d 0,C).
@) =5 | ¢ (), = € (0,0)
It is easy to see that the function ¢ is well defined on the interval (0,C), and
0<p(z)<1, z € (0,0). (3)

Now our main result can be formulated as follows.
THEOREM. Suppose that ¢(z) is increasing on (0,C), and

1—17r

a=inf{z : p(z) > }.

Then the optimal stopping rule for the parking problem is
S*=inf{Tp:n>1, T, >T or T > a}. (4)

We give some simple examples to illustrate the condition assumed in the Theorem.

Example 1. When F(z) is the degenerated distribution function at point C' > 0, we
have

p(z) = e M2 g € (0, ),
and ¢ is increasing on (0, C).

Example 2. When F(z) is the uniform distribution function on the interval (0, C), we

have
1

#@) =5
It is easy to verify that ¢ is increasing on (0, C).

[1—e~MC=9], 2 ¢ (0,0).

Example 3. When F(z) is the exponential distribution function with rate U, we have
C = 0o, and

A
A+ u

p(z) = , £ >0,
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By the way, if C < oo, it is not difficult to show
lim p(z) = 1. (5)

But if C = oo, (5) is not true in general, as indicated by Example 3.

Since the stopping rules we considered have the form S = Tly, where N takes integer
values, our optimal parking problem essentially is one of discrete time case. And under
our assumption about the function ¢, it will be reduced to a special monotone case, the
optimal stopping rule will be found out directly. We need not appeal to the general results
of the optimal stopping theory, presented in [1]. Our idea to deal with the problem is
somehow different from that in [4]. Even the forms of the results are slightly different. In
fact, [4] didn’t give explicitly the conditions, which guarantee the existence of the optimal
stopping rule. In our opinion, our treatment is strictly rigorous, simpler and easier to
understand. In the view of the general theory of stochastic processes, what we use is just
the concept of dual predictable projection. Essentially, the idea is the same as in [2].

2. A special monotone case.

Let (Fn)n>1 be a discrete time filtration, i.e. an increasing sequence of o—fields: F; C
FoC---CF,C---,and (Xn)n>1 be an adapted sequence of integrable random variables,
i.e. for each n, X, is measurable with respect to F,. Set

Yo = E[Xp|Fne1] — Xn_1, n > 2.

PROPOSITION. Suppose
<< <Y, < (6)
and

is finite. Then

EXs« =inf{EXs: S is a stopping rule},

ie. S* is the optimal stopping rule for (X, Fp)n>1.
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Proof. Let S be a stopping rule. Then

S
EXs=E {Xl + ) (X - Xk—l)}

k=2

=FE {Xl +)  lo=n > (X - Xk—l)}
n=2 k=2

=E {Xl + Z(Xk — Xk—l)ls?_k}
k=2

E {Xl + EE[-XIC — Xk—1|3"k—1]152k}

k=2

=E{X1 +§:Yk152k} (8)

k=2
where we commutate the summations to get the third equality and use the fact that
{S > k} € Fx_1,k > 2, for the fourth one.

Now for (6) and (8) it is easy to see that in order to minimize EXg for k > 2 we should
make

lssk =0, if Y > 0.
Hence, S* defined by (7) is the optimal stopping rule. []

{182k =1,if Yy < 0,

According to [1], the monotone case means that
Ap = {E[Xn+1|3~n] > Xn}a nz>1

is an increasing sequence of events. Obviously, if the condition (6) is satisfied, i.e. (Yo)n>2
is increasing, so is A, = {Yn41 > 0}. Hence, the case we consider is just a special monotone
one, in which the stopping rule defined by (7) is always optimal.

On the other hand, in the view of the general theory of stochastic processes established
o0
by French school, (X, +k§2Yk)n21 is just the dual predictable projection or compensator of

(X7n)nz1. Compared with [2], it can be clearly realized that the idea by using the concept
of dual predictable projection to deal with the optimal stopping problem is the same as in
[2]. The Proposition here is also a certain predictable criterion, which is practically useful
as we'll see in the following,.

3. The proof of the main result.

Set
F, =0 {X,,Ys,s <1}, t>0,

i.e. (J1)e>o is the filtration of observation. Since (X, Y}:):>0 is a multivariate point process,
from the results in [3] we know that (Ft)t>0 is right continuous and the following Lemma
is true.



LEMMA 1. For each (F;)-stopping time S, we have
3'5 =0 {-XS/\t,YS/\ta t 2> 0} .

We should make decisions at T,,, n =1,2,---. What we concern with is the filtration
(97T, )n>1 indeed. From Lemma 1 and definitions (1) and (2), the following Lemma. can be
derived immediately.

LEMMA 2. For eachn > 1, we have
Ir, N {Tn < T} =0c{Ty,...,Tu} N {Tn < T},
I, N{Tn 2T} =0{Th, - ,T0,T}N{T, > T}.
LEMMA 3. For every integrable random variable £, we have

E[ElTn<T|T1’ T Tn]
Ellr,<r|Th, -, Th]

Lemma 3 is a direct consequence of Lemma 2. Notice that the event {7}, < T} is not
measurable with respect to {71, -- , Ty}, which incurs some complexity in the formula (9).
The details are referred to the Appendix.

E[¢|9T,] =

1T,,<T+E[§IT1," * 7Tn)T]1Tn2T- (9)

Now we are ready for the proof of the Theorem. At first, we observe that the objective
function has the form:

E{rS+|S—T|}

=E{/Osrdt+/OSYtdt+/Soo(1—Yt)dt}
_E {/Os(r _142Y))dt+ /000(1 _ Yt)dt}

S
_E { / (r—1+ 2Yt)dt} + BT (10)
0
Secondly, we calculate

’ Tn+1
In=F / (T‘1+21T5t)dt|3~Tn ,n>1

Tn

by the formula (9). Noting that T, Tr44 — T, and {T,--- , Ty} are independent, we have

Tn+1
ZT" 1Tn2T =F I:/ (7‘ -1+ 21T5t)dt1Tn2TlT17 e T, T

=E[(r+1)(Tot1 = To)|Th, -+, Tn, T] 1, 57

r+1
= 3 lmem (11)
T L o = E{(r — )(Tot1 — To) + 2(Tos1 — T) } g, <7 | T, - - ’T”]lT
n n E[lTn<T|T1’--o ’Tn] n<T (12)



On the other hand,

E[(Tn+1 - Tn)]-Tn<TIT1a e 7T‘n]
=K [1Tn<TE[Tn+1 -1, 'Tl"" aTnaT]lTh'" aTn]

1
=XE[1Tn<T|T1,'°° y T

Elp, <7 |T1, -+, Th]
=E[lo<r|T1, -+, T | o=Ts,
=1-— F(Tn)

E [(Tn+1 — T)+1Tn<T | T17 e ,Tn]
=F [(Tn+1 — Tn + 2z~ T)+1z<T | T17 e 1Tn] l z=T;
=/ F(dy) / (z + 2~y re™Ndz| =1,

z 0
oo

=l/ e~ 2=Tn) F(dy)

AT

n

Substituting (13), (14), (15) into (12) yields

1
ZnlT,<r = ylr — 1+ 2p(To)llz, <7
Combining (16) with (11) gives

r+1
A

1
Zy = lr<m, + X[T — 14 2¢(T)|1r, <7

Observing that from (3) and our assumption on ¢ we have

{T < Tn} C {T < Tn-l—l}-)
r—1 +2(p(Tn) < T‘+1, on {Tn < T_<_Tn+1}7

Tn S Tn+1 <T S Ca ‘P(Tn) S (P(Tn+1)) on {Tn+1 < T},

we conclude that
Zn S Zn+17 n 2 1.

(13)

(14)

(15)

(16)

(17)

Since S = T, by using the Proposition in section 2, we obtain the optimal stopping rule

S*=inf{T,: n>1, Z, > 0}.

From (17) and (18) we know immediately that S$* has the form (4).

6
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Appendix.
Let (£2,3, P) be a probability space, § a sub-o—field of F, and £ an integrable random
variable. Then for every A € Fand G € G, we have

dP. 19
G ¢ BILAlG] (19)

Proof. Set H = {E[14|§] # 0}, then H € G and
P(AH®) = / E[14]§]dP =0
He

where H® = {E[14|G] = 0} is the complement of H. Hence, the right side of (9) makes
sense. Define

P4(F) = P(AF), Fe 7.

Then for every G € G we have

PA(G) = [ Blia|sip

Ble1alS) [ Elelalg)
/AG i /AGH E[1a19] F

_ E[€14]9]
cu Ellal]

- / El¢1,|SldP
GH

= / £1,4dP
GH

= [ ¢dP
AG

dPy

(19) follows. [J
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