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Abstract. A method of studying consistency and asymptotic normality is developed for
least squares estimates in autoregressive time series models. Examples where this method
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1. Introduction. Estimation of parameters in a time series model is usually performed
in one of the two following ways: by least squares/conditional least squares or by mini-
mization of a likelihood type criterion function. Achievement of nice asymptotic properties
(consistency and asymptotic normality) of these estimators is not automatic because of
the diverse possibilities in the choice of the model. Tjostheim (1986) discusses the need

for caution in taking these properties as granted.

For nonlinear models, there are results showing the strong (or weak) consistency and
asymptotic normality of the above type of estimators. Results for conditional least squares
estimators are proved in Klimko and Nelson (1978) in a general set up. An extensive theory
is available for the subclass of random coefficient autoregressive models in Nicholls and
Quinn (1982). The work of Tjostheim (1986) deals with both maximum likelihood (m.l.)
type estimators and least squares (1.s.) estimators in a time series context and generalizes
the results of Klimko and Nelson (1978). Other results dealing with individual models are

also available.

It may be noted that the above results are derived under the assumption of sufficiently
high degree of smoothness (sometimes differentiability up to the third order) of the penalty
function. It can be visualized that a certain degree of smoothness is required. Consistency
in most cases can be proved with essentially first order smoothness. To proceed a step ahead

and prove asymptotic normality should not require too much of an added smoothness.

In this paper, we study l.s. estimates in nonlinear autoregressive type models and show
that essentially first order smoothness is enough to guarantee consistency and asymptotic
normality. Our approach is to treat the criterion function as a stochastic process indexed
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by the parameter. This allows us a wider choice of the “error” variables and broadens the
scope of the results. Martingale arguments turn out to be the main weapon. Apart from the
smoothness assumptions, we need certain moment assumptions. These are comparatively
easy to verify if the model has a stationary ergodic distribution.

In section 2, we state and prove our main results. In section 3, we provide some
examples and comparison with the existing results of Tjostheim (1986). We also comment
on the possible extension and géneralization of our method to cover other situations. The
appendix contains the statements and proofs of auxiliary results used in section 2.

In a separate paper, we intend to establish results which are more suited to nonergodic
models. It is plausible that our method can be applied to other types of models and penalty
functions. This is under investigation. The question of estimation from a Bayesian point

of view and the corresponding asymptotics will also be dealt in a forthcoming report.

2. The main results. For our purposes, an observable process (X;) is said to be a

nonlinear autoregressive process if it is generated by the equation,
(2.1) X = f(0,Xt_1,...,Xt_p,t,Yt)+st, t=p,p+1,...

Here f is a (nonlinear) function and @ is the unknown parameter. (Y3) is an observable
“input” process and (e;) is the sequence of unknown “error” variables. X; can be vector
valued.

A particular and simple case of the model (2.1) is given by
(2.2) X = f(ﬂ,Xt_l) +e, t=0,1...

For ease in presentation, all our results will be stated and proved for this model with X;
being real valued. With appropriate modifications in the assumptions and with virtually
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no change in the proofs, the results are valid for the model (2.1). This will be made clear
as we proceed.
The basic assumptions on the model are given below. Other assumptions will be

introduced as we proceed.

(A1) The parameter space is assumed to be the unit ball B = {z € R?: ||z|| < 1} of the
Euclidean space R?. The unknown true value g is assumed to be in the interior of B.

(A2) (et) is a martingale difference sequence and is independent of Xj.

(A3) |f(8,z) — f(p,z)| < K(|0 — p|)J(z) for all §, p and z, with a nondecreasing function

K, and J is such that E(J(X:)) < oo for all t =0,1,2,....

REMARK 2.1. (1) The compactness of the parameter space, in particular, that the
parameter space is the unit ball is a dispensable assumption. In that case, the results can
be proved for a sequence of roots of the least squares equation. However, in most practical
situations, compactness is a reasonable assumption and by a reparameterization (which
can be absorbed in f), the parameter space can be reduced to the unit ball. We keep the

assumption (A1) for clarity of presentation.

(ii) Usually the error sequence (&;) is assumed to be i.i.d. or at least independent. However,
as we will see, what is really crucial is the martingale difference structure of (g;). This

broadens the scope of the results substantially.

(iii) In the same manner as that for (A1), it is enough if (A3) holds for values of 8 in
a neighbourhood of 6y. By localizing the arguments, our results remain valid for one

sequence of roots of the l.s. equation.



The least squares function is given by

n

Qn(0) =) (X: — £(8,Xi-1))?
t=1
and this is also the conditional least squ&res function since E(X:|Xo, X1,...,Xt—1) =
(0, X¢_1).
The l.s. estimate 8, is the value of § which minimizes @, (6). We will assume that 6,

is measurable. To study the asymptotic properties of 85, it is useful to write @, (8) in the

following way.

Qr(0) = Zn:[f(oo, Xi—1) +e: — f(8, X:—1)]?

t=1

= I,(60) — 2Z,( —I—Zst

where .
I(0) = ) v*(6,Xs—1)
i=1
Zn(0) = v(6, Xi_1)es
t=1
and

v(8,z) = f(0,z) — f(bo,x).

Our results are going to depend on the two functions J and K. To this end we

introduce the following notion.

Definition 2.2. Two real valued nondecreasing function K and ¢g on Rt are said to be «

compatible if g(0) = 0,

K(l0 —ol)
“M U 8dyp < e,
/ B 9(]0 — o))

and L(z f u—2d/adgl/a(u,) < oo for 0 < z < 2. For example if K(z) = |z|¢+* and
g(z) = |z|***7 with 0 < 4 < ¢ then K and g are (d + ¢) compatible.
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We will also have occasion to deal with the following quantity, which we call 67 (p).

n p/2 n
60(p) = |D_BI*(Xs-1)E(}/Fir) | + D |BI(Xior)el?
t=1 t=1

where #; = 0(Xo, X1,...,Xt) = 0(Xo,€1,.--,€t)-

Our first Lemma is on the behaviour of Z,(6).

LEMMA 2.3. Assume (A1)-(A3) and that for some p > 0, € > 0 and a function ¢, K and

g are p compatible and 67 (p) = o(n?(log n)~(}+¢)). Then for some sequence oy, = o(n),

Zn(0
limsup sup M <H
n—o0 8 473
In particular,
Zn(0
limsup sup M =0 a.s
n—oo 6 n

PROOF. Note that for every 8 and o, (Z:(0) — Z:(p), #,t > 1) is a martingale. By a well
known square function inequality (see Theorem 2.12 of Hall and Heyde (1980)),
An(0,0) = E( sup |Z(0) — Z¢(v)|")
1<t<n
n p/2

<CZE|U 0,X: 1)er|? + cE | Y v?(0,Xs—1)E(e2/%_1)
t=1 t=1

By condition (A3),

An(0,0) < cEP(|6 — 0|)8;) (p).

Note that Z;(p) = 0 and KP and g are p compatible. By using Lemma 2 of appendix

with [[(z1,... 2n)l| = max |z,

P( sup supIZt(ﬂ)I > cay) < 67 (p)/ab.
1<in



Let Apn = { sup sup|Zi()| > cazn-1}. Clearly P(A,) < 65.(p)/of,._,. Note that

gn—1<t<on 6
6] (p) = nPBE(log n)~(1+4) for some B, | 0. Choose o, = nfB,. Then

n

f: P(A,) < io: b3m(p)/ Gy < ¢ f: n~(+8) < oo,
n=1 n=1

= n=1

This proves the Lemma.
REMARK 2.4. (i) For p <2, the condition on 6 (p) is satisfied if
supE(e?/F-1) <e < oo
¢

and

Y EJP(X;_1) = o(nP(logn)~(1+9)).
t=1

This can be seen as follows.
n
E[) J*(Xi-1)E(e}/Fi-1)]P/?
t=1

< cE[zn: J2(Xe-1)]P/?

t=1

<e¢) EJP(Xiy).

t=1

On the other hand,

Y BT (X r)edl? <Y BIP(X, ) [B(e}/ Fo) P2

t=1 t=1

proving the claim.
(ii) For p > 2, the condition is satisfied if

sup E(|et|?/F—1) <c < o0
t

6



and

Y EJP(X;_1) = o(n't?/%(logn)~(1+9)),
t=1

This can be seen as follows.

E[Z'Iz (Xt—1)E(sf|}’;_1)]P/2

n p/2
< cE (Z J2(Xt_1)>

t=1

n
< en/271Y T EJP(Xyoy).
t=1
On the other hand,

Y BlIA(Xi-a)eslP = Y EJP (X 1)E(|eef?/ Fimr)

i=1 t=1

proving the claim.
Martingale arguments cannot be used to handle I,(#) and we need the following

condition.

(A4) For every 6§ >0 linn_l,io%f ' —-i;(lj?_& n~1I,(8) > 0 (a.s. or in probability).

A sufficient condition for (A4) to hold is provided in the following Lemma. The proof

is trivial and hence is omitted.

LEMMA 2.5. Assume that (A3) holds. Assume further that for every 8, n=11,(6) — I(0)
(a.s. or in probability) and I(f) # 0 if 8 # 6. If n=1 )"} | J2(X:—1) is bounded (a.s. or

in probability) then (A4) holds a.s. or in probability respectively.

REMARK 2.6. Condition (A4) can be viewed as an identifiability condition. The sufficient
condition given in Lemma 2.5 is easy to verify if the model has a stationary ergodic solution
(Xt). As already remarked, we can work with a local version of condition (A4).
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The consistency of 8,, can now be established quite easily.

THEOREM 2.7. Assume the conditions of Lemma 2.3 and (A4). Then 8, — 0 a.s. or

in probability respectively.

PROOF. Note that 8, minimizes I, (0) — 2Z,(6). However, by Lemma, 2.3,

limsupn™'|Z,(6)] = 0 a.s.

n—Cco

By assumption (A4),

liminf inf n7'|I.(6)| > O.

n—oo |0—00 '26

The consistency in probability or a.s. now follows trivially from the above two equations.[]

REMARK 2.8. (i) To prove weak consistency, it is enough to have convergence in proba-

bility in Lemma 2.3, which can perhaps be achieved with weaker conditions.

(i) The above theorem asserts the consistency of the Ls.e. and not merely the existence
of a sequence of consistent roots. The latter result would hold if the given conditions are

localized or the parameter space is noncompact.

Usually, once the consistency is established, asymptotic normality follows by a Taylor’s
expansion argument. This is the approach used, for example, by Klimko and Nelson (1978)
and Tjostheim (1986). However, they assume the existence of second and sometimes third
derivatives of the l.s. function. Our result will be derived under conditions only on the
first order derivatives.

To tackle the first order derivatives, we need the following conditions.
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(A5) Assume that the vector Vf(6,z) of partial derivatives of f w.r.t. §;’s exist and for
all 8, ¢ (in a neighbourhood of 6p) and all z,

(2) 11V£(0,2) = V£ (o, )| < K1(10 - o) T3 (<)

(b) 1IV£(0,2)| < Ja(=)

To simplify our arguments, we will assume w.l.g. that (A5) holds for all  and .
LEMMA 2.9. Assume that (A5) holds and for a sequence a, > 0,
n
Z Xt 1 J2 Xt 1)K1(an)a = Op(].)

Then as n — oo,

0—t0 < 112(0) = Y (8 — 80)'V £ (80, X:—1))2] 2> 0
0-—00 San t=1

PROOF. For simplicity, denote f(8,z) by f(4).

|1:(6) ~ > _((6 — 60)'V £(60))?|

n

| 2_1((6 — 00)'V£(87))* — ((6 — 60)'V £(00))?]]

t=1

(6 — 80)'(Vf(67) + V £(60))(V£(8") — V £(80)) (8 — 60)

M:

t=1

< 2|0 — 6|2 Z J1(Xi—1)J2(X:-1) K1 (|0 — 60))

Hence the above supremum is bounded by

202 ) J1(X4—1)J2(Xe-1) K1 (an),
t=1

proving the Lemma. [



To tackle Z,(f), we define vy (0, z) as v1(8,z) = f(0,z) — f(00,z) — (0 — 00)'V f (60, z).
Lemma 2.10. Assume (A5a). Suppose that for some € > 0 and for a sequence a, > 0,
5 (d + €) K7 +e (an)ag et = o(1).

rThen

sup | v1(0, Xi—1)e] £,o.
[6—80|<an tz_:l

PROOF. By mean value theorem,
[v1(01, %) — v1(02,7)| = [(61 — 02)' Vu1 (87, 2)| = [(61 — 02)'(Vf (87, 2) — V (b0, z))|.
Thus if |8; — 00| < an, |02 — 00| < an, we have

|’01(01,$) - ’U1(02,$)| S |01 - 02|K1(an)J1 (Z)
Following the proof of Lemma 2.3,

E( sup IZv(Gl,Xt 1)er — v(02, Xi— 1)st|d+5)
1<t<n =1

S |01 — 02|d+€Kii+s(an)5,{l (d + 8).
We will now apply Lemma 2 of appendix with

Ko(z) = 2" K{**(a0)8; (d + ¢)

2d4ny

go(z) ==z where v < €.

/ / Ko(]0 — ¢|) Ko(l9 = 2D 494,
o(l0 — )
B(0,a,) B(0,a,)
<cea;” '7+1Kd+5( 2)61 (d + €) = C; say,

Then

L(z) = / * 2 (@) () (@) gy < g1/ (),
0
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Thus by an application of Lemma 2 of appendix,

P sup lzn: (0 X. ) I > CAI/(d+€) < Cla;i,,'*'e
v(0, Xi—1)es| > < —2,
10—60|<an 31—y LR A

Now the result follows from the assumption on 6 (d + ¢). O

REMARK 2.11. When Vf(0,r) is Lipschitz of order 1, then the condition on §;*(d + ¢)
is satisfied if

6,{1 (d+€) — O(G;(2d+3€+1)).

If we choose a, = n~/2logn, we get a condition similar to the one in Lemma 2.3.
The asymptotic distribution of 8, can now be derived very easily. For this purpose,

let for a sequence 8, > 0,

n P -
Vo = Br (Z Et%;f(o,xt—l)lhoo, i = 1,---,d>

t=1

. [N~9 ,
D, = f;, Diag (Z(ﬁf(o,xt_me:oo)z, i= 1,...,d)
T

t=1

THEOREM 2.12. Assume that 0, is consistent and the conditions for Lemma 2.9 and
2.10 are valid with a sequence a, such that 8, = o(a,). Assume further that V, Ly

and D,, is positive definite. Then

B Dy (6, — 00) 25 V.

PROOF. Let ¢, = 8;1(0, — 0o). From Lemma 2.9 and 2.10, the asymptotic distribution

of 1, is the same as that of ¥ which minimizes

¢I-Dn¢ - 2¢’Vn-
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However, the minimizing v satisfies,

This proves the theorem. U

REMARK 2.13. (i) Martingale central limit theorems can often be used to show the

—1/2 and V,, converges with this normalization.

convergence of V,,. In typical cases 8, = n
If further, D, converges to a positive definite matrix D then we get the convergence of
B (0 — 85). For stationary ergodic X;, this is the case with 8, = n—/2 and then

Va L2, v with v being a normal random variable. It will be interesting to find examples

with other limiting distributions.

(i) As we have already mentioned, the results are geared for application in stationary
ergodic models. Suitable conditions on (g;) (i.i.d. with density) and f (proper bounded-
ness) can ensure this. These conditions can be derived by applying the results of Tweedie
(1975). However, note that it is not necessary that Xj is such that the model is stationary.

Only the existence of such a distribution is needed.

(iii) Omne of the limitations of our approach is that if the parameter space is of high di-

mension, then it necessitates the existence of higher order moments. For example, if f is

Lipschitz of order 1, then we need at least EJ%+¢(X;) < oo for some € > 0. Neverthe-

less, the situation can be salvaged in the following way. If f can be split into the form

f(0,z) = Zk: f,-(éi,z) where §; consists of a subset of 6;’s from the full vector 6, then
=1

all the probabilistic bounds can be obtained by working with each f; separately with the

corresponding dimension d; of 6;.

12



(iv) Under the same set up, it is not difficult to formulate and prove a distribution result
for @n(00) — @n(fn) as n — co. We omit the details. See Klimko and Nelson (1978) for

the arguments involved.

3. Examples and discussion. In this section we will give an application. We will
also discuss a modified (weighted) least squares estimator and provide comparison with

Tjostheim’s condition as applied to our situation.

3.1. Comparison with Tjostheim’s conditions. Tjostheim’s (1986) conditions as applied
to our set up translate into the following. For clarity, we will discuss only the scalar case

(both X; and @ are real valued).

n
(TA1) n"1Y" f(80, Xe-1)er = 0
t=1
n n
P -1 12 _ "
(TA2) liminf n ;f (60, X:_1) ;f (80, Xi—_1)e:| > 0 a.s.

(TA3)  limsup (n6) ™) _[e:(f" (6%, Xi-1) — " (60, Xe—1)) + (f2 (b0, X:—1)

n—oo §|0 t—1
— (0%, X:-1))]| < o0 a.s.
(TB].) n_l Z [f,2(0,Xt_1) — f”(ao,Xt_l)Et]] — V >0 a.s.
=1
(TB2) n=Y23" (80, Xe—1)er —> N(0,W)

t=1

The point 6* is the point such that for |§ — bo| < 6,

@n(0) = Qn(8o) + (0 — 60)' Qr(60) + (8 — 00)* Q7 (67)
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The conditions (TA1) — (TA3) are needed for consistency and (TB1), (TB2) are needed
for asymptotic normality. These conditions clearly involve the second derivative of f and
the condition (TA3) is difficult to check. Other conditions are relatively easy to verify if
(X:) is stationary ergodic. Clearly the above set of conditions overlap with ours. However,
Tjostheim’s set up is more general. But the set of sufficient conditions which Tjostheim

provides to apply his results to conditional least squares are more stringent and involve

the third derivative of f. See pages 254-255 of Tjostheim (1986).
3.2. An ezample. Let (X:) be a process generated by the model
X = (¥ + mexp(—X7_ ) Xt—1+es, t>1

where (&) are i.i.d., Ee; = 0, Ee? < oo.
This model is a special case of exponential autoregressive models introduced by Ozaki

(1980) and Haggan and Ozaki (1981).

THEOREM 3.1. Assume that ||+ |7| < 1 and that « is positive and bounded away from
zero. Suppose that there exists a unique distribution for the initial variable Xy such that
(X:,t > 1) is strictly stationary and ergodic. [This is possible if e; has a density with
infinite support. See Tjostheim (1986), page 256, 258.] Let (¥n,7n,Vn) denote the lLs.
estimate.

Then (Yn,Tn, ) — (¥, 7,7) a.s. and n'/2(thy, Tn,Vn) is asymptotically normal.
PROOF. To prove this let § = (7,%,7) = (51,52) where §; = , 0, = (¥,7).

7(8,z) = f1(01,z) + f2(82,z)
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where f; (51,:1:) = 7z, fo (52,:1:) = 1) exp(—~yz?)z.

To apply Theorems 2.7 and 2.12, let d = 1, K(z) = J(z) = z for f; and d = 2,
K(z) = z, J(z) = ¢ for f;. For fi, Ky and J; are redundant and for fa, Ki(z) = «,
Ji(z) = ¢. Note that Ee? < oo implies EXZ < co. All other conditions are easily verified

by using the ergodic theorem and letting a,, = n=1/2. O

REMARK 3.2. Ifit is only known that 4 > O then we need E|e;|°+¢ < oo for some € > 0
as opposed to Ee? < co. Note that Tjostheim proves the same result with Ee$ < oo, but

apparently needs E|e:|7 < oo (see Tjostheim (1986), page 257).

3.3. Modified (weighted) least squares. A weighted l.s. estimate 0,, is obtained if we

minimize

where g(t, X;—1) is a weight function. This would be relevant if, for instance,
E(e?/#-1) = E[(X: — (80, Xt—1))%/Fic1] = g(t, X1-1)

so that the errors are “heteroscedastic”. Below, we give one example of this type of a
situation. Owur technique can be adapted for use in this situation too since the basic

structures of I,,(#) and Z,(#) remain the same.
EXAMPLE 3.3. Let (X;) be a RCA process satisfying
X; = (0 +bt)Xt_1 +e¢, t=0,1,2,...

where (b;), (e¢) are i.i.d. with mean zero and EbZ = A, Ec? = ¢ are known. # is the
unknown parameter, with |fo| < 1. We will assume that a stationary ergodic solution (X;)
exists. See Nicholls and Quinn (1982) for conditions which makes this possible.
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(a) It is easily seen that
E((Xt — 0Xt_1)2/.7;:_1) = th—l A +0’2.

Hence the weighted l.s. estimate 8,,, of 4 is obtained by minimizing

i (X:—0X;_1)?

X% | A+o?

n n 2 _
Thus 8., = ( FeHeot )(Z zX’_l ) ' Itis relatively easy to show that
t= - t=

E btle +X¢_] £ 2
( X! 11 /\+a‘2 )

X2 2
E(x5iws)

2 _
o] =

(b) If 61, is the conditional l.s.e. obtained by minimizing > (X: —  X:—1)? then it can
be shown that if £ X# < oo (guaranteed if E(c} + bf) < oco) then 81, — 0o a.s. and
n% (01, — 0) 2, N(0, A + 0?%). Thus, we need stronger condition for the conditional l.s.

compared to the weighted l.s.

(c) The case when A and o? are unknown.
Tjostheim (1986) discusses this situation and uses the following maximum likelihood

type penalty function

n

Lin) =) [log(Xf_l A+0%) +

t=1

(X: — 0X:4)?
X2 A+o? |7

He shows that the estimates (A,, 02) obtained by minimizing L(n), are consistent. The
estimate 6,, is given by

n n 2 -1
_ XXy Xi
O = (Z XE 1 An +‘7r2z) (Z X? 1 An+ol '

t=1 t=1
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It can be shown by easy calculations that

n
L th—lbt th—lbt P
" 2Z:[Xz Ao XL, Ator| 0
t=1 t—1"''n n t—1
and
n
X2 X2
nt Z[ L i1 ] — 0 a.s.

XZ  Ap+02 X2, A+o?
This shows that 8, has the same asymptotic properties as that of 6,,, obtained in (a).
Note that we need only the conditions assumed in (a). However, if we need the asymptotic

normality of (A, 02), we also need E(ef + bf) < co. See Tjostheim (1986) for details.

CONCLUDING REMARK 3.4. Our method can be very easily extended to cover the case
when X; is vector valued and/or the autoregressive process is of order p > 1. It seems that
the method has potential applications in other types of models and estimators. The results
for a regression model of lthe form X; = f(0,Y:) + e+ where Y; and e; are independent
follow easily from our results.

This method can also be used to study the asymptotic properties of the Bayes esti-
mator. This will be discussed in a forthcoming paper. Our method should also work for
nonstationary models and this is under investigation.

It will be interesting to derive the rate at which the distribution converges. It will also
be interesting to see if the above rate can be improved by using a bootstrap approximation
for the distribution. The simple case of a linear autoregressive process has been worked
out and the bootstrap approximation in a certain sense provides an improvement over the

standard, normal approximation. See Bose (1988) for details.
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APPENDIX

In this appendix we state and prove the results we have repeatedly used in sections 2

and 3.

LEMMA 1. Let p and 3 be two increasing continuous functions on [0,00) such that
p(0) = 4(0) = 0 and 3(co0) = co. Suppose L is a normal linear space (with norm || - ||) and

f:R® — L is a continuous function on B = B(a,p) = {z:|z — a| < p} C R%. Then

//'¢ [llfzsa):c— f(y)ll] dzdy < B, implies
BxB

—y))

. 4d+2 Bp

|z—y]
1@ -l <8 [ w7 (Grmelan

where

*)}N B(a,1
,B —_ inf inf IB("B’ p ) y (a‘, )I
z€B(a,p) 1<p*<2 4

and |A| = Lebesgue measure of A for A C R?. This Lemma is a crucial tool in proving
existence of continuous versions of stochastic processes and a proof can be found on page
7 of Stroock (1982).

The next Lemmma shows how the supremum of a process can be controlled in terms of

the behavior of certain two dimensional moments.

LEMMA 2. Let {Y(0):0 € B = B(a,p)} be a class of random variables taking values in a
normed linear space L (with norm || - ||). Suppose that the following conditions hold.
(a) 8 — Y(0) is a.s. continuous
(b) there exists & > 0 and functions g and K such that
(@) E|Y(6) -Y(o)|* < K(6-ol), V,p€B

18



) IS Sy dode < C,

(iii) K is non decreasing and g is continuous and increasing with ¢g(0) = 0 such that
£ 2d 1
L(z) =/ u” e dga(u) < oo, Vz>0.
0

Then the following probability bound holds (3 is as defined in Lemma 1).

Py IXOY@I S

) <c,/A
8,0cB(a,p) L(0—wl) — (ﬁz) )— o/

where ¢ is a constant depending on d. In particular if L, = sup L(|0 — ¢|) then
0,0CB

A
P( sup [[Y(0) =Y (pll > ¢ Ly(5)=) < Cp/X.
8,0€B g
If further, there exists a fp € B such that Y (6y) = O then

P(sup [¥ (6)]| > ¢ Ly(55)¥) < Cy/A.
ocB

A
ﬂ
PROOF. By the given condition,

IIY )y
][I

K(|0 — o|)
g/ 2 =P edp < .
A (10 — ) ?

Hence

||Y(0) Y ()l
/ gt/=(|0 - ©l) ] didp > A) < C,/A

Note that ¥(z) = z* and p(:c) = g'/(z) satisfy conditions of Lemma 1. Hence by an

application of Lemma 1, whenever

||Y 0) Y ()|l
dfdp < X we have
// g/>(|6 — sOI) ]

19



[6—e] 44+2) o
YO -v@l<s [ (g

l6—e|
— cﬂ—2/aA1/a/ u—2d/adg1/a(u)
0
= eB72 2NV L(|0 - o).
Thus P( su Y(6)-¥(p > ¢ f~2/2)1/2) < ¢, /) proving the first part of the Lemma.
(5o Bidmatl 2 e 6 ) < Cpf

The remaining parts of the Lemma follow easily from this.

REMARK. Conditions (b) (ii) and (iii) state that K should be increasing sufficiently fast

so as to accommodate a suitable increasing g with L(z) < co. These conditions will be

satisfied if for instance K (z) can be chosen to be C z%+¢ for some € > 0. In that case take
g(z) = z29%%/2 and then

Y S,
0

z
£
=c/ uze ldu < 00, V.
0
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