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1 Introduction

Let © denote the space C(IR4,IR*) equipped with the topology of uniform convergence
on compact sets, F the Borel o-field on 2, P standard Wiener measure, and let {W(w) =
w(t),t > 0}. For any t > 0, we define F; = o{w(s),s < t} VN, where N denotes the
class of the elements in F which have zero P-measure. Qur aim in this paper is to study
equations of the following form, whose solution {X;} should be an IR%-valued and F;
adapted process:

t t
(1.1) X: =X +/ F(t,s,X,)ds+/ Gi(Hy,t,5,X,)dW?,
0 0

where we use here and everywhere below the Einstein convention of summation upon

repeated indices (i.e. (1.1) should be read with a “ZLI” added in front of the second

integral), and {H,} is an IRP-valued and F;-adapted process, F(t,s,z), maps 2 x {s,t;0 <

s < t} x R? into R? and F(¢,.,.) is F; adapted, and Gy(h,t,s,%), ...,Gk(h,t,s,z) map

Q x RP x {s,;0 < s <t} x R? into R? and Gi(.,.,5,.), ---,Gi(.,.,$,.) are F, adapted.
A special case of equation (1.1) is a more standard Volterra equation:

t t ~
(1.2) X = Xo + / J(t,5)X, ds + / Ki(He,t, )X, dW},
0 0

where J(.,.) and Ki(.,.,.), -..,Kk(.,.,.) are d x d matrices. The novelty here is that
G1(H:,t,s,1),. .., G(Hy,t,s,z) are Fy-adapted, and not F,-adapted, i.e. the integrands
in the stochastic integrals are anticipating.

Note that Gi(H;,t,s,X,), - .., Gr(Hy,t, s, X,) anticipate the increments of {W,} bet-
ween s and t in a special and restrictive way, namely through H,. We shall explain below
the reason for this restriction.

Volterra equations with kernels which anticipate in the way described above arise in
applications (in particular in Finance theory, see [4]) and as such were the motivation for
this work.

Clearly the problem in studying the above class of equations is that the integrands
in the stochastic integrals are not adapted, and therefore one cannot use as usual the
It6 integral to interpret the equation. Our approach is to use the Skorohod integral [19]
to interpret the stochastic integrals in (1.1) and (1.2). Recent progress in interpreting
the Skorohod integral (see [10], {11] and [15]) have made this possible. We explain our
interpretation of the equation in section 2. Note that recently there has been other work
concerning stochastic differential equations where the solution itself is anticipating (which
is not the case here). In [18], the Skorohod integral was used to solve a one-dimensional
linear equation with an anticipating initial condition. In [12], [13], and [14], another kind
of generalized stochastic integral, which generalizes the Stratonovich integral, was used
to solve stochastic differential equations with an anticipating initial condition, or with
boundary conditions (instead of the usual initial condition).

This article builds on previous work concerning stochastic Volterra equations. Equa-
tions where the kernel is adapted to F, were studied among others in [2], [6], [16] and
[17]; Berger and Mizel considered linear stochastic Volterra equations with anticipating
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integrands in [3]. Our results differ from theirs since the stochastic integral is not the
same, also the discussion in [3] uses in an essential way the linearity of the coefficients. In
[16], one of us commented that such equations can also be studied using an “enlargment of
filtration” approach, but the technique used in the present paper yields much better (and
perhaps more “natural”) results.

The paper is organized as follows. Section 2 contains a presentation of some results
concerning the Skorohod integral, which will be used later, together with the precise inter-
pretation of equation (1.1). The existence and uniqueness of a solution to equation (1.1)
is proved in two steps in sections 3 and 4. In section 5, we establish, under additional
asumptions, the existence of an a.s. continuous modification of the solution process. This
allows us to deduce a weaker existence and uniqueness result, under local Lipschitz condi-
tions. Under still stronger regularity asumptions on the coefficients, we show in section 6
that the unique continuous solution is a semimartingale.

Let us point out the fact that the reason for restricting ourselves to a Wiener driving
process (versus a more general semimartingale) is the fact that the Skorohod integral and
the derivations which we will be using below are only defined on Wiener space.

The following notation is used throughout the paper: ¢(a, ) stands for a constant
which depends only on a and 3, and whose value may vary from one occurence to another.

2. The Skorohod integral

Most of this section is a review of some basic notions and a few results from Nualart-
Pardoux [10]. Let again Q = C(IR4;IR*), F be its Borel field and P denote Wiener
measure on (£, F). Wiy(w) = w(t). Let F? = o{W,;0 < s <t} and F; = F] VN, where
N denotes the class of P-null sets of 7. For h € L?(IR;; RF), we denote by W(h) the
Wiener integral

W(h) = / " (h(t), d W)

Let S denote the dense subset of L2(Q2, F, P) consisting of those classes of random variables
of the form :

(2.1) F=f(W(hi),...,W(ha))
where n € IN, f € C§°(R"), h1,...,ha € L*(Ry; R*). If F has the form (2.1), we define
its derivative in the direction 7 as the process {D}F,t > 0} defined by:
i —~ of i
DiF=)" a—k-(W(hl), ooy W(hp))Ri(2)
k=1

DF will stand for the k-dimensional process {D,F = (D} F,...,DfF)’;t > 0}.

Proposition 2.1. Fori = 1,...,k, D' is an unbounded closable operator from L?(Q) into
L*(Q x R,). We identify D* with its closed extension, and denote by D}’2 its domain.

D2 = D} is the domain of D : L*(Q) — L*(Q x Ry; R¥). O
Note that D} 2 (resp.IDV?) is the closure of S with respect to the norm
1Flliz2 = IFllz + D Fllzz(ry) Il
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(resp. with respect to the norm :

k
IFll1,2 = IFllz + ) WID Fllzarall2)

=1

D' is a local operator, in the sense that : DiF = 0dP x dt a.eon {F = 0} x R;. We

denote by Dg”foc the set of measurable F’-s which are such that there exists a sequence

{(Qp, Fr)ine N} C F x D:’z with the two properties : -

(2) Q. TNas., n— o0

(Z'l;) Fn'“n = FIQ", n € N

For F € D},’foc, we define without ambiguity DiF by : DiF = D{F, on Q, x R4,Vn € IN.
D,lt;g is defined similarly.

Fori =1,...,k, we define §; the Skorohod integral with respect to {W}} as the adjoint
of D', i.e. Domé; is the set of u € L2(2 x IR} ) which are such that there exists a constant
¢ with :

|E/ DiFu, dt| < ¢||F||2,VF € S.
0

If u € Domé;, 6;(u) is defined as the unique element of L?(§2) which satisfies :
E(6;(uv)F)=E /Ooo DiFu,dt,VF € S.
Let IL}'* = L?(R4; D;’*). We have that L} C Domé;, and for u € L}?,
(2.2) E[6:(v)?] = E/Ooo u? dt + E/:o /000 Diu,Diu, dsdt.

Note that {u € L*(2x IR4); u is F; progressively measurable } C Domé;, and for such a u,
6:(u) coincides with the usual It6 integral. Note that when u is progressively measurable,
D,u; = 0 for s > ¢, so that (2.2) is consistent with the formula in the adapted case.

Remark 2.2. From (2.2), the L?(Q) norm of a Skorohod integral can be estimated in
terms of the L?(Q) norm of its integrand plus a norm of its derivative. This means that
an L%*(Y) estimate of the last term in (1.1) introduces the derivative of the solution X.
This creates a crucial difficulty if we try to apply standard techniques to study existence
and uniqueness of (1.1). That is the motivation for letting G; anticipate the increments
{W, — W,;s <r <t} only through the process {H,}.0

Note that if u € L? (IRy; ID}?), then for any T > 0, ulp € IL}*? and we can define:
loc t {0,7] H

T
/ Uy dVV: = 6,'(111[0,'11]).
0
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The Skorohod integral is a local operation on L?OC(R+;D3’2) in the sense that if u,v €
L (R,;D}?), fot uy dW} = fot v, dW a.s. on {w;u,(w) = vy(w) for almost all s < t}.
Let Ei’foc denote the set of measurable processes u which are such that for any T' > 0

there exists a sequence {(RT,uT);n € IN} C F x L} such that :

n'’n

() QT 1t Qas.,asn— o
(41) u=ul dP x dt a.e. on QT x [0,T], n € IV.
For u € E:”foc, we can define its Skorohod integral with respect to W} by :

t t
/ u, dW: = / ul , dW; on QF x [0, 7).
0 0

Finally, L2 = (\5_, L}"?, and L} is defined similarly as L}

i,loc’
We now introduce the particular class of integrands which we shall use below. Let
u: Ry x Q x IRP — IR satisfy :

() Vz € R?, (t,w) — u(t,w,z) is F; progressively measurable.
(22) Y(t,w) € Ry x Q, u(t,w,-) € C}(RP)

For some increasing function ¢ : IRy — IRy,

(zit) u(t,w, z)| + | (t,w,2)] < p(|z]), V(t,w,z) € Ry x Q x IRP

where u'(t, z) stands for the gradient £%(¢,z).
Let 8 be a p-dimensional random vector such that :

(iv) 67 € D} (VLo(Q)i =1,...,p

Let us fix T > 0, and consider :

T
Ii(:c)=/0 u(t, z) dW}

Define moreover v; = u(#,8). Under conditions (¢),...,(¢v), the following holds :
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Proposition 2.3. The random field {I’(z);z € IRP} defined above possesses an a.s. con-
tinuous modification, so that we can define the r.v. I'(6). Moreover v € Domé;, and the
following holds :

T T
(2.3) / v AW} = I'(6) — / u'(t,0)Dif dt
0 0

a

Proposition 2.3 is proved in Nualart-Pardoux [10], under slightly different conditions.
We shall need below a localized version of that result.
We replace condition (iv) by :

(iv") ¢’ €Dt j=1,...,p

Under conditions (z),(3%),(¢5¢) and (iv'), v € (Domé;)ioc, in the sense that there
exists a sequence {(Qn,v,);n € IN} C F x Domé; such that Q, T Q a.s. and v,lg, =
v|q,. Indeed, let{(f2,,,6,)} be a localizing sequence for 8 in (D}?)?, and {tn;n € N} C
C>(IR?; IRP) satisfy ¥n(z) = z whenever |z| < n. Define :

vn(t) = u(t, "pn(on))

Qo = @, ({16l < n}

Then {(Q,,vn);n € IV} satisfies the above conditions.
It is then natural to define the Skorohod integral fOT v, dw! again by formula (2.3),

and the latter coincides with fOT va(t) dwi on Q, . Note that our definition of fOT vy dw?
does not depend on the localizing sequence of v in Domé;, provided that sequence is of
the form {u(-,6,)} with 8, satisfying (iv).



3. Statement of the problem. Interpretation of equation (1.1)

Our aim is to study the equation :
, t t .
(3.1) X =Xo+ / F(t,s,X,)ds+ / G;(H;t,s,X,)dW;,
: 0 0

" where we use here and henceforth the convention of summation upon repeated indices.
We define D = {(t,s) € IR%; 0 < s < t}. The coefficients F' and G are given as follows:
F:Qx D x R? — R? is measurable and for each (s,z) € Ry x R?, F(.,s,z) is F;
propessively measurable on Q x [s,+00). Fori=1,...,k, Gi: @ x R? x D x R? - R4 is
measurable, for each (h,t,z), Gi(h;t,-,z) is Fy-progressively measurable on Q2 x [0,], and
for each (w,t,s,z), Gi(-;t,s,2) is of class C!.

{H:} is a given progressively measurable p-dimensional process. It will follow from
these hypotheses that the solution {X;} will be propressively measurable. Therefore, for
each ¢, the process ' '

(Gi(Hut,s,X,); s € [0,1]}

is of the form v, = u(s, 6) with u(s, k) = Gi(h;t,s,X,) and § = H;. We shall impose below
conditions on G, {H;} and the solution {X;} so as to satisfy the requirements (z), (42), (¢iz)
and (iv') of the last section. Therefore the stochastic integrals in (3.1) will be interpreted

 according to (2.3), i.e. :

i ‘. g | ? |
(3.2) / Gi(Hyt, s, X,)dW, = / Gi(h;t,s,Xs)dW}|h=H, —/ G.(Hy;t,s,X,)DiHy ds
-~ Jo : 0 ‘ 0

In other words, we can rewrite (3.1) as :
B B _ t .
(3.3) _ X=X +/ F(t,s,X,)ds + / Gi(h;t,s,X,) AW, |h=H,
. : ) L 0o - 0 .
where _ S
F’(t_,s, z) = F(t,s,¢) — G{(Hy;t,8,2) DL H,

and the stochastic integraié are now the usual It6 integrals.
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4. Existence and Uniqueness under strong hypotheses.

Let us formulate a set of further hypotheses (thoses stated in 3 are assumed to hold
throughout the paper), under which we will establish a first result of the existence and
uniqueness of a solution of equations of the form (1.1).

Let B be an open bounded subset of R, K >0 and ¢ > p s.t. :

(H.1) X, € LY(Q, Fo, P; R?Y)
(H.2) P(H,e B,Vt>0)=1
(H.3) H e (LY?)?; |ID,H,|< K as.,0<s <t
k k
(H4) IF(t,s,2)| + D Gi(hit, s,2)| + D IGilhity5,2)| < K(1+ [2])

i=1 =1

forany 0< s<t, h€ B, z € R? and a.s.

k
IF(tvs, IC) - F(tasa y)l + Z |Gi(h;tasa 3) - Gi(h;t’s) y)l
(H.5) =1

k
+ Z IG’t(h’ta S, :E) - G;(h;t’s? y)l S Kl.’E - yl

=1

fora.nyOS.éSt,hEB, z,y € R? and a.s.

Note that from now on ¢ will be a fixed real number s.t. ¢ > p and (H.1) holds.
L3, ,,(€ x (0,t)) will stand for the space LY(Q x (0,t), P¢, P X A), where P; denotes the
o-algebra of progressively measurable subsets of Q x (0,¢) and A denotes the Lebesgue
measure on (0,1).

Lemma 4.1. Let X € [,50 L8,,,(R x (0,t)), where ¢ > p, and suppose that (H.4) is in
force. Then for any t > 0 and ¢ € {1,...,k}, the random field :

t
([ Gihit,s, X, aWish e B)
0

prossesses an a.s. continuous modification.

Proof: Using Burkholder-Gundy’s and Hélder’s inequalities together with (H.4), we
obtain : . .
B( [ Gihit,s X)) awi- [ Gulkit,s, X,) awip)
0 0
t
<ot 0B [ Gillit, 5, X) — Galkit, 5, X,)|* ds
0
t
<c(t,q)Kh — k|"E/ (14 ]X,])? ds
0
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The result now follows from the multidimensional generalization of Kolmogorov’s Lemma
(see e.g. Sznitman [20]). O
We can and will from now on assume that for t fixed, the random field

t
([ Gilhits, X.)awii he B)
0

is a.s.continuous in h, provided X € L§_, (€2 x (0,1)).
For X € (50 Lir0g (2 x (0,1)), define

I(X,h) = /G(htsX)dW;,heRP,t>o
=1

t
J(X) = / F(t, s, X,) ds + L(X, H).
0

Lemma 4.2. For any t > 0, 3 ¢(g,t) s.t.:

E(J(X)I7) < e(q,)(1 + E / X, |9 ds)

Proof:
t t
| / F(t,5,X,) ds|? <c(g,1) / |F(t, s, X,)|7 ds
0 0

t
<clgt)(1+ [ 1,17 o)
0
where we have used (H.2), (H.3) and (H.4).

|I«(X, Hy)| < sup [I(X, R)|.
heB

It is easy to show, using in particular (H.4) and Lebesgue’s dominated convergence theorem,

that the mapping :
h — It(X’ h)

from IRP into L1(2) is differentiable, and that :

OL(X,h) _ [*8G

T Th (it 8, X) AW,
7

Since ¢ > p, we can infer from Sobolev’s embedding theorem (see e.g. Adams [1], Theorem
5.4.1.c):

oI,

B (sup ILCX,WIY) < o0 [ (LGB +Z| L R
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It then follows from the Burkholder-Gundy inequality that :

E (sup (X, h)I“)
heB

t P _
< g,t)E / f (IGi(h;t,S,X.)|q+§:l—g-%(h;t,s,X,)lq)dsdh
BJo

< o, ) /B dh)(1+E /0 1,19 ds)

where we have used (H.4) and the relative compactness of B. O
A similar argument, but using (H.5) instead of (H.4), yields:

Lemma 4.3. For any t > 0, 3¢(g,t) s.t.
t
B(J(X) = J(V)I%) < olg,OF [ 1X, ~Yultds
0 :
If moreover 7 is a stopping time,

IAT
E(Jone(X) = Jens(¥)IF) < (g, t)E / X, — Y, |9 ds.
0 .

We are now in a position to prove the main result of this section.

Theorem 4.4. Under conditions (H.1), (H.2), (H.3), (H.4) and (H.5), there exists a
unique element X € [,50 L, ,4(? % (0,t)), which solves equation (3.1). Moreover, if T is
a stopping time, uniqueness holds on the random interval [o, 7).

Proof: Equation (3.1) can be rewritten as :
(4.1) Xe=Xo+ J(X),t20
Uniqueness: LetX,Y € ;5 L3,,,(€2 x (0,)) and 7 be a stopping time, such that :
Xi=Xo+Ju(X), 0Lt

Yi=Xo+J(Y),0<t<T
Xt/\r - },tl\f = JtAr(X) - Jtl\‘r(Y)

From Lemma 2.3,
tAT
E([Xonr — Yinrl?) <c(g,H)E / X, - Y1
0
t
<c(q,t)E / Xone — Vane? ds
0
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The result now follows from Gronwall’s Lemma.
Existence: Lemmas 2.2 and 2.3 allow us to mimic Itd’s classical proof. Let us define
a sequence {X}*, t > 0; n € IN} as follows:

X? =Xo,t20
(4.2) XMl = Xo 4+ J(X™),t>0,ne N

Using Lemma 2.3, we show inductively that
X" € [ L& o x (0,8));n e N
t>0
It then follows from Lemma 2.3 :

t
E(XPH — XPJ9) < o(a,t) / E(X? — X»7) ds

A classical argument then shows that: E(|X;T! —X|?) < E(|Xo |‘1)£%£Tti’;—l which implies
that X™ is a Cauchy sequence in L%, (22x(0,t)); V¢ > 0. Then there exists X s.t. X" - X
in ;>0 Lireg(2 X (0,1)), and using again Lemma 2.3, we can pass to the limit in (4.2),
yielding that X solves (4.1). O

5. An existence and uniqueness result under weaker assumptions

Our aim is this section is to ”localize” the result of section 4. We formulate a new set of
weaker hypotheses.
(H.1”) X, is Fy mesurable.
(H2) H € (E}‘;i)” , {H.} is a progressively measurable process which can be localized in
(IL*+?)? by a progressively measurable sequence.

We assume that there exists an increasing progressively measurable process {Uy,t > 0}

with values in IR, such that:

k
(H.3") |H|+ > |DiH/| <Uias,0<s<t
i=1
Finally we suppose that for any N > 0, there exists an increasing progressively measurable
process {V,V,t > 0} with values in IRy, such that :

P p
|F(t,s,z)| + Z|G.~(h;t,.s, z)| + Z |Gi(h;t,s,2)|

(H4,) =1 i=1
<VN(1+|z]) VR SN,0<s<t z€R".
p
|F(t,s,2) = F(t,5,9)| + > _ |Gi(h; t,5,2) — Gi(h; t,5,y)|+
i=1
(H.5)

P
Z |Gi(hst,s,z) — Gi(h;t,s,y)| < Vtle -yl
i=1
V|| < N,0<s<t, z,y € R%.
Let again ¢ be a fixed real number, with ¢ > p. We have :
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Theorem5.1. Equation (3.1) has a unique solution in the class of progressively measur-
able processes which satisfy :

X e[)L90,t) as.
t>0

Proof: a) Let us first see how equation (3.1) makes sense if X € [),,, L%(0,t) a.s.
That is, we have to show that for £ > 0 fixed,

t
{/ Gi(h;t,s,X,)dW!; h € RP}
0

is a well defined random field which possesses an a.s. continuous modification. For that
sake, we define :

. t
Tnzinf{t;/ |X,|?ds > n or VN > n}
0

The argument of Lemma 4.1 can be used to show that :
ATy .
h— / Gi(h;t,s,X,) dW,
0

possesses an a.s. continuous modification on {|A| < N}. Since this is true for any n and
N, and Up{7s 2 t} = Q a.s., the result follows.

b) Existence : We want to show existence on an arbitrary interval [0,T] (T will be
fixed below). Let {H";n € IN} denote a progressively measurable localizing sequence for
H in (IL'2)? on [0, T]. Since from (H.3’) sup,< |H;| is a.s. finite, we can and do assume
w.l.o.g. that : -

Hp @) <0, V(tw) € [0,T] x 2.

Note that Hy(w) = HP(w) a.s. on QI,Vt € [0,T), where QI 1 Q a.s. as n — oo.
We moreover define :
Xo = Xol{ixol<n}

S = inf{t;sup |DH|V V" 2 n}
s<t

We consider the equation :
t t
(5.1) X! =Xg +/ F*(t,s,X7)ds +/ Gi(h;t, s, X)W, n=mp
0 0

where: _ .
F"(t,s,z) =1[O,5n](s)[F(t, s,z) — Gi(H;t,s,z)D,H}']
Gl(h;t,s,z) =1 s5,1(8)Gi(h;t, 8, ).

It is not hard to see that Theorem 4.4 applies to equation(5.1).
Define:

Su(w) = { g,,(w) Ainf{t < T; [} |Hy(w) — HFw)| ds > 0}, if |Xo(w)] < n;

) otherwise.
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Sn is a stopping time, and it follows from the uniqueness part of Theorem 4.4 that, if
m>n: :

X™ =X} on[0,5;], as.

Since moreover {S, = T} T Q a.s., we can define the process {X,} on [0,T] by :
X: =X on [0,5,], Vn € IN.

Clearly, X € (\L%(0,T) a.s. and solves (3.1) on [0,T]. Since T is arbitrary, the existence
is proved.

c)Uniqueness: It suffices to prove uniqueness on an arbitrary interval [0,T]. Let
{X.,t € [0,T]} be a progressively measurable process s.t. X € L9(0,T) a.s. and X solves
(3.1). It suffices to show that X coincides with the solution we have just constructed. Let:

Sp(w) =5S(w) Ainf{t < T; /ot | X, (w)|? ds > n}

~ —

X =Xs,
X e LI x [0, T)) and it solves equation (5.1) with S, replaced by S,. Then
XMw) = Xo(w) dt x dP a.e. on [0,5,].

The result follows from the fact that {S, > T} 1 Q a.sO
Note that the above solution satisfies in fact X € {15, Ni>o L(0,2) as.
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6. Continuity of the solution

We want now to give additionnal conditions under which the solution of equation (3.1) is
an a.s. continuous process.

(H.6) V(s,z) € Ry x R%,t — F(t,s,z) is a.s.continuous on (s, +00).
(H.7) {H.;t > 0} is a.s. continuous.

(H.8) Vi€ {1,...,k}, s € Ry, t — DiH, is a.s. continuous on (s, +00).
(H.9) V(s,z) € Ry % R ie€{l,...,k},

(t,h) — Gi(h;t,s,z) is a.s. continuous on (s, +oo) x IR”.
We also suppose that there exist « >0, 1 > 0 s.t.:
VN >0, |h]<N,0<s<tAT, ze R, jt-r| <1,

(H.10) there exists an increasing process {V;V;t > 0} such that:
|Gi(h; t,s,z) — Gi(h;r,8,2)| < VIt =1 + |2I).

Theorem 6.1. Under conditions (H.1°),..., (H.5’), (H.6),..., (H.10), the unique solution
of equation (3.1) (which belongs a.. to [1,5; ;> L?(0,t)) has an a.s. continuous modifi-
cation. B

Proof: : We need to show only that whenever X € ;5> ;>0 L9(0,1) a.s.,
{J(X),t > 0} has an a.s. continuous modification. -

a) We first show that t — fot F(t,s, X,)ds is a.s. continuous. Note that (H.6), (H.7),
(H.8) and (H.9) imply that V(s,z) € R4 X RY,

(6.1) t — F(t,s,z)is a.s. continuous on (s, 400).

Moreover, from (H.2’), (H.3’), (H.4") and the fact that X € (1,51 ;50 L%(0,1) a.s., for
any T > 0, there exists a process {ZT;s € [0,T}} such that :

(6.2) |F(t,5,X,)| <27, 0<s<t<Tas.

t
(6.3) / ZT ds < o0 a.s.
0

Let first {t,,n € IV} be a sequence such that t, <t for any n and £, — t as n — oo.

t t, -
/F(t,s,x,)ds-/ F(tn,s,X,)ds
0 0

t tn ~ ~
= [ F(t,s,Xs)ds+ [F(t,s,X,)] ds — F(tn,s,X,)] ds

tn 0
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t ¢
F(t,s,X_,)dsIS/ ZT ds
tn

tn
and the latter tends a.s. to zero as n — oo.

tn _ _ t _
|/ [F(t,8,X,) — F(tn,s, X,)] ds| < / |F(t,8,X,) — F(tn,,X,)| ds
0 0

which tends to zero from (6.1),(6.2),(6.3) and Lebesgue’s dominated convergence theorem.
A similar argument gives the same result when t, > ¢, {, — .

b) We next show that ¢ — I,(X, H;) possesses an a.s. continuous modification. This
will follow from (H.7) and :

(6.4) (t,h) — I,(X,h) has an a.s. continuous modification.

By localization, it suffices to prove (6.4) under the assumptions (H.2),..., (H.5), (H.6),...,
(H.10), with V;¥(w) in (H.10) replaced by a constant K, and in case Xo € Ne>1 LIS RY).
It then suffices to show that under the above hypotheses, there exists ¢,g > 0'and 8 > p+1
s.t.

(6.5) E(IL(X, h) = L(X,0)|7) < c(lt = |? + |k — kIP)
for any h, k € IR?; t,r > 0.Suppose, to fix the ideas, that 0 < r < &.

t
L(X,h) — I(X,k) = / Gi(h;t, s, X,) dW;

+ / (Gilhst, 5, X,) = Gi(h;r, 8, X,)] dW; + / (Gi(hir, s, Xs) — Gi(k; v, 8, X.)] AW
0 0

It follows from the Burkholder-Gundy inequality :
t ) k t q/2
E(|/ Gi(h;t,s,X,) dWi|)) < cg Y E [(/ |G,-(h;t,s,x,)|2ds) ]
r =1 T

k t '
< (t—1)'F ZE/ |Gi(hst, 8, X,)|9 ds
i=1 r

St —r)'T
From (H.4) for G}, we deduce :
E (|/ [Gi(R;r,5,Xs) — Gi(k; 7,5, X,)] dW,‘I“) < cg(h—k)(1+ E/ | X9 ds)
0 0
< cylh — k"
From (H.10),
r r
E (I/ [Gi(h;t,s,X,) — Gi(h;r,s, X,)] dW:Iq) < K, gt —r|*7(1 + E/ |X,|9" ds)
0 0
< gt —r|*f

(6.5) now follows from the above estimate, provided we chose g such that inf (9-'2;2-,aq) >
g+10
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7. Semimartingale property of the solution

Under the conditions of Theorem 6.1, there exists a unique (in the sense of Theorem 5.1)
continuous solution {X¢,t > 0} of the equation :

t t
(3.1) X, = Xo + / F(t,s,X,)ds + / Gi(Hit,s,X,) dW
0 0
wich we rewrite, with the notations of the above sections, as :
t
(71) Xt =X0+/ F(t,S,X,) d8+It(X,Ht)
0

We now want to state conditions under which both {fot F(t,s,X,);t > 0} and
{I.(X,H,);t > 0} are semi-martingales (and then also {X;;t > 0}). In order to avoid
some technicalities, we shall state some of the conditions in terms of F (and not explicitly
in terms of F, G and {H,}) for simplicity. In any event, our conditions are easy to check

for each example. _
Let us first treat the term {fot F(t,s,X,) ds}. We shall assume that for any (s,z) €

R, x IR?, the process {F(t,s,X,),t > s} can be rewritten in the form :
t t
(7.2) F(t,s,z) = F(s,s,z) + / r'(8,s,z)df + / Ai(0,s,2) dW,
s 8

where T, Ay,...,Ax are measurable mappings from Q x D x R? into IR?, and for each
(s,z) € Ry x R, T(-,s,2),A1(+,8,%),-..,Ak(-, s, z) are progressively measurable on Q x
[s, +00). '

It follows from (H.5’) that z — F‘(s,s,:c) is continuous for any (w,s). We suppose
moreover that z — I'(4,s,z) is continuous for any (w;8,s) €  x D, and that for any
N > 0 there exists IR, -valued measurable functions ¢y and dn defined on 2 x D, which
are progressively measurable in (f,w) on Q X [s, +00) for any fixed s, and such that for
someq>dandany0<s<t, Ne N,

t t
(H.11) / en(6,s)df < oo a.s., E/ (dn(6,5)) df < oo
k
(H12) sup (lr(o,s,zn+Z|A.-(o,s,z)|2) < en(d,s)
A IIISN =1
(H13) IA(O,S,.’B) - A(a’s,y)l < dN(o’s)lz - yla Vzay € Rd s.t. Iml \ Iyl <N

It then follows that each term in (7.2) is a.s. continuous in z, after a possible choice of
another modification (for the stochastic integral terms, we apply the argument in Lemma
4.1). It is then not hard to show that :

t t
F(t,s,X,) = F(s,3,X,) + / I'(6,s,X,)do + / Ai(6,3,X,) dW;

8
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It follows from (H.12) that we can use Fubini theorems (the one for the stochastic integral
terms can be found e.g. in Jacod [5, Theorem 5.44]) to conclude :

t t t 8
/ F(t,s,X,)ds =/ F(s,s,X,)ds+/ / I'(8,s,X,)dsd
(7.3) 0 0 0 JO

t 8
+ / / Ai(8, 5, Xs) dsdW;
0 0

We have shown :

Proposition 7.1. Under conditions (H.1’), (H.2’), (H.3’), (H.4’), (H.5’), (H.11), (H.12)
and (H.13), {fot F(t,s,X,)ds;t > 0} is a semi-martingale whose decomposition is given by
(7.3). 0

We now consider I;(X, H;). Let us assume that {H,} is a semi-martingale of the form:
t t _
(H.14) Ht=Ho+/ K, ds+/ L dw,
0 0

where Hy is a Fy measurable p-dimensional random vector, {K?, L},...,L{} are progres-
sively measurable p-dimensional random processes with :

t k
(H.15) / (|Ks| + Z |L:>)ds < oo a.s., ¥Vt > 0
0 1

We suppose moreover that for any (w, s,z), Gi(;+, s, z) is of class C?! (C? in h and C! in
t) and moreover for any N > 0; h, k € RP s.t. |h|,|k| < N;r,s,t€e Ry;z € R4 1<i<k,

6Gi 62Gi aG,
(H.16) 155 (st s )l + |77 (hits s, @)l + |5 (Bt 5,0)| < VN (1 +|z))
0%G; 3G 0G; G,
(H.17) 155z (hits 5,2) — 57 (ki s, )|+ 7 (st 5, 2) — 5= (ki my 5, 2)

< Vilovs(L+ 21k = k| + [t — 7)),

where again {V;V,t > 0} yen is a collection of increasing and progressively measurable IR+
valued processes. Let us now denote by {I;(X,h,r)} the collection of processes indexed

by (h,r) € RP x Ry4:
t
It(X, h,‘l‘) = / Gi(h; T,S,X,) dW;
0

Combining the argument of Lemma 4.1 for ¢ > p + 1 with a localization procedure,
we obtain :
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Lemma 7.2. For eacht > 0, (h,r) = I,(X, k,r) is a.s. of class C*!, and :

2L(X h,r) = aG S (hir s, X,) dW;
0

8? t 52G;
o )= | o

i) * 8G;
E;It(Xshar)=/o W(h’ras,xs) aw,

(h;r, 8, X,) dW}

I and its derivatives being jointly continuous in (t,h,r).0

It then follows from an adaptation of Theorem 1.7.1. in Kunita [7] (see the Appendix)
that :

Proposition 7.3. Under the above conditions, in particular (H.14), (H.15), (H.16) and
(H.17), {I,(X, Hy,t),t > 0} is a semi-martingale whose decomposition is given by :

t
I(X, Hy ) = / Gi(Hs;s,s,X,) dW;'

/6I

+ | X, Hoy )Ly dW] + / (==

0

8 s

o1,

T 2(X,H,,s)L}, L) ds

O

We can now conclude :

Theorem 7.4. Assume that conditions (H.1°),...,(H.5’) and (H.11),...,(H.17) are in force.
4 Then the unique solution {X;t > 0} of equations (3.1) is a continuous semi-martingale
which takes the form :

t t 0
X, =Xo+/ F(s,s,X,)ds-{-/ / I'(8,s,X,) dsdf
0 o Jo

t (/] t
+ / / Ai(8, s, Xs) dsdW + / Gi(H,:s,5,Xs) dW
0
aG
/ / ——(Hs,s s, H )dW'd0+/ (H,,s $,X,)dW! | K, dé
0

+/ ( aG’(lan,,s 5, X )dW’) L} dW}
0 0

1 8G; _
- J i ori
+2/0 [(0 i (H,,ssX)dW) o,L,] dé
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Appendix

The aim of this Appendix is to prove the following It6-Ventzell formula, which general-
izes Theorem 1.7.1. in Kunita[7]. Sznitman [20] has analogous results for general semi-
martingales.

Theorem. Let {Ty(h,7);t > 0}(n,r)err xR, be a collection of d-dimensional semi-martin-
gales of the form :

(A.1) Ty(h,rv) = To(h, ) /Ot Us(h,r)ds + /ot V;'(h, r) dW:

where {W},...,WF;t > 0} are mutually independent F,-Wiener processes defined on
(Qa F, P)7 {Ut(ha 1‘), ‘/tl(ha 7‘), <oy 'Vtk(h, T);t 2 0}(h,r)ERPxR+ are progreSSively measur-
able processes s.t. k — (V}(h,r),...,VE(h,r)) is of class C!, ¥(w,t,r) € Q x IR}, and:
(HA.1) VN € IN,t > 0, there exists an R,-valued progressively measurable process
{atN;0 < s < t} such that:

t
(1) / otV ds < 00 a.s.
0

(ﬁ) sup (l U,

r<t|kI<N

;(h,r)lzl) <atN 0<s<t

V(w,t) € Q x Ry,

; av}
(HA.2) (hyr) = (Uelhsr), V(R ViE (B 1), 2 = W 4,1, i ()

is continuous.

We assume moreover that : ,
(HA.3) Y(w,t) € @ x Ry, (h,r) = Ti(h,r) is of class C*!, and Vw € Q, T, %}1—1, Zh’f, % are
locally bounded in (t, h,r).

Let {H:} be a p-dimensional semx-martmgale which satisfies (H.14) and (H.15). Then
the following holds :

t t
Tt(H,,t)=To(Ho,0)+/ U,(H,,s)ds+/ Vi(H,,s)dW;
0 0

t t
(A.2) + -BE(H,,S)KS ds + T,
0

t
oT. .
5 S ds+/ —(H,,s)L} dW,
ds+ [ Z(H9)

0
2 t gyi .
/ / a:; (H,,s)Li, L} > ds+/ 66‘;': (Hs,s)L} ds

Proof: Note that each term in (A.1) is P ® B measurable, where B} denotes the
Borel field over IR? x IR;. By using a classical locahza,tlon procedure, it sufﬁces to prove
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the result in the case where Hy, Ti(h,r), %Th—:‘-(h,r), '?;—:;‘(h,r), %Ir'-(h, r) and fot otV ds are
uniformly bounded by a constant ¢ which is independent of w,t,h and r. Therefore we
make these asumptions w.l.o.g.

We extend below any function which was defined on IRy as a function defined on R
by taking it to be zero on IR_. Let ¢ € CZ(RP), ¥ € CP(IR). From It6’s formula,

o(h — Hop(r — t) =p(h — Ho)b(r) — / o (h — H)K,(r — 5) ds
- / o(h— H)p!(r — s) ds — / o (h— H)Lip(r — s) dW?

¢
+ -;—/ <"(h—- H,)Li,Li > P(r — s) ds,
0 .

and also:

T, )l = HW(r = ) = To(hr)plh— Hoh(r) + [ Uhorholh — L Yi(r = ) ds
+ /o t Vi(h,r)p(h ~ Hy)(r — s) dW; — /0 t T,(h,r)¢'(h — Ho)K,3p(r — s) ds
— [ Thryoth— B =) ds = [ Tulhr b~ HILE b = 5)
i1 /0 "Lk ) < " (h = Hi)Li, L > (r — 5) d

- / Vi(h,r)p!(h — Hy)Lig(r — 5) ds.

We integrate the above identity with respect to dh dr over IR? x IR, and interchange
the dh dr and the ds (resp. the dW}) integrals, using Fubini’s theorem (resp. Theorem
5.44 in Jacod [5]). We moreover integrate by parts all integrals involving derivatives of ¢,

20



¥, yielding:

/ Ti(h,7)p(h — H¢)yp(r — t) dhdr = /
RPXR

RP x

t
+/0 ds /RPXRU,(h,r)Lp(h — H)¢(r — s) dhdr

N To(h,r)p(h — Ho)¢p(r — 0) dhdr

4
+ / dw? / Vi(h,r)p(h — He)p(r — s) dhdr
0 RP xR

t
- / ds %(h, r)p(h — Hg)Ksp(r — s) dhdr
0 RPXR
¢ oT.
. + / ds / (b, r)p(h — Hy)p(r — s) dhdr
0 rexR Or

t
+ / dW? / %i’(h,r)cp(h ~ H)Liy(r — 8) dhdr
0 RPXR

1 f* 0°T, _—
+= [ ds < =5 (h,r)Ly, Ly > p(h — Hy)p(r — s) dhdr
2 0 R?P xR Ok

t avi ‘.
- /0 ds /me E(h, r)e(h — H,)Lip(r — 8) ds.

It remains to replace ¢ and ¥ by sequences {y¢,} and {t,} which converge to the Dirac
measure at 0, as n — oo, and let n — oco. The convergence follows easily from our
hypotheses. O
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