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Abstract
Factorial Run Orders by the Simulated Annealing Algorithm

Coster and Cheng (1988) introduced a Generalized Foldover Scheme (GES) for generating
run orders of fractional factorial designs which are simultaneously optimal with repect to two
- specific objective functions, namely, polynomial trend elimination from factor effect estimation
and cost minimization in terms of the number of factor level changes. In this report, we study
the effectiveness of the Simulated Annealing Algorithm, proposed by Kirkpatrick et. al. (1983),
when applied to the factorial run order problem. In addition to assessing the performance of
the annealing algorithm on the standard trend elimination and cost minimization problem, for
which exact optimal solutions are available using the GFS, we study the usefulness of anneal-
ing when alternative design conditions or objective functions are established and exact solu-

tions are (theoretically) unavailable or unknown.



1. Introduction. Throughout this report, we assume that the reader is familiar with the
Generalized Foldover Scheme (GFS) used by Coster and Cheng (1988) to generate run orders
of fractional factorial designs for which (i) factor effects of interest are orthogonal to polyno-
mial trends present in each block of the design and (ii) the cost of the run order, measured by
the total number of factor level changes, is minimized. Recent references on theoretical
approaches to this problem are Coster (1988a, 1988b), Cheng (1988), and Cheng and Jacroux
(1987).

Notation and terminology for this report are taken from Coster and Cheng (1988). In par-
ticular, the design of interest is denoted by G, a s fractional factorial design for n factors
each at s levels, with the N =s"? runs (treatment combinations) of G run in s” blocks each
of size R =s""P7". Thus p denotes the level of fractionation and r the number of independent
effects confounded with blocks. The model for the data in the standard setting is the usual

linear model:

Y=(X1,X2, X3)(B’1,B’2,B’3)'+8, (1.1)

where X, is that part of the design matrix corresponding to the factor effects, By, of interest, X,
represents the block effects, and X3 has k& columns representing a polynomial of degree k =1
over the (equally spaced) run positions in every block. The usual orthogonal treatment and
block structure is assumed for the particular fraction chosen, that is, all the columns of X; and
X, are mutually orthogonal. The standard assumptions made when using the GFS to find

optimal run orders are:
(A1) all factor level changes are equally expensive;
(A2) the same polynomial trend of degree k is present in each block of G;
(A3) the errors € are uncorrelated (and mean zero) in model (1.1).

Assumption (A2) ensures that X, and X; are mutually orthogonal also. With these
assumptions, the standard design problem may be stated as follows: find run orders of G such

that, simultaneously,



(D1) X' X; =0, that is, factor effects are orthogonal to trend effects;

(D2) the total number of factor level changes is minimized.

The simulated annealing algorithm is applied to both the standard combinatorial optimizi-
ation problem outlined above and to versions of the run order problem ‘involving modified

assumptions and design objectives as follows:
(M1) level changes for different factors are not equally expensive;
(M2) different or non-polynomial trends may be present in different blocks of G;

(M3) there are correlated errors € in the form of a first order autoregressive error

process in model (1.1).

For example, if modification (M1) is made, the use of an approximate numerical algo-
rithm such as simulated annealing rather than an exact theoretical method for finding optimal
run orders may be justified by the following considerations. Let design G be represented by a
graph whose nodes are the treatment combinations {g;,..., gy }. If all factor level changes
are equally expensive, the length of an arc joining nodes i and j, i # j is the number of level
changes between the two runs g; and g;. Relaxing the assumption of equally expensive level
changes, the length of arc (i,j) remains the cost of moving from run g; to g; but is no longer
the number of level changes between these two runs. In this context, the search for a
minimum cost run order is equivalent to the search for the shortest path through the graph, that
is, a travelling salesman problem where each node of the graph must be visited exactly once by
the shortest possible path. The travelling salesman problem is known to be NP-complete so
there is no algorithm that guarantees a global optimal solution and has a search time that is a
polynomial function of the problem size. An exhaustive search of all possible run orders
would take an exponentially long time in terms of the problem size. The annealing algorithm
provides a compromise between the practical limitation of available search time and the objec-

tive of a global optimal solution.



In Section 2 below, we introduce a version of the simulated annealing algorithm proposed
by Lundy (1985). We adopt the same stopping condition as used by Lundy, but look at two
different perturbation schemes in the context of our run order search problem. Section 3 pro-
vides some numerical evidence of the extent to which we can expect ‘‘success’ from the
annealing algorithm when applied to a small design for which an optimal solution under the
standard assumptions (A1) - (A3) is available via the GFS. In Section 4, we look at examples
involving the modifications (M1) - (M3) listed above. A short summary of the overall effec-

tiveness of the algorithm is provided in Section 5.

2. Simulated Annealing Algorithm. The simulated annealing algorithm is one member
~of a class of probabilistic hill-climbing algorithms that has proven to be an effective method
for solving combinatorial optimization problems. It differs from pure descent algorithms in
that increases in the objective function are permitted with certain probabilities in each iteration.
This hill-climbing aspect of the annealing algorithm helps it avoid being trapped in local
optima. Simulated annealing also improves on randomizing algorithms - which generate the
next state of the combinatorial system randomly and accept all objective function increases - in

that increases are accepted with a probability that takes the cost of the move into consideration.

We begin by detailing the structure of the optimization problem as follows. Let S be the
set of all possible configurations or states of the system. For our purposes, S is the set of all
permissible run orders of the design G. Let S(i) be the set of states that are neighbours of
state [ in the sense that state j € S(i) if it can be reached in one perturbation step of the
annealing algorithm from state i. Assume that i € S(i). In the search for an optimal run
order, the perturbation step of the algorithm consists of exchanging the positions of two (or
possibly more) runs. Let each state i € S have value C (i) with respect to some chosen objec-
tive function. We assume that the optimization problem is cast as one of minimization. In
each iteration of the algorithm, a transition is made from the current state i to some pertubed
state j € S(i/) with a probability that depends on a sequence of control parameters

{T,,, m=1,2, --- }, usually referred to as the temperature control sequence or cooling



schedule, and on the difference C(i)—C (j) between objective function values of the current

and perturbed states. The cooling schedule {T,,} satisifies

T,:2T,,; and ImT, =0. 2.1)

m—oo

The basic structure of the simulated annealing algorithm and the form of the transition proba-

bilities is as stated below.

DEFINITION 1. Annealing Algorithm: Beginning in some random state i, with objective
function value C (i), and for some choice of cooling schedule {7,,, m=1,2, - - - }, if the sys-
tem is in state i,, at time m, repeat steps (i) — (iii) below until a specified stopping condition is

met:
(i) perturb system from state i,, to state j €S(i,,);

(i) make the transition from state i,, to state j with probability

P

b J

= min{l, e (€WH-CUn)Tn };
(iii)) setm tom+1l and T,, 10 T}, ..

In Section 3, we consider two alternatives for the perturbation scheme. The first perturba-
tion scheme selects one member of S (i) at random with each state having probability 1/1S (i)1
of being chosen; the second makes a systematic pass through all permutations of two, (and
possibly three or four) runs and/or blocks. The scheme that produces solutions of higher qual-
ity is used in Section 4 for examples involving the modified assumptions described by (M1) —
(M3). If state j €S(i,) is generated in the perturbation step (i), a transition is made with pro-

bability one to state j if C(j)<C (i,,) and with probability e (€ ~=CENTn 36 iy C (i ).
m m

With these choices of perturbation scheme and transition probabilities, the success of the
algorithm in its search for a global optimum depends on the choice of the cooling schedule.
Hajek (1986) and Mitra et al. (1985) show that the Markov chain properties of the annealing

algorithm guarantee convergence to a global optimum if the temperature control sequence takes



Y
log(m +my+1)

the form T, = , where mg is any positive constant greater than 1 and y is a

constant that depends on the size of the problem, and subject to the further condition that steps
(1) and (ii) of the algorithm are performed infinitely often at each temperature T,,. Since
guaranteed convergence would require infinitely many iterations at infinitely many tempera-
tures, these results serve little practical purpose other than to suggest possible choices of cool-
ing schedules and stopping conditions under which the algorithm performs satisfactorily. . Fol-
lowing Lundy (1985), we find that the annealing algorithm produces acceptable results for a
control sequence given by

Ty

Cooling Schedule : T, = m )
m

(2.2)

where O<ou« 1 and U is an upper bound on objective function increases that will be accepted
by the algorithm. Notice that T,, ;=o(T,,)T,,, where 0 < a(T,,) <1, and that the temperature
decreases more and more slowly as the number of iterations increases. The higher the tem-
perature, the greater the probability that an increase in the objective function will be accepted
while only small hill climbs are likely to be accepted when the temperature approaches its

minimum value.

If a conservative approach is taken, U is set to the maximum possible increase in the
objective function so that all hill climbs are allowed in transition scheme (i) of Definition 1.
For a particular problem, if cooling schedule (2.2) terminates the annealing algorithm before a
solution of sufficient quality is reached, a slower cooling scedule closer to the log-rate sug-
gested by the convergence results should be used. Furthermore, steps (i) and (ii) of the algo-

rithm should be executed more than once at each temperature.

A stopping condition remains to be chosen. Again following Lundy, we define a parame-
ter Ty =n/log(V), where 1 is a small positive number and V the total number of states of the

system, and terminate the algorithm at the first iteration m" satisfying



m

T < Tf } 2.3)
The number of iterations needed to reach Tf is at most
U log(V)/(om). (2.4)

When searching for optimal run orders of fractional factorial designs in B =s” blocks of size
R =s""P7" an upper bound for log(V) is Blog(R!)+log(B!).

For T¢(=U and fixed problem size V, the search time of the algorithm is determined by
parameters o and 1. Good starting values for these parameters are =0.1 and n=1 for an ini-
tial search and smaller values of either for a more refined search when the execution time of
the algorithm is more accurately determined. In Section 3, we provide examples of the.

improvement in quality as o and 1 are decreased.

To apply the annealing algorithm to a bicriteria optimization problem involving distinct

objective functions C (i) and C,(i) over states i €5, a scalar objective function
C=wC;+(1-w)C, 2.5)

is minimized for each weight w satisifying O<w <1. For a single objective function, set
C,=C,. In practice, the minimization is done for a finite selection of weights
{W1, ..., Wy} for nrep repetitions of the annealing algorithm. Evenly spaced weights are
recommended unless the experimenter has reason to restrict the range of weights to a subset of
the unit interval. When the last repetition is completed, the experimenter implements one of the

nrep admissible run orders found by the annealing algorithm.

3. Simulated Annealing Applied to Standard Criteria. In this section, we give exam-
ples of the annealing algorithm applied to the optimization problem outlined in Section 1 for
which the optimality criteria are linear trend elimination (so £ =1) and minimum cost of level

changes, under the standard assumptions (A1) — (A3).

As stated above, two perturbation schemes are compared. In the first scheme, S (i) con-

sists of all states that may be reached from state i by permuting any two, three or four runs



(within a single block) or by permuting any two blocks, subject to the restriction that the run
order always begins with run 1 and with the principle block. This restriction does not affect
the performance of the annealing algorithm. Each state in S (i) has probability 1/1S(@)| of
being selected as the perturbed state. The second perturbation scheme involves a systematic
pass through all permutations of two runs, followed by all permutations. of three runs and then
all four run permutations. The cycle is repeated until stopping condition (2.3) is met. Under
this scheme, neighbourhood S (i) contains a single state that depends on the current permuta-

tion.

To provide a measure of the variation in solution quality, for each of five choices of
parameters o and 1, five repetitions of the annealing algorithm are made at each of eleven
equally spaced weights, {0.0,0.1,..., 1.0}. In the examples discussed below, the minimum
and maximum values of the objective functions C'; (linear trend elimination) and C, (cost of
level changes) are given exactly by the results of Coster and Cheng (1988), so each objective
function is rescaled to lie between zero and one. Consequently, the value of objective function
(2.5) is a number between zero and one also. This allows the quality of solutions at different
weights and different parameter settings to be compared directly. Solutions found at weight
w =0 or w=1 are optimal with respect to one design criterion only. At any other weight, a

solution with a value of zero in expression (2.5) is globally optimal.

Table I summarizes the performance of the annealing algorithm using the first perturba-
tion scheme described above. For each weight and each choice of parameters ¢ and 1, the
average and standard deviation of the five values of objective function (2.5) are reported. The
number of optimal solutions in each group of five repetitions is indicated by an equal number
of asterixes placed after the average. In'a similar fashion, Table II provides a performance

summary for the second perturbation scheme.

The design used for Tables I and II is a 272 fraction of a design for n =6 factors, each at
s =2 levels, defined by the relation I = ABCD = ABEF, blocked into 2 blocks of size 8 with

confounded effect ACE. It is a main effects only plan, so there are n =6 columns in X;. The



minimum and maximum number of level changes for any run order are 44 and 60 repectively,
using the results in Coster and Cheng (1988), while the maximum absolute time count between
any main effect column of X; and the single linear trend column of X5 lies between 0 and 32
for all run orders. The time count between a main effect column x of X; and X; is just x'Xj,
so an optimal run order under the trend elimination criterion is one for which the maximum
absolute time count for all six columns of X is zero, making main effects estimation orthogo-
nal to trend estimation. The first objective function, C,, is simply a rescaling of this maximum

absolute time count to a number between O and 1.

A generator sequehce that produces an optimal run order for this design using the GFS is
-~ available in Coster (1988b). This example design is labelled as plan 2.6.1 in Table II of Coster
(1988b). In the table headings of this section, we use the same label, namely 2.6.1 (for p =2,
n=6 and s =1). One immediately interesting aspect of the use of the annealing algorithm is
the discovery of an optimal run order for this example that cannot be found by direct applica-
tion of the GFS of Coster and Cheng. For example, an optimal non-foldover run order for plan
2.6.1 found by annealing is:

1 bce abef ade abcd bdf cdef acf

adf abcdef bef cd ace ef bde ab

In each cell of Table I, the upper entry is the average of the five final values of objective
function (2.5) when the stopping condition is reached, while the lower entry is the standard
deviation of these five values. The last line contains the average and standard deviation for all
fifty-five solutions at each choice of parameters o and n. The same layout is used for Table II

on the following page.

The systematic perturbation scheme found optimal run orders on seven occasions. In com-
parison, the randomized scheme found two optimal orders. Observing the entries in the last
row of each table, the systematic scheme shows consistent improvement in the average quality
of the solutions as o and 1 are decreased and gives satisfactory performance (average value of

objective function (2.5) below 0.1) when results are averaged over all weights. In contrast, the



Table I

Averages and Standard Deviations of Five
Annealing Algorithm Solutions to Plan 2.6.1
Using Randomized Perturbation Scheme

o=.1 oa=.05 o=.02 o=.01 oa=.01
Weight n=1 n=1 n=1 n=1 n=.5
0.0 0.2000 0.1625 0.1500 0.1625 0.1125
0.1075 0.1016 0.1016 0.1159 0.0729
0.1 0.1575 0.2050 0.1925 0.1937 0.1950
0.0722 0.0770 0.0357 0.0506 0.0987
0.2 0.2775 0.2275 0.2125 0.2225 0.1800
0.0673 0.0556 0.0559 0.0709 0.0872
0.3 0.3000 0.2512 0.2025 0.2075 0.1638
0.0858 0.0297 0.0876 0.0654 0.0634
0.4 0.2675 0.2400 0.1600 0.2125 0.1800
0.0498 0.0429 0.0464 0.0296 0.0719
0.5 0.2125 0.2062 0.1875 0.1875 0.1312
0.0306 0.0375 0.0442 0.0395 0.0364
0.6 0.1900 0.1950 0.1725 0.1375 0.1450%
0.0677 0.0408 0.0348 0.0379 0.0801
0.7 0.1913 0.1725 0.1663 0.1525 0.1463
0.0327 0.0419 0.0522 0.0525 0.0600
0.8 0.1500 0.1550 0.1375 0.1075 0.0975
0.0454 0.0551 0.0426 0.0595 0.0330
0.9 0.1587 0.0975 0.0750 0.0863* | 0.0388
0.0315 0.0620 0.0240 0.0538 0.0179
1.0 0.1375 0.0750 0.0875 0.0375 0.0125
0.0468 0.0250 0.0500 0.0306 0.0250
0.2039 0.1807 0.1585 0.1552 0.1275
0.0818 0.0773 0.0707 0.0818 0.0850




Table II

Averages and Standard Deviations of Five
Annealing Algorithm Solutions to Plan 2.6.1

Using Systematic Perturbation Scheme

oa=.1 o=.05 a=.02 o=.01 o=.01

Weight n=1 n=1 n=1 n=1 n=.5
0.0 0.1875 0.0625 0.0375 0.0875 0.0500
0.0685 0.0559 0.0500 0.0396 0.0250
0.1 0.1338 0.0900 0.0850 0.0725 0.0713
0.0475 0.0264 0.0211 0.0350 0.0320
0.2 0.1850 0.1125 0.1275 0.0875 0.0700
0.0184 0.0395 0.0450 0.0565 0.0187

0.3 0.1938 0.1500 0.1350 0.1200 0.0588**

0.0495 0.0426 0.0457 0.0329 0.0503
04 0.2225 0.1575 0.1350 0.1700 0.0675
0.0255 0.0350 0.0521 0.0292 0.0170
0.5 0.2062 0.1750 0.1312 0.1125 0.0875
0.0319 0.0468 0.0415 0.0468 0.0234

0.6 0.2225 0.1475 0.1725 0.1200 0.0775%
0.0509 0.0357 0.0930 0.0322 0.0436

0.7 0.1625 0.1713 0.0850 0.1513 0.1713*
0.0495 0.0400 0.0140 0.0394 0.0432
0.8 0.1850 0.1825 0.1300* 0.1275 0.0650
0.0339 0.0605 0.1077 0.0348 0.0357

0.9 0.0975 0.0088% 0.1437 0.0586 0.0563%
0.0429 0.0550 0.0143 0.0161 0.0306
1.0 0.1750 0.1125 0.0875 0.0625 0.0375
0.0919 0.0729 0.0306 0.0559 0.0500
0.1792 0.1327 0.1155 0.1064 0.0648
0.0616 0.0611 0.0655 0.0519 0.0378

10




improvement in average quality for the randomized scheme is considerably less than that
observed for the systematic scheme. Even at the lowest parameter settings, the randomized
scheme results in unsatisfactory average quality while the variability in quality remains high as
o and 1 are decreased. Ignoring the rows of the table with weights w =0 and w =1, the sys-
tematic scheme has superior average quality in 38 of the 45 combinations of weight and con-

trol parameters. Based on these empirical observations, the systematic scheme is preferred.

An alternative optimization procedure is a randomizing algorithm: in each iteration, the
run order is re-randomized and the value of the objective function computed. The best run
order found after a chosen number of iterations is implemented. Each of the 550 annealing
runs summarized in Tables I and II began with a randomized run order. The average value of
objective function (2.5) over all 550 randomized orders was 0.4751 with a standard deviation
of 0.1214. The best starting run order had value 0.125 and was one of only two randomized
run orders not improved upon by the annealing algorithm, that is, the algorithm began in a
local optimum from which it was unable to escape. In this respect, a randomizing algorithm is
inferior to the annealing algorithm which, in a comparable number of iterations at parameter
settings (o, M)=(0.02, 1), found at least one run order of superior quality at all weights. The
superior quality of solutions found by the annealing algorithm was even more evident at lower
values of oo and M, athough the number of iterations until stopping condition (2.3) is met

increases to approximately 2100 for the lowest parameter settings used.

The 275 randomized orders used as starting points for the annealing algorithm with the
randomized perturbation scheme averaged 0.4808, while the solutions averaged 0.1652, an
average improvement of 0.3156 (SD = 0.1264). The average improvement with the systematic
scheme was 0.3497 (SD = 0.1303) from an average starting value of 0.4694. Again, the per-
formance of the systematic perturbation scheme is judged to have been superior to that of the

randomized scheme.

From Table II, the annealing algorithm found an optimal run order in seven of the two

hundred and seventy five starts that used the systematic perturbation scheme. A greater
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Table II1

Plan 2.6.1 Annealing Solutions with (o, )= (0.002, 0.25)
Perturbations | Value | Value Objective Optimal Run
Weight Aﬁcepted of C; | of C, | Function (2.5) | Order Found
0.1 —1—6394 8 44 0.0250 No
0.2 6638 0 44 0.0000 - Yes
0.3 7304 0 44 0.0000 Yes
04 12967 2 45 0.0625 No
0.5 12107 2 45 0.0625 No
0.6 11329 0 45 0.0250 No
0.7 5101 0 44 0.0000 Yes
0.8 6609 0 44 0.0000 Yes
0.9 3173 0 44 0.0000 Yes

success rate is possible with lower values of the control parameters o and 1. For example,
optimal orders for plan 2.6.1 were found in five of eighteen starts using settings
(0, m)=(0.002,0.25) when two starts were made at each weight w € {0.1,..., 0.9}. The final
scaled value of objective function (2.5), the final unscaled values of criterion functions C, and
C, and the number of perturbations accepted by the transition step (ii) of the algorithm for the

better of the two starts at each weight appear in Table III above.

Referring to Table III, for those starts leading to optimal run orders, the number of pertur-
bations accepted was much less than the number accepted for unsuccessful starts, as expected
since the algorithm terminated when a known optimal solution was reached. By (2.4), the
number of iterations required for those starts that fail to reach an optimal solution is neces-
sarily the maximum allowed by the stopping condition, while the number of perturbations actu-
ally accepted is much less than this maximum number of allowed iterations, approximately
38000 in this example. This suggests that, in any practical application of simulated annealing
to run order problems of the type studied here, the algorithm should be monitored interactively

and stopped after fewer iterations than allowed by (2.4) when the probability that a hill climb

12



will be accepted becomes sufficiently small.

By step (ii) of Definition 1, the probability that a hill climb is accepted depends on the
size of the increase in objective function (2.5) and on the temperature. For fixed temperature
and weight, this probability is largest for the smallest possible objective function increase.
With To=U =1.0 (as is always the case in the examples of this section), T,,=1/(1+ma).
Let the minimum possible objective function increase under the systematic perturbation scheme -
be &, For this increase to be accepted with probability at most q, 0<g <1, we require

g (1+ma) smsq , that is, the iteration number must satisify:

—log, q/8,:.—1
m> geqamm - (3.1)

For plan 2.6.1, with o and 1 set to the values used for the annealing runs summarized in
Table III and at weight w=2/3, §_;,=1/48. If ¢ =0.05, then at least 71,398 iterations are
required for all subsequent hill climbs to be accepted with probability at most q. This is
almost twice the number of iterations allowed by stopping condition (2.3). Thus, requiring the
acceptance probability of the smallest objective function increase to be bounded above may be
too conservative. Instead, we suggest a modified stopping condition that requires the probabil-
ity of the average hill climb, Sm,g say, to be at most q and replace stopping condition condition

(3.1) by

—log.q/d,,, —1
m > ge qa avg . (3.2)

Computing 8avg for an arbitrary perturbation scheme, objective function and weight is not
generally feasible. To overcome this difficulty, we recommend using an iterative procedure
that evaluates the average of all hill climbs attempted by the annealing algorithm and substi-
tutes this value for Sm,g in (3.2). With this modification, the algorithm is terminated when the
number of iterations exceeds the value given by (3.2), subject to the requirement that at least
half the number of iterations allowed by stopping condition (3.1) are executed. (This last

requirement ensures that the number of iterations is large enough for satisfactory quality to be

13



reliably attained.) The choice of limiting probability ¢ must be made by the experimenter. In
an interactive environment, each time this modified stopping condition is met the experimenter
may examine the current best solution and decide whether it is of sufficient quality. If not, a
smaller value of ¢ may be entered and the algorithm continues until either the modified ver-

sion of (3.2) is again met or stopping condition (2.3) is achieved.

For example, with (a,)=(1,0.1), the average hill climb attempted for plan 2.6.1 over 45
starts at weights other than 0 and 1 came to 0.0895 (SD = 0.0140). A similar average was
observed for other parameter settings. With ¢ =0.05 as before, the number of iterations

required until condition (3.2) is met is approximately %;5. When o is large and hence total

execution time small, condition (2.3) will usually be met before (3.2); for o (<0.002) small,
condition (3.2) may be satisfied before (2.3) and the algorithm terminated earlier without seri-
ously affecting the quality of the solution. In the particular case that (o, 1)=(0.002,0.5), (3.2)
requires approximately 16,235 iterations while (2.3) needs in excess of 21,900 steps. From
annealing runs made at each of fifty-one weights evenly spaced between zero and one and «
and m as stated above, the iteration in which the best run order was found was, without excep-
tion, less than 14,200 and an average of 6884 iterations were required to reach the best solu-
tions for each start. Thus, the use of stopping condition (3.2) would have been appropriate for
these annealing runs. We note that with the stated parameter settings, twelve of the fifty-one

starts led to optimal run orders, an excellent success rate.

Plan 2.6.1 is a small design. As the design size grows, the annealing algorithm is less
successful at finding globally optimal run orders, while the execution time increases at a rate
proportional to log(V) in expression (2.4) for fixed settings. of parameters o and M. For exam-
ple, with (a,1)=(0.002, 0.5), and for the plan labelled as 2.7.2 in Table II of Coster (1988b), a
272 fraction of a design for n =7 factors blocked into 4 blocks of size 8, run orders were found
at each of six equally spaced weights. Table IV below summarizes the results. Although the
quality of the annealing algorithm solutions is satisfactory for all but weight w =0.6, none of

the run orders is optimal. Note that the minimum value of objective function C, for this
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Table IV

Plan 2.7.2 Annealing Solutions with (o, M) =(0.002, 0.5)

Starting Value Final Value Value | Value

Weight | of Fu_nction (2.5) | of Function (2.5) | of C; of C,
0.0 E).SOOO 0.0667 32 98
0.2 0.4897 0.0596 2 98
0.4 0.4800 0.0750 4 99
0.6 0.4583 0.1254 2 110
0.8 0.4367 0.0767 0 117
1.0 0.4688 0.0000 0 124

design is 94 factor level changes. With high weight on objective function C, the number of
factor level changes in the solutions is well above this minimum. However, at the extreme

weights of w =0 and w =1, the solutions are quite satisfactory (optimal in the case w =1).

4. Modified Design Criteria. In this section, we present examples of run orders found by
the annealing algorithm for each of the modified design criteria described in (M1) — (M3) of

Section 1. Stopping condition (2.3) is used in all the examples of this section.

We begin with an example in which the level changes for different factors are not equally
expensive. We again use plan 2.6.1. Suppose that level changes of factor d have unit cost and
all other factor level changes are free (that is, have zero cost). A linear trend free minimum
cost run order is wanted, as usual. A factor must make at least two level changes if it is to be
linear trend free. So the unscaled cost function has a minimum value of two and a maximum
of fifteen. An optimal run order must have all six factors linear trend free while factor d must
change levels twice, once after four runs and a second time after twelve runs. For two choices
of parameters o and 7, five randomized starts were made at each of eleven equally spaced
weights. The values of the unscaled objective functions C; and C, and scaled objective func-
tion C given by (2.5) for the best order found at each weight are presented in Table V below.
With the lower parameter settings, the bicriteria search successfully found an optimal run order

for five of the nine weights not equal to either zero or one.
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Table V

Annealing Solutions for Plan 2.6.1 for Modified Criterion M1
With All Factors Except d Having Zero Cost
o=0.1,n=1 o=0.01, n=0.5
Value | Value | Function || Value | Value | Function
Weight || of C; | of G, (2.5) of C; | of G, (2.5)
0.0 16 2 0.0000 16 2 0.0000
0.1 8 3 0.1000 0 2 0.0000
0.2 8 3 0.1167 2 2 0.0125
0.3 4 2 0.0375 0 2 0.0000
0.4 6 2 0.0750 8 3 0.1462
0.5 8 3 0.1635 0 2 0.0000
0.6 6 2 0.1125 2 2 0.0375
0.7 4 6 0.1798 0 4 0.0462
0.8 4 2 0.1000 2 2 0.0500
0.9 2 8 0.1024 0 2 0.0000
1.0 4 8 0.1250 0 4 0.0000

Modifying the cost structure to a less trivial form, suppose that level changes of factors
d, e, f are free while level changes of factors a, b, ¢ cost 1, 2 and 3 respectively. With
(a,n)=(0.01,0.5), run orders with a minimum cost of twenty-three level changes were found.
(The maximum number of level changes came to seventy-six). The best bicriteria run order
had all factors linear trend free and required twenty-four level changes. This run order is:

1 bdf abef ade acf cdef bce abed
abcdef ace cd bcf bde ab adf ef,

‘Modification (M2) involves using a non-polynomial trend. Possibilities include piece-
wise linear trends, polynomial trends of different degrees in each block and cyclic trends. An
example of the latter is a sine wave based on run position in each block. For example, with
design G =23—1 for five factors in one block of sixteen runs defined by I =ABCDE, the trend

in run position i of X3 is now equal to sin(2wi /16). The second design objective, C,, remains
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Table VI

Annealing Solutions for Plan 1.5.0 for Modified Criterion M2
With Trend Given by sin(zl—’;‘)

o=0.01,n=1 o=0.002, n=0.5

Value Value | Function Value Value | Function
Weight of C; of C, (2.5) of C; of C, 2.5)

0.0 0.2697 30 0.0000 | 0.1580 30 0.0000
0.1 0.0070 30 0.0007 0.0156 30 0.0016
0.2 0.0267 30 0.0053 0.0046 30 0.0009
0.3 0.0156 30 0.0047 0.0054 30 0.0016
0.4 0.0313 30 0.0125 0.0039 30 0.0015
0.5 - 0.0642 30 0.0321 0.0156 30 0.0078
0.6 0.0313 30 0.0186 0.0009 30 0.0005
0.7 0.0321 30 0.0225 0.0092 30 0.0064
0.8 0.0217 32 0.0307 0.0017 30 0.0014
0.9 0.0196 34 0.0245 0.0156 30 0.0141
1.0 0.0033 45 0.0033 0.0008 45 0.0008

the total number of factor level changes. Unscaled objective function C; corresponding to the
criterion of trend elimination is equal to the maximum of x’X3 over the columns x of X;.
Equivalently, we seek a run order that minimizes the maximum squared correlation coefficient
between any factor effect and the trend effect and has minimum cost of level changes. Table
VI above presents a summary of the objective function values for the best run orders found at
each of eleven equally spaced weights for two choices of parameters o and n. Note that C,

values are the squared correlation coefficients.

If the maximum squared correlation coefficient is less than 0.01, the maximum correlation
between any factor effect column and the sine trend is less than 0.1. The average over ran-
domized starting orders of the maximum correlation coefficient between factor effects and the
sine trend was 0.491. Thus, some of the run orders found by the annealing algorithm are con-

siderably better than any randomized run order with respect to both objective functions. For
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these design criteria, a run order is judged to be of satisfactory quality if the value of objective

function (2.5) is less than 0.01 at each weight.

The minimum value of criterion function C, is 30 factor level changes. Eighteen of the

twenty-two run orders achieve this minimum. The run order corresponding to the solution at

weight w =0.6 for the lower parameter settings is

1 cd ce acde abde ab bd be ae ac ad de bede abee be abed

Modification (M3) refers to a correlated errors model in which successive random errors

are correlated according to a first order autoregression with correlation A. Let the variance-

covariance matrix for error process € in linear model (1.1) be denoted by W. We assume that

€ has mean zero. The inverse of W is given by

1 -\ 0

A 1422 A

0 A 1+A2%

0 A

. 0
0

Linear model (1.1) may be re-written as

Y = (X, X,) E:

0

0
- 0
1+A%2 -\
-2 1

+ €,

4.1)

where X, is the design matrix for factor effects and X, represents blocking effects. We no

longer assume that any trend is influencing the observations. The information matrix for the

factor effects is

MBI = X,1 I:VV_I -

1-A

K—(xk—2)A

diag[A,...,A]}Xl,

where K is the block size and A is a K¥xx matrix of the form
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1 1-A . 1A 1
1-A (102 . (1-0)% 1-A

=L (1-0)?% . (1-0?% 1A
1 1A . 1A 1

We assume that correlation coefficient A is so chosen that variance-covariance matrix W
is positive definite.  Note that the choice of a first order autoregressive error process is for con-
venience. Any variance-covariance matrix W is acceptable, but for an arbitrary error process

the closed form inverse (4.1) must, in general, be replaced by a numerically computed inverse.

Frequently used optimality criteria are the D-, A- and E- optimality criteria. A run order
is D-optimal if it minimizes the product of the eigenvalues of the inverse of information matrix

Mg ; for A-optimality, the sum of the eigenvalues must be minimized, while E-optimality is

achieved if the maximum eigenvalue is minimized. Other functions of the eigenvalues may

also be used. An equivalent form of the D-criterion is that the determinant of Mg, is maxim-

ized.

Table VII summarizes the results of annealing runs made for plan 2.6.1 with two different
choices of correlation A at parameter settings (o,mn)=(0.01,1.0) and with one objective func-

tion, the D-criterion. Because no closed form expression is known for the determinant of MB1

when A is non-zero, the eigenvalues were re-evaluated for each run order. Furthermore, neither
the maximum nor the minimum possible determinant is known for arbitrary A. Hence, without
an exhaustive search, the optimal D-criterion value is unknown. Instead, we trust that the suc-
cess of the annealing algorithm observed in the examples of Section 3 is repeated here and that
the best run order found is close to D-optimal. Since only one objective function is involved,
all weight choices are equivallent and. it is sufficient to run the annealing algorithm at-weight
w=0. A run order with determinant 18.031 when A=0.2 is

1 abef abcd cdef bee acf bdf ade

ace adf bcf bde ef abcdef ab cd

This run order requires the maximum possible number of level changes within each block. In
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Table VII

Annealing Results for Plan 2.6.1 Under
D-Criterion With Correlated Errors Model
A=0.1 A=02
Initial Final Initial Final
Trail | Determinant | Determinant || Determinant | Determinant

1 16.610 16.832 16.846 17.992
2 16.258 16.878 17.080 18.031
3 16.449 16.761 17.017 18.031
4 16.406 16.893 16.981 18.031
5 16.366 16.832 17.708 18.031
6 +16.254 16.907 16.614 17.877
7 16.193 16.835 17.071 18.031
8 16.534 16.896 17.087 18.006
9 16.463 16.900 17.004 18.012
10 16.474 16.816 17.058 18.006

general, it is observed that run orders which perform well with respect to the D-criterion have a
large number of level changes for positive correlation A. Consequently, the search for D-
optimal run orders may be aided by searching for maximum level change orders since this
latter criterion function is more readily evaluated at each state visited by the annealing algo-
rithm. In a bicriteria search involving the D-criterion with an autoregressive error process, the
cost function used in the earlier chapters should not be used since the two criteria will be in

conflict.

5. Conclusions. The annealing algorithm has proven to be an effective method for
finding near-optimal run orders for a variety of scalar and vector optimization problems. In
general, any objective function whose value depends on the run order of the design may be
used. Although not demonstrated here, the design itself need not be restricted to the class of
fractional factorial designs but may take an almost arbitrary form. We add one word of cau-

tion: in a bicriteria optimization problem, care should be taken to avoid competing objective
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functions.

The greatest disadvantage of the annealing algorithm is the amount of execution time used
for each run at the settings of parameters o and N required for high quality solutions. With the
standard design criteria used in Section 3, an average of 3.8 seconds of cpu time on a Vax
11/750 was required for each annealing run at (o,mn)=(0.1,1) for plan 2.6.1. With o and n
lowered to 0.002 and 0.5 respectively, run time averaged two minutes per start. Plan 2.7.2
required almost twenty minutes per run at these latter parameter settings. With objective func-
tions such as the D-criterion, for which the eigenvalues of the information matrix must be com-

puted for each state visited by the annealing algorithm, average run time is even greater. Our

- -simplest -and - strongest :recommendation for the further application of simulated annealing to

design problems of the type considered here is: use a super computer.
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