Estimating the Common Mean of Two
Multivariate Normal Distributions

by

Wei-Liem Loh
Purdue University

Technical Report #88-48

Department of Statistics
Purdue University

October 1988

AMS 1980 subject classifications: Primary 62F10, secondary 62C99.

Key words and phrases: Common mean, equivariant estimation, unbiased estimate of risk,
Wishart distribution.



ESTIMATING THE COMMON MEAN OF TWO
MULTIVARIATE NORMAL DISTRIBUTIONS

By WEI-LIEM LOH

Purdue University

Let X3, X2 be two p X 1 multivariate normal random vectors
and 81, Sz be two p x p Wishart matrices where Xy ~ Np(£,%;),
Xz ~ Np(f,zg), Sl ~ W,,(El,n) and Sz ~ W,,(Eg,n). We fur-
ther assume that X, X5, S;, S, are stochastically independent.
We wish to estimate the common mean £ with respect to the
loss function L = (£ — &) (Z71 + 251 (€ - €). By extending the
methods of Stein (1975) and Haff (1982), alternative unbiased
estimators to the usual generalized least squares estimator are
obtained. However the risks of these estimators are not avail-
able in closed form. A Monte Carlo swindle is used instead to
evaluate their risk performances. The results indicate that these
alternative estimators perform very favorably against the usual
estimator.

1 Introduction

In this paper we consider the problem of estimating the common mean of
two multivariate normal distrbutions with unknown covariance matrices.
The precise formulation of this problem is as follows:

Let X;, X2 be two p x 1 multivariate normal random vectors and Sj,
Sz be two p x p Wishart matrices where X; ~ N,(€,%1), Xz ~ Np(€,Z2),
S1 ~ Wy(Z1,n), Sa ~ Wy(Z2, n) with X1, Xz, Si, Sz mutually independent.
We wish to estimate £ under the quadratic loss function:

L(§6,5,5) = (£~ &' (=11 + 271 (E - ¢).

The above loss function is a natural symmetric extension of the following
invariant loss function:

Lo(6,3) = (E- ¢)'s~Y(é - ¢),

which was first considered by James and Stein (1961) in estimating the mean
€ of a multivariate normal distribution with unknown covariance matrix 3.



2 1 INTRODUCTION

The above problem is a canonical formulation of the following more
common situation: Let Y;,...,¥,41 and Z3,..., Z,4; be two samples from
two multivariate normal distribuions N,(#,X;) and N,(8, ;) respectively
with 6, £1 and Xz unknown. We wish to estimate 8, or equivalently v/n + 1.
The sufficient statistics are

X1 =Y /vn+1, S1=) (¥ - X1)?,

] ——

Xz = E,- Z.-/\/n + 1, Sy = Z(Zg - Xz)z.

3

Then clearly we have for 1 =1, 2,
X ~ Np(§, %), i ~ Wp(Zi, n),

where £ = 1/n + 16. Also, we observe that X;, X3z, S; and S, are stochas-
tically independent. This reduces to the above formulation.

When p = 1, there is a lot of research done on this problem. In particular,
Graybill and Deal (1959) have shown that the unbiased estimator for £ given
by

£=(S:X1+ 8$1X2)/(S1+ S2)

has smaller variance than either of X; or X, if n > 10. Other related
literature include Brown and Cohen (1974), Cohen and Sackrowitz (1974),
Khatri and Shah (1974).

When p > 1, Chiou and Cohen (1985) discuss this problem by evaluat-
ing unbiased estimators of £ using their covariance matrices as a criterion.
Also, Shinozaki (1978) considered the estimation of the common mean of k
multivariate normal distributions where the covariance matrices are known
up to an arbitrary constant.

We shall use the following notation throughout. If a matrix A has entries
a;j, we shall indicate it by (a;;). Given a r x s matrix A, its s x r transpose
is denoted by A'. | A|, A~! denote the determinant, inverse of the square
matrix A respectively. The trace of A is indicated by trA and I denotes
the identity matrix. If the p X p matrix A is diagonal and has entries aij,
we shall write it as A = diag(ayy,...,a,p). Finally, the expected value of a
random vector X is denoted by EX.



2 Equivariant Estimators

The problem that we are considering is invariant under the group of affine
transformations:

§— Al + o, Xi— AXi + q,

T — AT A, S; — AS; A',
where o € RP, A € GL(p,R) and ¢« = 1,2. For simplicity of notation, if --
z = (21,...,2p) we define [z | to be (| =1 [\,...,]| z, |')".
Theorem 1 Let X; ~ Np(f, E,‘), S; ~ W,,(E.-,n), t=1,2 with X3, X,, Si,
Sy independent. Then under the group of affine transformations, £ is an
equivariant estimator for £ if and only if £ can be ezpressed as

&€(X1, X2,51,52) = B-1®BX; + B™Y(I — ®)BX,,

where @ = &(| B(X; — Xz) |?, F) is a diagonal matriz, B(S; + S;)B' = I,
BSzB’ =F= diag(fl,. ..,fp) with f]_ Z e 2 fp.

PROOF. Suppose that £ is an equivariant estimator for £. First we observe
that there exists a diagonal matrix ® such that

£(1 B(X1 — X2) |,0,1- F,F) = &(| B(X1 — X,) |, F) | B(X; - X3) | .
Then by equivariance, for D = diag(+1) satisfying B(X; — X3) = D |
B(X; — X3) |, we have
§(B(X1 - X2),0,I~ F,F) = £(D|B(X;-Xs)|,0,I— F,F)
DE(| B(X1 - X2) |,0,I- F, F)
D&(| B(X1 - X2) [, F) | B(X1 - X2) |
(1) = &(| B(X; - X;) |*, F)B(X; — X3).

I

Finally we observe that

€(X1,X2,51,8) = &((X1-X3),0,8,8,) + X»

B Y{(B(X1 - X3),0,1 - F,F)+ X,
B71®(| B(X1 — X3) |*, F) B(X1 — X2) + X
B™1®BX,; + B7Y(I - ®)BX,.

]

Here the second last equality follows from (1). This proves the necessity
part. For the sufficiency part of the result, the proof is straightforward and
is omitted. . O



4 3 CALCULUS ON EIGENSTRUCTURE

3 Calculus on Eigenstructure

Let X1 ~ Np(f, 21), 51 ~ W,(L‘l,n), Xz ~ Np(f,zz) and Sz ~ W,,(Ez,n).
Fori=1, 2and 1< 7, k < p, we write:

vO = (v, vy, 99 = (G,
where
=) = (X3, v{) = a/0af),

s8) = (S, Vf'k) = (1/2)(1+ 6;1)8/0s%),

and §;; denotes the Kronecker delta. We observe that there exists B €
GL(p, R) such that BS; B' = I — F and BS; B' = F where F = diag(fs, ..

fp) and f3 > .- > f,. We shall now compute the partial derivatives of B
B land F w1th respect to Sy and S;.

Theorem 2 Let X; ~ Np(€,%;) and S; ~ W,(S,n), i = 1, 2. Then with
= (bu) and B~ = (b") as defined above, we have

(l)fx = —fibijbi,
(2)f’ = (1- fi)b;,‘b;k,
1
V;.]l;)b“ = ——Eb lb,Jb P Z bkq(bubkvk + b,kbklj)
~ 1
V_Si)bsl - - zbllb‘lj bik + = Z bk'l(bu bk + btlcbk'g) f'
k'¢‘ f fk'
6(1) i _ 2 tlb _ = . fa’
K0 2b 1501k 3 ,Z#b (Birsbur + b; kbla)f o
Vit = —b"b,,bu, += Eb" (birsbu + bs ,,,b,,) ’;
l¢l s

PROOF. The proofs of the first, second, fifth and sixth equalities can be
found in Loh (1988). It leaves us now only to consider the third and fourth
equalities. To prove the third equality, we observe that

o = V(BB
= B(VYB)+(¥)B)B .



This implies that
~ ~ 1 —
VB =-B(V{B)B.

Considering the I’th component, we get

Vb,

= =3 bV )b

i’k
1 j'k' 1 -I'-l fi'

= - Z b,'jlbkll [-2-b bkljbklk -+ E Z b (b"ljbklk + b,‘lkbklj)?'_:}_']
7Lk £k i k
211 15k 2k,¢,~ E'\Vii0kk tkVk!; fi"fk’.

The proof of the fourth equality is similar and hence is omitted. a

4 Two Identities

In this section we shall state the Normal and Wishart identities. Their
proofs are given in Loh (1988) and hence are omitted. These identities are
crucial in the derivation of the unbiased estimate of risk of an equivariant
estimator in the problem that we are considering.

First we need some additional definitions. A function ¢ : RP*® — R
is almost differentiable if, for every direction, the restrictions to almost all
lines in that direction are absolutely continuous. If g on RP*® is vector-
valued instead of being real-valued, then g is almost differentiable if each of
its coordinate functions are.

Theorem 3 (Normal Identity) Let X = (Xy,...,X,) ~ N,(£,2) and
g : R — RP be an almost differentiable function such that E[Y;; | 8gi(X)
/8X; || is finite. Then

E[57(X - §)¢'(X)] = E[V4'(X)],
where V = (8/8X;,...,0/8X,).

‘The Normal identity was first proved by Stein (1973).

Let S, denote the set of p X p positive definite matrices. Also we write
for1<14,7<p,

V= (%g,‘)pxp, where 6;]' = (1/2)(1 + 5,-,-)6/6.9,-,-,

where §;; denotes the Kronecker delta. .
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Theorem 4 (Wishart Identity) Let X = (X;,...,X,) be a p X n ran-
dom matriz, with the Xi independently normally distributed p-dimensional
random vectors with mean 0 and unknown covariance matriz L. We suppose
n>p. Let g: S — RP*P be such that z — g(zz') : RPX™ — RP*P is almost
differentiable. Then, with § = (s;;) = X X', we have

Etr£™1¢(S) = Etr[(n— p— 1)S71¢(S) + 2Vg(9)),

provided the ezpectations of the two terms on the r.h.s. exist. --

The Wishart identity was proved by Stein (1975) and Haff (1977) indepen-
dently.

5 Unbiased Estimate of Risk

Here we shall compute the unbiased estimate of risk of a subclass of equiv-
ariant estimators for £ of the form:

£ = B"'®BX; + B~1(I - ®)BX,,

where @ = diag(¢1,...,$p) depends only on F. It is clear that estimators of
this kind are unbiased. First we need a couple of rather technical lemmas.

Lemma 1 With the notation of Theorem 1, for & = ®(F) we have
V(l)'[ B I-®)B(Xs—X1)] = -p+ > ¢,
v B-18B(X, - X)) = -3 ¢
PROOF. We observe that
v [B~Y(I - 8)B(X; - X1)]
o
= 2.2 —mlB I - @)Blij(Xz ~ X1);
i 5 Oz
= -> [BYI-9®)B];
= -p+ Z .

The second part of the lemma can be proved, similarly. O



Lemma 2 With the notation of Theorem 1, for ® = &(F) we have
1. trVO{[B~Y(I - ®)B(X; — X1)|[B~}(I - ®)B(X; — X1)]'}
= SaBe - X - DA

i - fi

9¢i

+2[B(X1 - X2)]i( ¢z)ft af;

- B0 - X1 - 401 - #) L,
i i—Jj
2. VA{[B1@B(X; - xz)][ “19B(X; - X2)]'}
= PG - X T 7 21m0n - xalis - 3
¢ J#i ' ¢
f‘
_ _ 2
g[B(Xl Xz)] ¢‘¢J f fs
PROOF. First we observe that
{V[B=Y(I - ®)B(X: — X1)]}:
= 3 V(l) b1 — ) buk) (X2 — X1 )k
7.kl
= Z[(V(l)bﬂ)(l ¢’l)blk -bJ (V(1)¢z)b“c
1.k,
+51(1 = 1) (V) (X2 — X
U 0
= Z[lbh‘blk(l &) Z# - fu f + b7y, Z(bmibmjfma_'fi‘)
-5 Z brribiri(1 ¢z) ](Xz - X1
k';él
= Z{ =bi[B(Xz — X1)li(1 — é1) Z 'f" 7t bii[B(X2 — X1)]zfzai¢l
I,,ﬂ
2 -z Z bri[ B(Xz — X1)lwe (1 — ¢z)
2

Here the second last equality follows from Theorem 2. Hence we have

wVO{[B~(I - ®)B(Xz ~ X1)|[B~}(I - ®) B(X2 - X1)]'}
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2tr[VB~1(I - 8)B(X; — X1)][B~(I — ®)B(Xz — X1)]'
2 ZW(UB-l(I ~ ®)B(X2 — X1)l:i[B~}(I - ®)B(X2 — X))

= X0s0n - xia- 62T L I

i i i
+2[B(X:1 ~ X3)J2(1 - ¢,-)f,§‘}{f-
- B0 - X - 41 - g) 7,
i i—Ji

The last equality follows from (2). The second part of this lemma can be
proved similarly. a
Now we shall prove the main result of this section.

Theorem 5 Let £ be an estimator for € where
€(X1,X2,51,5;) = B'®BX; + B™}(I - ®)BX,,

® = &(F) = diag(¢1,...,¢p), B(S1+S:2)B' = I, BS;B' = F = diag(fy,.. .,
fo) with fi > --.> f,. Suppose ® satisfies the Normal and Wishart identi-
ties in the following sense:

1. B(X,-&)'s{'B™Y(I-®)B(X; - Xi)

= EVW'(B-YI- &)B(X; - X1)],

2. E(X;- ¢)'S7'B'@B(X, - X;) = EV®'[B-18B(X; - X)),

3. EtrZ'[B™Y(I-3)B(X: - X1)|[B~*(I - ®)B(X; — X1)]'

Etr(n—p—1)S7[B™Y(I - ®)B(X; - X1)][B~}(I - ®)B(X; - X1)]'

+2VO{[B=Y(I - ) B(X; - X1)|[B-Y(I - )B(X; - X4)|'},

4. E tr37'[B71®B(X; - X,)][B~'®B(X; - X3)]'

= Etr(n—p-1)S;'[B'®B(X; - X,)|[B~'®B(X; — X3))'
+2V{[B~18B(X, - X,)][B"1@B(X; — X,)]'}.

Then the risk of £ is given by

0o

R(§€,51,5) = E{ZB(xl—Xz)] P22 4 41~ S P

fi

{d: f, n-p-1._ .\




+4f;(1 - ¢.)a¢’ +25 (1 ¢)(¢i — ¢j)f, {jf,]}-
i#i v

PROOF. We observe that

R(£;€,51,3,)
= B({- &' +33)(¢-9)
= Etr{2p+2(X; - €)'S{'B~YI - ®)B(X; — X))
+27YB7 I - ®)B(X. — X1)][B~Y(I - ®)B(X; — X1))' -
+2(X; - €)'T;1B71®B(X; - X3)
+2;1[B71®B(X; — X2)][B~1®B(X; — X3)]'}.
Since @ satisfies the conditions of the Normal and Wishart identities, we
have

R(£;€,51, %)

= Eu{2p+2VW'[B1(I - @)B(X; - X3)]
+(n - p— 1)STYB (I - @) B(X; — X1))[B7H(I - ) B(X; — Xu)]
+29W{[B=1(I - 2)B(X; - X1)][B*(I - #)B(X2 - X1)]'}
+2v®'[B1@B(X; - X,)]
+(n —p - 1)S;[B™'@B(X1 - X2)][B~'@B(X: — Xa)]
+2VE@{[B1®B(X; - X,)][B~'®B(X: — X3)]'}}.

Now it follows from Lemmas 1 and 2 that

RE€DLT) = B(SIBG - X))l [1‘-——}’——-¢,+4(1 s
NP St /1 — 1 2
+2,§¢‘(¢' ¢’)f.--f,-+ == L(1- ¢)

HAL- 057 + 230 - (6 - 8D
i T~ T;

This completes the proof. 0

6 Generalized Least Squares Estimator

First suppose that the two covariance matrices 1, £2 are known. Then
with respect to the loss function

L(£€,21,3:) = (- &)(B71 + 371 (€ - €),
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the best linear unbiased estimator £BF for € is given by
F= (e + 2707 (B0 X + 57 ).
The following proposition is needed in the sequel.
Proposition 1 With respect to the loss function L, the risk of {ABE 8 p.

PROOF. The proof is straightforward and is omitted. O

However for the problem that we are concerned with in this paper, the
covariance matrices £y, X are unknown. The usual practice would be to
replace T, ¥, in £BE by their maximum likelihood estimators Sy /n, S;/n.
This results in the usual estimator fLS for ¢ which is given by

= (S71+ 87NN ST X + 5771 X,).

Furthermore, we note that éLs is the generalized least squares estimator in
the following sense:

€5 = min™! Y (X: - €)'S7H(X: - £).
¢ i

It is clear that this estimator is rather ad hoc and it is certainly plausible
that by a more systematic treatment of the problem, better estimators can
be obtained.

7 Alternative Estimators

It is well-known that the eigenvalues of S3(S; + S3)~! are more spread out
than the eigenvalues of its expectation. By correcting for this eigenvalue dis-
tortion, we construct alternative estimators for £ which compare favorably
with the usual estimator. In particular, these estimators give substantial
savings in risk when the eigenvalues of Z3(Z; + X2)~! are close together.

7.1 Stein-type Estimator

In this subsection, a method of Stein (1975), (1977a) is applied to obtain
an alternative estimator €57 for €. Let £ be an equivariant estimator for ¢
where

€(X1, X3, 51,8,) = B-1®BX; + B~1(I - ) BX,,
® = &(F) = diag(¢1,...,¢p), B(S1+S;)B' =1, BS;B' = F = diag(fi,-.-,
fo) with fy > - > f,. .
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Lemma 3 With the above notation, for 1 < i < p we have
ESvS2[B(X; — X))} = ESv52[B(Z; + £3) B,
where ES152 denotes conditional ezpectation given Sy, Ss.

PROOF. We observe that
ESS2(B(X) — Xo)|2 = ES0S2 Y byba(el) — 2P (N - =)
ik
= B3 hiibi(S1+ T2
ik
= ESvS[B(Z, + ;) B'l.
This completes the proof. O

For 1+ = 1,2, by replacing ¥; in the above lemma with its maximum
likelihood estimator S;/n, we get the following approximation:

ESvS[B(Xy - X3)|? ~ ESv5[B(S;+ S:)B'lii/n
(3) = 1/n.

Next it follows from Theorem 5 that the unbiased estimate of the risk of ¢
is

SIBE - X F 2+ 41 - )b
b ~ fi n—p-1 RY
+2§¢3(¢1 )_f, 1; + -7, (1-4¢)
(L= )57 +2 (- ) - 4) 727
J#s
From (3), we observe that R can be approximated by
~ LT +4(1—f.)¢.§¢:
e fJ n— P _ 2
+2J_§¢,(¢, e AR (R
. . fi
+afi(1- a 7, +2§(1 #)(¢ = ¢i) 727 ]

a~

(4) = R, say.
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By ignoring the derivative terms in R, we get

= —Z[" - 247423 dild - )L
ft"f:

J#
n-p- 2 fi
1T (1 - ¢) +2§(l )% - ¢i) 727
Now we minimize R with respect to ¢;, i =1,..., p. This gives -~
d¢;
5}: 0
= = ¢,+2¢.Zf LY
j# J#
s (STOLL CER) DELEES BeRrs
1-f J# —Ji J#i

For computational simplicity, we ignore the third and sixth terms in the last
equation. We observe that these terms do not contribute significantly to the
r.h.s. of the above equation. Solving for ¢;, we get

= 677/~ AT/ 5]+ 1857/ (1 - 51},

where

T = pn- p— 1+2Zf’(1 )

‘ J#E fi’
ST _ oy U h)s (1 fi)fi
JAi s/

Unfortunately the natural ordering of the ¢;’s may be altered. The natural
ordering is given by ¢; > --. > ¢, > 0. To correct for this, Stein’s (1975) -
isotonic regression is apphed to the afT/f;’s and the 85T/ (1 — fi)’s. This
results in 7 and ¢ST, t=1,...,p respectlvely where 0 < 7 < ... <
qop Tand0< 1/)ST <. < PPt For a detailed description of Stein’s isotonic
regression, see for example Lin and Perlman (1985). Now we define

€7 = B'95TBX, + B~(I - @5T)BX,,

with ®5T = diag(¢$7,.. 85T) and ¢FT = $FT/(p5T + ¢5T), whenever
t=1,...p. It is easy to see that in this case we have ¢ST > > ¢§T > 0.
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7.2 Haff-type Estimator

Here we shall extend a method of Haff (1982) to derive an alternative esti-
mator, denoted by EH F for ¢. Again we consider estimators of the form

£ = B"1®BX; + B~(I - ®)BX,,

where ®(F) = diag(¢1,...,¢p), B(S1+S2)B' = I, BS; B' = F = diag(fi, ..

y fp) with fy > --. > fp. Next we put a prior distribution on the parameter
space {(£,Z1,2;) : £ € RP and 31, B, being positive definite matrices.} and-
let m(F) denote the marginal density of F. It follows from (4) that the
unbiased estimate of the risk of £ can be approximated by R. This implies
that the approximate average risk of this estimator is

[ &Use s S, 85:861/31s,...., 084/3f,)m(F)dF,

where

G = mR.
The solution of the Euler-Lagranges equations minimizes the above integral.
These equations are given by

Go = 26

84 Vi=1,...
j afJ _f;. ’ P:

where C:"¢'. = 8@ /d%i, etc. Evaluating the above equations gives for { =
1,...,p,

1)

0 = Hn-p- gt HEI) oy,
J#i I
~H X ¢ 261 - )6 - P l(n - p- 1)1 1)
J#s *
~20- ) DI a0 - g1 - g
i#i J
—(1- £) S0 )+ 20:(1 - £)(1 - ¢,)3‘°§"‘1.
J#

As in the Stein-type estimator, we ignore the last term in each of the square
brackets. This leaves us with the equation

[(n p- 1)¢t + 2¢t Z f‘ j‘-f ) + 2fl¢t]
i#d 7o
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[(n p-1)(1-¢)-2(1-¢) Y I (1 fi)fi

1 - J# —Ji

+2(1 - f,-)(l - &i)].

Solving for ¢;, we get

=677 /(= AT /1] + BFF /(1 - 1)1},

where

1
off = n-p- 1+2f,+22f’(_f),
i ’

P = n-p-1+2(1-f) 22(1 1)1;
J#i =fi

Again, as in the Stein-type estimator, the natural ordering of the ¢;’s may
be changed. To correct for this, Stein’s isotonic regression is applied to the
o/ f’s and the B;/(1 — f;)’s. This results in FF and 1/)HF, 1 =1,.

respectively where 0 < pf/f <...< soH Fando< i/)HF <---Z ¢HF NOW
we define

¢¥F = B-1o¥F BX; + B~V (I - ®"F)BX,,

with ®#F = diag(¢FF,. ., $8F) and ¢HF = YHF /(pHF 4+ HF), whenever
t=1,...,p. Finally it is easy to see that ¢F¥ > ...> quF > 0.

7.3 Asymptotics

As a rough check to see that the approximations used in the previous two
subsections are not too inaccurate, we observe the following special case.
Let p be fixed and let n tend to infinity. Then for a fixed set of parameters
¥, X2 we have

ST
ﬂST

oy ~n, i ~n,
of'f ~n, BEF ~ n.

Hence ¢$T ~ f; and ¢HF ~ fi for 1 < i < p. This implies that £57 ~ £LS

and £#F ~ LS. This is a reassuring result since £L5 is asymptotically
efficient under these conditions. .
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8 Monte Carlo Study

Due to the rather complicated nature of their construction, at this time we
have not been able to give an analytical treatment of the risk performance
of the estimators £57 and EHF  We shall instead observe the risk behaviour
of these estimators via a Monte Cario study.

For the simulations, the following variance-reduction technique is used:
First let

£ =B7'®BX; + B~}(I - )BX,,

where &(F) = diag(¢y,...,4p), B(S1+S5:)B' = I, BS,S' = F = diag(fi, ...
s fp) with f1 > o> fp.

Proposition 2 With the above notation,
R(&;€,%1,%0) = p+ E(§ - £PF) (371 + 27%) (€ - €B5).
PROOF. We observe that
R(§&,3L%) = B((E-EPP) (5t + 57 (€ - €5F)
+H(EPF - &)'(37" + 871 (€PF - ¢)
+2(6 - EPB) (27 + 2 (658 - ¢)
= p+E(E-EPP) (31t + 577 (€ - €75).
Since E(€ — éBE)'(EII + 2.;1)(5131a — §) = 0, the last equality follows from
Proposition 1. O
Lemma 4 With the above notation, let
Y o= (37'+577)VA(EPR g,
7 = (21—1 + 251)1/2(6‘ _ é‘BE)
Then Y and Z are conditionally independent given Sy, S,.

PROOF. It is straightforward to show that ES1:52Y 2! = 0. Also we note
that conditional on S; and Sp, both Y and Z follow a multivariate normal
distribution. Hence we conclude that Y and Z are conditionally indepen-
dent. O

Proposition 3 With the above notation, let
vV o= (-t + ) (E - E°F),
W= (£-€(Sr +377)(€ - ¢)
Then var[E(V | 81, 8,)] < var(V) < var(W). .
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PROOF. From Lemma 4 and the proof of Propoéition 2, we have

var(W) = Evar(W | S1,8;) + varE(W | S1, S3)
> Evar(V | 81,8:) +varE(V | 81, Sz)
= var(V)
> varE(V | 81, S:).

This completes the proof. O

For the simulations, independent standard normal variates are generated
by the IMSL subroutine DRNNOA and the eigenvalue decomposition uses
the IMSL subroutine DEVCSF. Also we take p=>5, n =17, 15, 30 and p =
10, n = 12, 25, 50. Since Propositions 2 and 3 show that varE(V | 81,82) <
var(W) and E(W) p+ E(V), a simulation is done to estimate E(V); this
will permit the estimation of R(f €,%1,%2). We do this by computing the
mean V of E(V | Si,S;) based on 500 independent replications. Then we
calculate the average loss of the estimator ¢ by the formula L = p+ V.
Tables 1 to 6 give the average losses and their standard deviations of the
estimators £L5 , €5T and £HF  The risk of EBE is also shown in the tables for
convenience. This serves as a lower bound on the risks of these estimators.

Compared with the naive Monte Carlo, this variance-reduction technique
on the average reduces the estimated standard deviations here by a factor
of roughly around 10.

We shall now summarize the results of this numerical study:

1. The risks of the estimators £5T and gHF compare very favorably with
that of LS. In particular when p and n are of comparable magnitude,
significant savings in risk are achieved in most parts of the parameter
space. This is most evident when the eigenvalues of (Z; + $g) 715,
are close together. For example, in the case of p = 10, n = 12 and the
eigenvalues of }3221 being all equal to 1, approximately 40% savings -
in risk is achieved with the use of £5T or £HF over that of £LS.

2. However, when the eigenvalues of (£; + £2)71%; are far apart, there
does not appear to be any significant difference in risk among the three
estimators: fLS ST and EHF

3. For a fixed set of parameters (¢, 2, 22) the study also shows that the
savings in risk of €57 and £H#F over £LS increases with p and decreases
with n. .
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Also we note that in our simulation, for a fixed set of eigenvalues of 22)31_1,
the estimators are computed from the same set of 500 independently gener-
ated samples. This suggests that there is a high correlation among the av-
erage losses of these estimators. Since we are more interested in the relative
risk ordering of these estimators, we conclude that the estimated standard
deviation (as given in Tables 1 to 6) is probably a pessimistic indicator of
the variability of the relative magnitude of the average losses.

9 Final Remarks

The main obstacle in using the unbiased estimate of risk to get good estima-
tors is the fact that risk is a ‘smooth version’ of the unbiased estimate of risk
and hence the unbiased estimate of risk does not reflect exactly the behav-
ior of the risk. This is self-evident since we need to integrate the unbiased
estimate of risk to get to the risk. Thus except for special cases, proving the-
oretical dominance over the usual estimator is generally not possible with
this method, assuming of course that the usual estimator is inadmissible.
However as this paper indicates, the unbiased estimate of risk does possess
a good deal of useful information. If this is exploited carefully, one can ob-
tain alternative estimators which beat the usual estimator over most parts
of the parameter space.
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TABLES

TABLE 1
p=>5 n=7
Average losses of estimators for the common mean
(Estimated standard errors are in parenthesis)

Eigenvalues of
2221—1 E"BE éLS éST é‘HF
(1,1,1,1,1) 5.00 8.13 546 538
(0.05) (0.02) (0.02)
(10,0.1,0.1,0.1,0.1) 500 8.96 7.77 7.88
(0.13) (0.08) (0.07)
(10,10,10,0.1,0.1) 5.00 8.56 8.24 8.33
(0.09) (0.08) (0.07)
(10,1,1,1,0.1) 500 824 746 7.44
(0.07) (0.04) (0.04)
(10,10,1,0.1,0.1) 500 837 818 823
(0.07) (0.08) (0.06)
(20,5,1,0.5,0.05) 500 830 833 841
(0.07) (0.07) (0.07)
(1019,5,1,0.5,10~19) 500 830 7.93 7.88
(0.07) (0.08) (0.06)
(5,2,1,0.5,0.2) 500 8.23 6.70 6.63
(0.06) (0.03) (0.02)
(1019,10-10,10-10,10~1°10-19) | 500 7.54 7.54 7.54
(0.11) (0.11) (0.11)




TABLE 2

p=>5

n =15
Average losses of estimators for the common mean
(Estimated standard errors are in parenthesis)

Eigenvalues of

2221—1 éBE éLS é‘ST E‘HF
(1,1,1,1,1) 500 6.11 525 523
(0.02) (0.01) (0.01)

(10,0.1,0.1,0.1,0.1) 500 6.03 577 581
(0.02) (0.02) (0.02)

(10,10,10,0.1,0.1) 500 6.11 601 6.04
(0.02) (0.02) (0.02)

(10,1,1,1,0.1) 500 6.13 594 5093
(0.02) (0.02) (0.02)

(10,10,1,0.1,0.1) 500 6.13 6.11 6.13
(0.02) (0.02) (0.02)

(20,5,1,0.5,0.05) 500 6.13 6.12 6.12
(0.02) (0.02) (0.02)

(1019,5,1,0.5,10-10) 500 6.12 6.07 6.06
(0.02) (0.02) (0.02)

(5,2,1,0.5,0.2) 500 6.13 5.89 5.88
(0.02) (0.01) (0.01)

(1010,10-19.10-20,10-10,10-1%) | 5.00 5.70 570 5.70
(0.02) (0.02) (0.02)




TABLES

TABLE 3
p=>5 n =230
Average losses of estimators for the common mean
(Estimated standard errors are in parenthesis)

Eigenvalues of
2221—1 é‘BE éLS é‘ST é‘HF
(1,1,1,1,1) 500 553 b5.14 5.13
(0.01) (0.01) (0.01).
(10,0.1,0.1,0.1,0.1) 500 542 533 534
(0.01) (0.01) (0.01)
(10,10,10,0.1,0.1) 500 550 5.45 5.46
(0.01) (o.01) (0.01)
(10,1,1,1,0.1) 500 5.583 5.43 542
(0.01) (0.01) (0.01)
(10,10,1,0.1,0.1) 5.00 551 550 5.51
(0.01) (0.01) (0.01)
(20,5,1,0.5,0.05) 500 552 552 552
(0.01) (0.01) (0.01)
(10%°,5,1,0.5,10~10) 500 5.51 550 550
(0.01) (o.01) (0.01)
(5,2,1,0.5,0.2) 500 5.53 549 5.48
(0.01) (0.01) (0.01)
(101°,10-10,10-10,10-19,10-19) | 500 530 5.30 5.30
(0.01) (0.01) (0.01)




TABLE 4

p=10

n=12
Average losses of estimators for the common mean

(Estimated standard errors are in parenthesis)

Eigenvalues of

2221—1 éBE éLS éST EHF

(1,1,1,1,1, 10.00 17.86 10.69 10.62

1,1,1,1,1) (0.08) (0.03) (0.03)
(10,0.1,0.1,0.1,0.1, 10.00 22.89 14.81 14.97
0.1,0.1,0.1,0.1,0.1) (0.23) (0.10) (0.10)
(10,10,10,0.1,0.1, 10.00 19.37 16.32 16.36
0.1,0.1,0.1,0.1,0.1) (0.15) (0.10) (0.09)
(10,10,10,10,10, 10.00 18.15 16.42 16.43
0.1,0.1,0.1,0.1,0.1) (0.11) (0.08) (0.08)
(10,10,10,10,10, 10.00 19.90 15.49 15.58
10,10,10,0.1,0.1) (0.16) (0.08) (0.08)
(10,9/2,8/3,7/4,6/5, 10.00 18.03 14.24 14.19
5/6,4/7,3/8,2/9,1/10) (0.09) (0.04) (0.04)
(10,10,10,1,1, 10.00 18.12 15.69 15.67
1,1,0.1,0.1,0.1) (0.10) (0.08) (0.06)
(1019,10-19,10-10,10-10, 10719, | 10.00 15.12 15.12 15.12
10~10,10-10,10-10,10-10, 10-19) (0.36) (0.36) (0.386)
(1019,1010,10%0,1010,101°, 10.00 18.18 18.18 18.18
10-10,10-10,10-10,10-10 10-10) (0.14) (0.14) (0.14)

21
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TABLES
TABLE 5
p=10 n=25
Average losses of estimators for the common mean
(Estimated standard errors are in parenthesis)
Eigenvalues of
2221—1 E‘BE é‘LS EST éHF
(1,1,1,1,1, 10.00 12.68 10.34 10.32
1,1,1,1,1) (0.02) (0.01) (0.01)
(10,0.1,0.1,0.1,0.1, 10.00 12.33 11.16 11.20
0.1,0.1,0.1,0.1,0.1) (0.03) (0.02) (0.02)
(10,10,10,0.1,0.1, 10.00 12.56 12.03 12.04
0.1,0.1,0.1,0.1,0.1) (0.03) (0.02) (0.02)
(10,10,10,10,10, 10.00 12.66 12.31 12.32
0.1,0.1,0.1,0.1,0.1) (0.02) (0.02) (0.02)
(10,10,10,10,10, 10.00 12.47 11.68 11.71
10,10,10,0.1,0.1) (0.03) (0.02) (0.02)
(10,9/2,8/3,7/4,6/5, 10.00 1269 12.06 12.05
5/6,4/7,3/8,2/9,1/10) (0.02) (0.02) (0.02)
(10,10,10,1,1, 10.00 12.69 12.29 12.28
1,1,0.1,0.1,0.1) (0.02) (0.02) (0.02)
(10%°,10-10,10-10,10-10,10-1°, | 10.00 10.97 10.97 10.97
10~20,10-10,10-10, 1010, 10-10) (0.02) (0.02) (0.02)
(101°,101°,1010,1010,1010, 10.00 12.60 12.60 12.60
10~10,10-10,30-1°0,10-10 10-10) (0.03) (0.03) (0.03)




TABLE 6

p=10

n =50
Average losses of estimators for the common mean

(Estimated standard errors are in parenthesis)

Eigenvalues of

222;1 EBE éLS éST éHF

(1,1,1,1,1, 10.00 11.18 10.14 10.14
1,1,1,1,1) (0.01) (0.01) (0.01)
(10,0.1,0.1,0.1,0.1, 10.00 10.81 10.47 10.48
0.1,0.1,0.1,0.1,0.1) (0.01) (0.01) (0.01)
(10,10,10,0.1,0.1, 10.00 11.06 10.88 10.88
0.1,0.1,0.1,0.1,0.1) (0.01) (0.01) (0.01)
(10,10,10,10,10, 10.00 11.15 11.01 11.01
0.1,0.1,0.1,0.1,0.1) (0.01) (0.01) (0.01)
(10,10,10,10,10, 10.00 10.96 10.71 10.72
10,10,10,0.1,0.1) (0.01) (0.01) (0.01)
(10,9/2,8/3,7/4,6/5, 10.00 11.17 11.04 11.04
5/6,4/7,3/8,2/9,1/10) (0.01) (0.01) (0.01)
(10,10,10,1,1, 10.00 11.16 10.99 10.99
1,1,0.1,0.1,0.1) (0.01) (0.01) (0.01)
(10%°,10-1°,10-1°,10-10,10-1°, | 10.00 10.41 1041 10.41
10710,10-10,10-10, 1010, 10-10) (0.01) (0.01) (0.01)
(1019,10%°,1019,1010,101°, 10.00 11.12 11.12 11.12
10~10,10-10,10-10 10-10 10-10) (0.01) (0.01) (0.01)
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