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1. Introduction

The problems involving inferences about a distribution or its parafneters when it is
known apriori that these are subject to certain restrictions has attracted the attention
of quite a few researchers in the past. For further study in this area the reader may re-
fer to Ayer, Brunk, Ewing, Reid and Silverman (1955), Brunk (1955, 1958), Eden (1956,
1957), Marshal and Proschan (1965), Brunk, Franck, Hanson and Hogg (1966), Barlow,
Bartholomew, Bremner and Brunk (1972), Robertson and Wright (1974), Dykstra (1982),
Feltz and Dykstra (1985), Schoenfeld (1986), Sampson and Whitaker (1987), Robertson,
Wright and Dykstra (1988). In most of the problems of statistical inference under or-
der restrictions, there is an underlying basic mathematical concept of isotonic regression
(cf. Barlow et. al. (1972)) defined below.

Let S = {z1,%32,...,2r} be a finite set with the simple ordering z1<z2< ... <zg. A
real valued function f(-) on S is said to be isotonic if z,yeS, z<y implies f(z) < f(y).
Let g(-) be a given real valued function on S and w(-) a given positive function on S.
An isotonic function ¢*(-) on S is said to be isotonic regression of g with weights w; =
w(z;),t =1,2,...,k, with respect to the simple ordering z; <z2< ... <z, if it minimizes

- in the class of all isotonic functions f on S the sum

2, [9@) - f()ue). (11)

A real vélued function f(-) on S is said to be antitonic if z,yeX ,x%y implies f(z) >
f(y). An anfitonic function §(-) is said to be antitonic regression of g with weights w;,¢ =
1,2,...,k, y&ith fespect to the simple ordering z1 <z2< ... <z, if it minimizes in the class
of all antitqnic functions f on S the sum (1.1). |
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Let W; = iél w; and G; = é}l wig(zi),7 = 1,2,...,k. The plot of the points P; =
(W;,Gj),7 = 0,1,2,...,k, with Py = (0,0), in the Cartesian plane constitutes what is
known as the cumulative sum diagram (CSD). Using this plot Reid (see Brunk (1956),
Barlow et. al. (1972)) established the following theorem for finding the isotonic regression.
Theorem 1.1. The value of the isotonic regression g* at the point x; is just the slope
of the greatest convex minorant (GCM) of the CSD at the point P} with abcissa Wj,j =
1,2,...,k. In particular if P} is a corner of the GCM, then g*(z;) s the slope of the
segment of the GCM extending to the left.

Ayer et. al. (1955) have expressed ¢g*(z;) in the form of the following max-min formulas.

g*(zi) = max min AV(s,t) = min max AV (s,t) (1.2)
= 1?2,? Ithl?AV(s,t) = min I?ngV(S’t)’ (1.3)

where
4v(s,0) = ( £ oaryr ) /(5,0 ). (1)

Unfortunately in practice these max-min formulas are not easy to apply for calculating
the isotonic regression. Consequently the above authors developed the so called “Pool
Adjacent Violators” algorithm for finding the isotonic regression. Later Kruskal (1964)
wrote a program to carry out this algorithm and developed essentially another version of
this, called “Up-and-Down Block” algorithm.

In Section 2 of this paper we give rather simple (recursive) formulas for the isotonic
and antitonic regressions which help to calculate them without using any algorithm. We
believe that these formulas are not hitherto known in literature.
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In Section 3 we demonstrate the usefulness of our recursive formulas (2.1) — (2.2)
and (2.4) — (2.5) by applying these to the problem of maximum likelihood estimation of a
distribution dominating stochastically a known distribution.

2. Formulas for isotonic and antitonic regressions

The following theorem gives the (recursive) formulas for the isotonic regression g* of
Theorem 1.1. Its proof is based on a rather simple observation leading to these formulas
which have hitherto been apparently overlooked.

Theorem 2.1. The values of isotonic regression g* at the points z; (denoted by g;-‘),j =

1,2,...,k, are given by the recursive formulas
g1 = min, [Gi/Wi], (2.1)
* ) -1 * i )
9; = jISnilélk G; — r§1 Wrgr /rgj wel,7 =2,3,...,k. (2.2)

Proof. We observe that for any convex function h(-), its right hand derivative h'(z+) at

point z is given by

W(zt) = inf (A=) - h@)/(&' — o)
~ infl(y' ~ h(2))/(a" - 0], (23)
where A = {(z',y') : ' > z,y' > h(z")}.
Now by Theorem 1.1, g7 is the slope of the first line segment starting from (0, 0) of the
GCM of the CSD. Thus by (2.3), g7 is the minimum of the slopes of the k lines joining the
points (0,0) and the points P; for i = 1,2,...,k. These slopeé being G;/W;,i =1,2,...,k,

we have

g = 1I£i1£k [Gi/W,].
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The remaining g;’s are thereafter obtained recursively. More specifically, suppose we
have obtained g7, g5, . ..,g;_, for fixed je{2,3,..., k}, then as before by (2.3) g7, being the
slope of GCM at the point P}, is the minimum of the slopes of the k — j + 1 lines joining
the point P}, = (W,-_l,ig wrg:> and the points P; = (W,-,G,-),i =41,k

These slopes being

(G’,: -’Elw,g:)/( 2w>z =§ i+ 1.,k
r=1 r=j
we have (2.2) establishing the theorem. O
The following important remark helps greatly in further reducing the calculations for
finding isotonic regressions in practical situations.
Remark. In case the minimum in the expression (2.1) for ¢gf occurs at ¢ = r; > 2,
ie., g = Gr,/W;,, then it can be easily shown that g5 = g5 = ... = g7, = g7, so
that calculations for ¢7,j = 2,3,...,r1 are avoided. Next we calculate gy |, using the
expression (2.2). If the minimum in this expression occurs at : = rp > ry + 1, then as
before we have g7 5 = g7, y3--- = gy, = gr,+1- The process can be continued till one gets
all g¥’s. This procedure is made clear through the foilowing example taken from Barlow

et. al. (1972) (Table 1.2, page 14).

Calculation of an isotonic regression with recursive formulas.

J 1 2 3 4 5
w(z;) 1 2 1 3 1
oe;) -1 1 4 —@4f3) 2
W; 1 3 4 7 8
G; 1 1 5 1 3

Using (2.1), we have
9= 22 [Gi/wi] = min[-1,1/3,5/4,1/7,3/8] = —1.
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Since the minimum has occurred at the first term itself (i.e., r; = 1), so we need to calculate
g3 from (2.2).
* . . * i
g2 = 2212.125[(& w1gl)/ z wr]
=min(1,2,1/3,4/7] = 1/3.
Since the minimum in expression for g3 is attained at ¢ = 4, we have g5 = g5 = g5 = 1/3

and finally again from (2.2) we have
* 4 *
g5 = | Gs — gl wrgy | /ws = 2.

The antitonic regression § at z; is given by the slope at P, having abcissa Wj, of the
least concave majorant (LCM) of the CSD, j = 1,2,...,k, (ref. Barlow et. al. (1972)). The
following theorem, having similar proof as that of Theorem 2.1, gives (recursive) formulas
for the antitonic regression.

Theorem 2.2. The values of the antitonic regression § at the points x; (denoted by

Gi),7=1,2,...,k, are given by the recursive formulas
§ = max [Gi/Wi], (2.4)
i izl Y\, .
9; = ]'12?2{1‘: [(Gz - r§1 wrgr) / rgj wr] J=2,3,...,k (25)

A similar remark, as was made following the Theorem 2.1, also holds in these recursive
formulas for calculating the antitonic regression. This as before helps in reducing the
calculations.

The following Theorem, to be used later, easily follows from our Theorem 2.1 and a
corollary to Proposition 1.1 of Barlow et. al. (1972), (page 51).
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Theorem 2.3. Let ¢ be a convex, ﬁnite real valued function defined on an interval I of

the real line. Let By, P2,-.., Pk be k real numbers, w; > 0,2 =1,2,...,k and
) J . k
D= {(.’121,5122,. .. ,mk) : :cz-eI,z =1,2,... ,k, _le,-a:,: < ﬂj,l <3< k— 1, _Zl'wixi = ﬂk},
1= 1=
assumed to be a nonempty set. Then subject to (z1,z2,...,zk)eD, the sum
k
z ¢(z:)w; (2.6)
=
18 minimized at @ point (11,72,...,Tk)eD, where 7;’s are given by

1 = min [ﬂ,—/_(rél w)] 2.7)

1<i<k

_ j=1 i .
Tj = jrgnilélk [(ﬂ, — rz)l err)/'rEj wr] ,7=2,3,...,k. (2.8)

The above minimizing solution s unique if ¢ s strictly convez.
3. Maximum likelihood estimation of a cumulative distribution function F
subject to F(z) < Fy(z)

Dykstra (1982) discussed as a special case the problem of maximum likelihood estima-
tion of a survival function P(t) subject to P(t) > Py(t), for the noncensoring case, where
Py(t) denotes a given survival function. He developed an algorithm to calculate maximum
likelihood estimator (M.L.E.) of P(t). In this section we discuss, in the light of the Theo-
rems 2.1 and 2.3, the maximum likelihood estimation of a cumulative distribution function
(c.d.f.) F(z) subject to the restriction F(z) < Fo(z), V z, where Fy(z) is a known c.d.f.
Based on a random sample y1,¥y2,...,Yn of size n drawn from a population with c.d.f. F,
let the ith ordered distinct value v; occur m; times, ¢ = 1,2,...,s, with 1__23_)1 m; =n. We
assume Fgy(vy) > 0. The problem is to obtain an M.L.E. of F subject to F(z) < Fy(z), V z,
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based on the observation vector (v;,m;,t = 1,2,...,s). Basically this is a nonparametric
problem where it is not clear how to define what could be realistically called a likelihood
function. This is because of the absence of a common o—finite measure dominating every
measure induced by F on (R, B), as F' varies subject to F(z) < Fy(z), Vz, where B is the
Borel o-field on the real line R. Instead we follow the “method of maximum likelihood”
suggested by Scholz (1980), which bypasses the intermediate step of first defining the so
called likelihood function. For this we shall need the following definitions as given by
Scholz (1980).

Let ) be a metric space with metric d and let P be a family of probability measures on
the Borel sets of . For any (data) point y € Y let NV, denote the family of all measurable
sets N, which contain y as an interior point. Let D(N,) denote the diameter of the set
Ny.

Definition 1. For P,Q € P write P>Q if
lim P(Ny)/Q(Ny) 2 1, (3.1)
where lim s o be interpreted here as
lim P(Ny)/Q(Ny) = ligi_iglf{P(Ny)/Q(Ny):Ny € Ny with D(Ny) < ¢}, (3:2)

with 0/0 to be taken as ome by convention.

Definition 2. P,Q € P are said to be equivalent at y (written as P%Q) whenever P%Q
and Q%P Thus PiQ if and only if lim of 3.1 exists and equals 1.

Definition 3. The statistic Py € P i3 a mazimum likelthood estimator (M.L.E.) with
respect to y € Y and P if for every Q € P such that QéPo it follows that QL Py. That is,
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Py is an M.L.E. if and only if there does not exist a Q € P — {Py}y such that Q%Po or
equivalently

lim Q(N,)/Ps(N,) < 1, for all Q € P — {Po}y, (3.3)

where {P}, = {Q € P: Q%P}.

Before applying the above method to our problem we shall treat the problem heuris-
tically and shall thereby come up with an “M.L.E.” of F subject to F'(z) < Fy(z) by using
Theorem 2.3. We shall then show that this estimate is indeed an M.L.E. also in the sense
of Definition 3 of Scholz (1980). Heuristically we argue as follows:

If F.is.in the.class.of .distributions which .are .absolutely continuous (with respect to
Lebesgue measure) then the likelihood function of our observation vector based on the
density function of F' can be made arbitrarily large by choosing an F' with a density
which has arbitrarily large heights at the observation points v;’s. This essentially means
(through a limiting argument) that we could restrict ourselves to the class of those F’s
which have positive (discrete) probability mass at each of the points vy, v2,...,vs, so that
the “likelihood function” based on the probability of the observation vector (v;,m;,¢ =

1,2,...,s) is given by
[Tdr@)™, (3.4)
=1

where dF(z) = F(z) — F(z—). Clearly (3.4) is zero if any v; is a point of continuity of
F, while it is positive if dF(v;) > 0, V1 < ¢ < s. One can now easily see that subject
to F(z) < Fy(z), Vz, whenever, either dF(y) > 0 for some y ¢ {vi,v2,...,vs} but with
y < vy or there is some left-over absolutely continuous component of F' over the interval
(—00,vs], in either case there always exists another c.d.f. say Fy, with Fy(z) < Fy(z), Ve,
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which is discrete over the interval (—oo, vs] with strictly positive jumps only at the points

v1 < Vg < ...< v, and with

H[dFl(v,-)]m" > H[dF(v,-)]m-'. (3.5)

Consequently for finding a c.d.f. F' that maximizes (3.4) subject to F(z) < Fy(z), Vz, we
can assume that the maximizing F is of discrete type over the interval (—oo,v,] and has
positive jumps there only at the points v; < v2 < ... < v,, with their sum not exceeding
Fy(vs). Note that for z > v, we are open for F' except for the restriction F(z) < Fy(z).

Thus our task is reduced to finding the values of 8;’s defined by
6; = m;[dF(v;)], i =1,2,...,s, (3.6)

8
which maximize [](m;6;)™ or equivalently
i=1

[Te™ (37)

subject to the restrictions
J
Zm,-&,- < Fo(vy), 1 =1,2,...,s. (3.8)
=1
Note since w;’s of Theorem 2.3 correspond to the m;’s here, we have conveniently chosen
to define 6;’s as in (3.6) (with a factor 1/m;) in order to fit the problem to the framework
of our Theorem 2.3. It is now easily seen that the above problem further reduces to finding

the values of 8;’s which minimize

Zm,-(_ In ;) (3.9)
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subject to the restrictions
j .
Z miei < FO(vj)a J _1,2,---73_17
i=1
Y mib; = Fy(vs).
=1
Finally taking ¢(z) = —Inz, I = (0,1), w; = mj and B; = Fyo(v;), j = 1,2,...,s, it

follows using Theorem 2.3 that the minimizing 6;’s are uniquely given by

b, = i, [Fo(v,-)/ (; m,) (3.11)

(Fo(vi) - z—: mré,) / (Z m,)

their uniqueness following from-the-strict-convexity-of-the-$(z). . Erom- these and. the fact

6; = jréliléls , ] =2,3,...,8, (3.12)

that Fy(vy) > 0, it easily follows that 6; > 0, Vi, as expected. Thus an “M.L.E.” F, of F,

subject to F((z) < Fy(z), Vz, is given by

0 T < vy,
F’n(x)= Jé:lmjéj, v <2 <Vpy3,r=1,2,...,8—1, (3.13)
Fo(z) T > v,

where for z > v, we have conveniently taken its value to be Fy(z).
Let P, be the probability measure on (R, B) induced by the c.d.f. F, of (3.13). We
now prove, as per Definition 2, that P, (or equivalently ﬁ’n) is an M.L.E. with respect to

the sample values y1,ya,...,Yn and the family P defined by
P = {Pp: F(z) < Fy(z), Vz}, (3.14)

where Pr denotes the probability measure on (R, B) corresponding to the c.d.f. F'. This

requires showing equivalent of (3.3) namely

lim 9p(Ny)/95 (Ny) < 1, VF with Pp € P — {Pp}y, (3.15)
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where

n

or(,) = [

!li:

F(du;). (3.16)
1
Note since §; > 0, Vi, as D(N,) — 0, the limit of the integral J i, (Ny) is always positive.
On the other hand, if F is such that it is continuous at v; for some ¢, it is easy to see that
the limit of 9p(Ny), as D(INy) — 0, is zero, so that (3.15) is satisfied for the corresponding
Pr. Let us now consider the case of an F with F(z) < Fy(z), Ve, F # F, and having

positive jumps dF(v;), Vi. For this the lim of (3.15) becomes equal to

8 8

[T1aFam/ [L(mady™ = TJ @)™/ T1 @)™, (3.17)

=1

=1

which is strictly less than one, since the solution {é,} to the related minimization problem
of (3.9)~(3.10) is unique. This proves (3.15) and hence that P, (or equivalently Fy) is an
M.L.E. in the sense of Scholz (1980). However note that as an M.L.E. the estimator Ey, s
not unique since, subject to F(z) < Fy(z), we could have taken other possible values for
ﬁ’n for z > vy.

Finally with the same notations as above, an M.L.E. F, of F, subject to the restriction

F(z) > Fy(z), Vz, can be obtained in a similar fashion yielding

Fo(.’l:) r < v
Fo(z) = ijj\j, v LT < Vpp1,7=1,2,...,5 -1, (3.18)
=1
1 T > v,
where
A\ = max Lsr?sagc_l{Fo(vi)/ r§1 m,-}, 1/ rg__)l mr] , (3.19)
A Fo(vi) =% mihe )/ 3 175w,/
j=mox] g { (R0 = Zmode)s ) (1= mede )1 8
j=2,3,...,s—1, (3.20)
N s—1 ~
Ag = (1 - Z}l mr/\r> [ms. (38.21)
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Theorem 3.1. Let F(z) < Fy(z) YV z. Then Fo(z) defined by (9.18) is a consistent
estimator of F(z).

Proof. Let D, = sup |F.(y) — F(y)|- We first show that
y
0 < Fo(z) — Fo(2) < D, Vo, (3.22)

where F, is the empirical c.d.f. The inequality (3.22) is trivially seen to be true for z < v,

and z > v,. For v; <z < vy, we have
Fo(z) — Fp(z) = (ma/n) — mib;. (3.23)
From (3.11) and the fact that Fy(v,) < 1, it follows that
my6; < myFy(vs)/n < mq/n.

Thus

Fo(z) — ﬁ’n(x) >0, forvy <z < vg. (3.24)
Also from (8.23) we have for v; < z < vy,

Fu(z) — Fu(z) = max [(ml/n) - (mlFo(vi)/rél m)]

1<ils

= 11_1<—1?,S}{s [(ml/ 1-21 mr) (n_l 1_21 my — Fg (v,))] .

Using F(z) < Fo(z) V z, we have for v; <z < vy

Fn(.’lt) — Fn(.’l:) S lrg?é{s [n—l rél My — F(’Uz)]

= Fn(z) — ﬁ’n(x) < D, forv; < z < vs. (3.25)

Thus (3.22) is true for v; < z < vs.
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Assuming that (3.22) is true for v; < ¢ < vj41,1 < j < s — 2, it is easily seen that

3.22) is true for v;11 < z < v;4.2. Using induction it follows that
i+ J+ g

0 < Fp(z) — ﬁ'n(x) < D,, for v; < z < v,.

Thus (3.22) is true for all z. The consistency of F}, follows from (3.22) by using the well

known Glivenko Cantelli Theorem. O

Similarly F,,(z) given by (3.18) is also seen to be consistent estimator of F' subject to

F(z) > Fo(z), V =z.

4. Concluding Remarks

(a) In the above we have considered an example of maximum likelihood estimation under

(b)

order restrictions to demonstrate the usefulness of our recursive formulas. These
formulas can very well be applied to the other problems of statistical interest already
considered in literature, for instance see Barlow et. al. (1972) for the (i) estimation of
ordered means of k normal distributions (page 98) (ii) estimation of ordered binomial
parameters (page 38) (iii) maximum likelihood estimation of two stochastically ordered
distributions (page 105) (iv) the geometric extremum problem (page 42) (v) Poisson
extremum problem ( page 43) (vi) gamma extremum problem (page 45) (vii) Taut
string problem (page 50) (viii) the maximum likelihood estimation for distribution
with monotone failure rate (page 231), etc. Needless to add thé,t our Theorems 2.1-
2.3 may also be useful for optimization problems arising in areas of Operation Research
involving convex programming.

Apart from the usefulness of recursive formulas for finding isotonic regressions without
the use of any algorithm, they may at times enable one to prove certain theoretical
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results more easily as seen in Section 3. For a recent similar use of these formulas, the
reader may refer to Liang (1989), Liang and Panchapakesan (1989) and Gupta and
Liang (1989).

(¢) The problem of obtaining the limiting distribution of £}, will form a topic of further

study and will be reported elsewhere.
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