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Abstract

The classical Poisson limit theorem studies the limit laws of S, where S,, = X
and Xin,...,Xnn is a sequence of {0,1} valued, independent, identically distributed ran-
dom variables. In this paper we will weaken the independence assumption and investigate
the possible limit laws for certain types of dependent sequences. This leads us to the study
of the limit of (A,(s))" where s is a real parameter and A,(s) is a finite dimensional
(the dimension being fixed) matrix of the form A,(s) = R(s) + n™'(Q(s) + Bxr(s)) where
limp,— 00 Bn(s) = 0. This problem seem to be of independent interest but does not appear

to have been treated in the literature.
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1 Introduction.

Let X1, X2n,..., Xnn be independent Bernoulli random variables with P(Xin = 1) =
1-P(Xin = 0) = p,for k =1,2,...,n. Let S, = 7=1Xjn. The well known Pois-
son limit theorem states that lim,,_,o, P(S, = J) = g;, where (go,q1,...) is a probability
distribution on Z* if and only if lim,_,, np, = A > O exists, and that in this case the
limit distribution is Poisson with mean }, i.e. g; = \J exp(-A)/(s1),7 =0,1,2,.... In this
paper we examine the limit behaviour of the distribution of S, while allowing a certain
type of dependence among the Xjn’s, which still take values 0 and 1. Again if one only
assumes that {Xjn, Xon,..., Xy} is stationary for every n > 1,‘ then for any probability
distribution {p; : 5 > 0} with 3722, p; = 1 and py > 0, one can set
. . -1

P(Xin=21,..., Xpn = 2,) = pj[(;?).;pj} , (1)

for every set of z;’s taking values 0 and 1 such that Xia1Te =3, =0,1,2,...,n. This

obviously makes {X;,, X,,... » Xnn} a stationary sequence with the property that
'}LIEOP(S,. =73)=p;, 7=0,1,2,.... (2)

It is therefore apparent that one can obtain any limit law in this way, and that we need to
put more restrictions on the sequence {X;,} to obtain meaningful results. In section 4, we
shall assume that for some fixed integer d > 1, {Xin,..., Xnn} is a so called finitary process
of dimension d (see section 4). The case with d=1. is just the case where {Xj,,...,Xnn}
are independent and identically distributed as above. The finitary processes form a fairly
rich class of processes; in particular they include all functions of finite state Markov chains.
To begin with we first consider this latter special case in some detail below.

Consider a d-state (2 < d < 0o) Markov chain {Y;,} with a stationary one step transi-



tion matrix P given by

P=[ 7 al ®
where the k X k& Markov matrix P;; corresponds to the states {1,2,...,k}, 1 Slk < d,
which is assumed to form an irreducible aperiodic (necessarily positive recurrent) class,
while the remaining states {k + 1,...,d} corresponding to the (d — k) x (d — k) matrix
P;; are all assumed to be transient. Thus starting from any of these transient states the
process will move to the recurrent class {1,..., k} in finite time with probability one. For
t =k+1,...,d, let 7; be the first passage time to the class {1,...,k} given that the process
starts with state ¢ ét time zero; with the corresponding probability generating function

(p.g.f.) given by
Gi(s) = E(s™), i=k+1,...,d, |s] <1. (4)

Again let (my,m2,...,m), with 1; > 0,5 = 1,2,...,k,and TF | #m; = 1, denote the station-
ary distribution corresponding to the matrix Pj;. By a well known property of irreducible
aperiodic finite state Markov chains we have
My T ... Ty
JL%(PH)" = ‘e =1 (say). (5)
m m ... Tk

In fact, if we introduce the dummy variable s and define

ORI o A NP ®

then it can be easily shown that

JNim R(s)"

lim ((R(s)")i;) =



[ 5] cos Tk O --- 0 1
_ 7r1 e 7|’k 0 0
1r1Gk+1(s) vee ﬂka.H(S) 0 0
7T1Gd(8) s kad(s) 0 0 i
if Ol (d
= 1i(s) = [ Mo [k (d-)] ] ’ .
(¢) [ T&(8)(a-r)xt]  Oya-k)x(a-)] 7

where at the end we have coveniently written the limit matrix II(s) as displayed.
Suppose now that the true situation is such that the transition matrix P is perturbed a

bit in an n-dependent manner, creating thereby a sequence P, of transition matrices given
by

P [T R0, ®

where
Py(n) = Py + 77 Qu + o(n") and Py3(n) = n~1Qy, + o(n™1). (9)
Since for each n, P, is a stochastic matrix, we must have
& -6 2
where 1 = (1,1,...,1)7. This means at each step we do allow the corresponding Markov
chain {¥;,} to move from the‘sta.tes in the set {1,...,k} to those in the set {k +1,..., d}
but with increasing rarity with increasing n. Now if for j = 1,2,..., n, we define X, = 1
if Yin € {k+1,...,d}, and Xj,, = 0 otherwise, then S, = 2 7=1 Xjn represents the number
of visits the Markov chain {¥},} pays to the set {k+1,...,d} during the first n steps. We
will be interested in the limit behaviour of the distribution of Sn as n — oo or equivalently
that of the corresponding p.g.f. To this end, once again by introducing the dummy variable
s in (8), we define |

Py(n - Pya(n
P(s) = [ Pz(l) ss.Pz(z)
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= R(s)+n7(Q(s) + Bu), (11)

where R(s) = lim,, o Pa(s) is as given by (6), By, is such that lim, .., B, = 0 and Q(s) =

lim,,co 7 (Pn(s) — R(s)) is given by

_ Qu s-Qi
o= % o 32, (12)
Fork=1,2,...,d let
gin(s) = E(s™|Yon = k), |s| < 1 (13)
be the p.g.f. of S, given that the process starts at k. Then it can be easily seen that

(91n(8)s-- -, gdn(s))T = (Pa(s))"1. (14)

Thus in order to study the limit behaviour of (14) as n — oo, we must study the limit

behaviour of (P,(s))", that is of
(R(s) + n~Y(Q(s) + B,))"™. (15)

Again if R(s) were the identity matrix I the limit behaviour of (15) is well known (see
Kato [1], pages 35-36). On the other hand, if R and Q were commuting with each other,
using the result for the identity matrix case and the limit behaviour of (R(s))" as given
by (7), one could easily establish the limit result for (15). Unfortunately in general R and
Q do not commute and in order to establish the result in this generality a lot more work
needs to be done. This is precisely the content of the next section. A similar matrix power
limit question arises for the more general case of finitary processes. This will be taken up

in section 4 as an application of the key result to be established in the next section.



2 An Operator Limit Theorem.

Here we shall prove the key result (Theorem 2.1) which helps answer the questions raised
above and is of independent interest. We shall present the result in the general setting of
operators in a complex normed linear space of finite dimensions.

Let X be a d (finite) dimensional complex normed linear space, and let B(X) denote
the normed linear space of all linear operators in X equipped with the operator norm,
denoted by || - ||. All convergences of operator sequences in what follows will be in this

norm. We shall also denote by p(A) the spectral radius of A € B(X) so that
p(4) = lim LA™ = inf | 4™" = max Ay, (16)

where {);} are the eigenvalues of A.

We state the theorem first and prove it with the help of a series of lemmas.

Theorem 2.1 Let R and Q be in B(X), and let D be a bounded region in B(X). Suppose
furthermore that B, : D — B(X), n = 1,2,..., be such that | B (@)l — 0 uniformly in

Q€ Dasn— oo.
(a) If lim, o, R™ = Il ezists, then
lim (R +n~}(Q + B,(Q))]" = IT- exp(Il - @ - ), (17)

the convergence being uniform in Q € D.

(b) If limyo N"YXN | R™ = 11 exists, then

li 1
Nglgo N

z"_v:l[R+n-‘(cz+Bn(o))1" Il exp(Il - @ - TI), (18)

convergence being uniform in Q € D.



We shall need the Jordan canonical form for any member of B(X) (see section 5, ch. 1

of Kato [1]). Thus any A in B(X) admits the unique decomposition

A=Y (NP4 D), (19)

=1

where J; is the ith distinct eigenvalue of A, P; and D; are the corresponding eigenprojection
and eigennilpotents respectively, and r is the number of distinct eigenvalues of A. It is also

known that (see pages 41-43 of Kato [1])
F;P; = §;;F;, P;,D; = D;P; = é;D;,
DYi~mi*l — 0, D;D; = 0if i # j, (20)

where M; equals the algebraic multiplicity of A;, which is equal to the dimension of the
range of F;, and m; equals the geometric multiplicity of A;, which is equal to the dimension
of the space of all eigenvectors corresponding to the eigenvalue );, We shall also use
the important property that P;, D;, Di,..., D.M‘_""' are linearly independent in the vector
space of all d X d matrices. Note that YiaaMi=d,Y_Pi=1I,and 1 < m; < M;. Thus
D; = 0 if and only if m; = M,.

The next lemma studies the structure of an operator R satisfying the hypotheses (a)

or (b) of Theorem 2.1.
Lemma 2.2 Let R € B(X) have the Jordan form (19). Then

(a) R® — 1I as n — oo if and only if for each i (i = 1,2,...,r) either A; = 1 with
corresponding D; = 0, or |A;| < 1. Furthermore, in the former case P;-TI = II.P; = P,

while BII =11 - P; = 0 in the latter.
(b) N-1EN  R" - 11 as N — oo if and only if for each i (F=1,2,...,r) either [N} =1
with corresponding D; = 0 or |A;| < 1. Furthermore, P;-MI=T1-P, = P, if \; =1,

and otherwise P; - I =11- P; = 0.



Proof. By (19) and (20) we see that for n > max; M; — m;
. r (M (n kpk
R" = El(,\,-P,- + D;)" = 21 kzl (k) ATTEDi + ATP; |, (21)
J= ,: 4

so that if m; < M;, then
D}™™ . R® = R". D)™ = \ppMi-mi, (22)

and

PE"=R"Pi=\PF+ Y

N‘:-Ma(
k=1

:) ArEDE, (23)

From (22), (23) and the linear independence of P,, D;, Di,..., D'M" ™ for each 1, it follows
that R” — II if and only if for each i, either |X;| < 1, in which case PII = IIP; = 0, or
A; =1, in which case D; = 0 and FII = IIP; = P;. This proves part (a).

Since in (21) the terms corresponding to those 5 for which |Aj] < 1 converge to zero as
n — oo, their Cesaro-limit will also be zero. Cons_equently the proof of the ‘if* part of (b)

follows by averaging (21) over n and observing that

1 & n A‘.(l—Al'N)
N;A‘ - N(I—A.') =0,

as N — oo, for || =1,); # 1.
For the ‘only if’ part of (b), from (22) we have that N-* TN . A" must converge as

N — oo, for all A;. This necessarily means that |A;] < 1, for all i. Again from this and

(23) it follows that
N M;-m;

1 ) \n-knk
VE & )
must also converge for each 1 as N — oo. However we show below that if {Ail = 1, then

NEN, (:) A™* does not converge as N — oo, implying thereby that the corresponding

D; = 0. Here we have again used the linear independence of P;, D;,D:,..., D,M"'"‘.



Since N-1YN | (:) — 00, as N — oo, for k > 1, we may assume that |A;] = 1 and

A; # 1. Furthermore a simple calculation shows that

Ivl'i (:) Nt o= lk') Y (Z A")

n=k
1 dk AN+ )
- N(k!)d,\f( Py )
k-1

3" a;j(X, N, k)N4, (24)

i=-1

where for —1 < 5 < k — 1, the a;();, N, k) are absolutely bounded with respect to N. In

particular
AN +1-k

ak—l(Ai,N:k) = m

i 1<k<Mj—m;. (25)
Because in(24), the power of N varies from term to term, it is enough to note that for

k > 2, ay_, # 0, and a; oscillates as N — oco. Thus the left hand side of (24) does not

converge for every k = 1,2,...,M; —m;;s =1,2,...,r. O

Remark 2.1 It is clear from Lemma 2.2 that if II # 0, then there is one § with /\,.' =
and this ¢ we set equal to 1 by convention, so that A; = 1. With this convention we can

write II = Py, the projection corresponding to the eigenvalue 1. Thus in the case (a) of

Lemma 2.2, we can write
R=Pi+ A, withP,-A=A-P, =0, and p(A) < 1. (26)
Similarly in case (b) of Lemma 2.2, we can write

R=Ry+A=)_ MNP +A, (27)
i=1
where [A;| = 1fori =1,2,...,s (s <r), Ry-A=A-Ry=0. It follows from Lemma 2.2
that

[[Rol| = 0 or 1, and p(A) < 1. (28)



We note that in this case that Ry = R - Py where P, = 22i_1 Pi. Also observe that A is
not necessarily diagonalizable in either case, and from (16) it follows that there exists a
positive integer ng such that

IA"| <1 and [|[R*)| <1V n > n,. (29)
On the other hand, IT = 0 in case (a) if and only if |Ai] < 1 for all ¢ without any ); being

equal to 1.

Lemma 2.3 Let A € B(X), R be as in Lemma 2.2, and A(n) = n~! o RI-A-RV1-G

where n is a positive integer greater than or equal to one. Then
(a) in both cases (a) and (b) of Lemma 2.2, 1I - A(n)-II=11-A4-1I,

(b) In case (b) of Lemma 2.2, given any € > O there ezists a positive integer n = n(g)

such that
I35 R -m < @
where Ry is as in (27), and
A" < 1. (31)
Furthermore,
[|Po - A(r) - Po]| < |4l (32)
and
I(Po- A(n) - Po~TI- A-TI) - TI|| < || A]e. (33)

Proof of (a). By Remark 2.1 11 = P,. Hence II-R = R-TI = II and the result follows.
Proof of (b). Since Ry = RP, = PyR, we consider Ry to be an operator acting on the

space PoX and set RS = Py. Then

'ilRtJ) —II= t(;'ilA{)Ph

n 3=0 k=2 i=0
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and thus

j=0

n—-1
“'LZR’ M| = sup {I E'\ --,IZ'\iIVn.
}=0
But
1 j -2
=12 <o
J'-O
as n — oo uniformly in k, and we have (30). Inequality (31) is the same as inequality (29).

N=X)n1=0

2<k<

That || Py - A(n) - Py|| < ||A|| follows from the relation

Py- A(n) - Po_—ZR’ A Ry

J—-O
and the fact that || Ro|| = 1. Finally,

(Po-A(n) - Po—TI-A-T) -1 = ( Z:R’ A-Ry'YI_M.A.-TM)-1

J=0

= ER’ Mm-A-TI

1—0
and (33) follows from (30). O

Remark 2.2 It is clear from the proof of Lemma 2.3 that even when d is countably
infinite, the lemma will be valid if 1 is not an accumulation point of the eigenvalues of R,.
On the other hand if 1 is an accumulation point of the eigenvalues of R; in a separable
Hilbert space X, then a simple application of the dominated convergence theorem shows

that the strong limit of n~* ©7-) R} as n — oo is I.

Lemma 2.4 Let An(Q),Ca(Q) € B(X), n = 1,2,..., Q € D C B(X) be such that
lAn(Q)* < M foralln, Q € D, k < n, and ||[Ch(Q)]] — 0 as n — oo uniformly in

Q € D. Then [|(4a(Q) + n"2Cn(Q))" — (An(Q))"| — O uniformly in Q € D.
Proof. The proof follows from the inequality
4@ + 7@ - i@l < £ (7 ilan@i-ica@
< M@ elicx@o

11



It is clear from the above lemma that it suffices to prove Theorem 2.1 in both cases
with B,(Q) = 0. Lemmas 2.5 and 2.7 are approximation results preparing the stage for
the proof of the main theorem while Lemma 2.6 is an auxiliary result used in the proof of

Lemma 2.7.

Lemma 2.5 Let A € B(X) such that A = Ao+ A, with Ag- Ay = A, - Ag = 0, |4o]| <1
and [|A|| < 1. Also let Py be a projection in X such that Ao = A-Py = Py+ A. Then
(4 +n"*B(Q))" - (Ao+n"'Pys- B(Q) - Po)*|| — 0 as n — oo, uniformly in Q € D, where
B(Q) € B(X) is such that | B(-)|| is bounded on D and (I — Po) - B(Q) - Po = 0.

Proof. For brevity, set Boo = Po . B(Q) . Po, BOl = Po . B(Q) . (I - Po), BlO =

(I-Po)-B(Q): Po=0and By = (I-P)-B(Q)-(I - Po). Then we write
A+n7'B(Q) = (Ao + n"'Bg) + (41 + n~'By) + n" Bo,. (34)

Set
An = (Ao +n"1By) + (4; + n ' By,). (35)

It is easy to see that (A}, - By - A7) - (A% - By, - AL) = 0 for all 4, §, k,I > 0. Therefore

(A+n"1B(Q))" ~ (Ao + n'By)" =
= (An + n'le)" - A: + (Al + n'lBu)"
n—1
= Z A:-l_j . (n"le) . A‘:‘ + (A1 + n'an)"
=0

n-1
= n E(Ao + ﬂv_lBoo)"_l“J Bor+ (A, +n7'By) +
J=0

+(A1 + n_lBu)". (36)

Since ||4,]| < 1, it follows that ||4; + n~'By|| < 1 for all Q € D and sufficiently large n

so that ||(41 +n™'By)"|| — 0 as n — co. The norm of the first term in the right hand

12



side of (36) is bounded by n*{|Bg,|| exp(|| Boo||) 2ieo(llA1]| + n71|| B ||)? showing that this
term also converges to 0 in norm as n — oo. [J
Note that Lemma 2.5 is essentially a special case of Theorem 2.1(a) where B(Q) = Q

and (I — Po)B(Q)P, = 0,VQ € D. This latter condition will be removed in Lemma 2.7,

Lemma 2.6 . Let 6, a > 0 and I,N positive integers. Then II_,(1 + 6a%) attains
its mazimum (subject to the conditions: t; 15 a positive integer for j = 1,2,...,1l and

Zf,-:; i; = N) when all the t;’s except one are equal to unity.

Proof. Without loss of generality we may assume that a # 1. For Il = 2 it is equivalent
-to maximizing a* + a¥~% over 1 < i < N — 1 which can be easily seen to occur at 1 =1 or
1+ = N — 1. Continuing b& induction on [/, we have
+1 I+1

max{J](1+ 6a%): > 4, = Nyiy,oooyipyy > 1} =

i=1 =1

] i
= Jax {(1+6a*) max{]](1+6a%): ) i;= N —k,iy,...,i > 1}
1<k<N-l| j=1 =1 _

— -1 k N—k-l41
= (1+ 6a) lsrlztmsa%:_‘(l +0a*)(1 + ba )

(1+6a)'(1 + 0aN-*)

as desired. OO

Lemma 2.7 . Let A, Py, Ay, A, be as in Lemma 2.5 and B(Q) € B(X) be such that || B(:)||
is bounded on D. Then ||(A+n"'B(Q))" - (4o + n~1P, - B(Q) - Po)*| - 0asn — oo

uniformly in Q € D.

£

Proof. We define By;, By, By as in the proof of Lemma 2.5 and note that now

Byo= (I — Py) - B P, is not assumed to be 0. Then A +n71B(Q) = A, + n~1B;o, where

13



A, = (Ao+n"1By)+ (A;+n71By;) + n~1By,. By Lemma 2.5 IIA: — (Ao+n"1By)"| — 0,

uniformly in @ € D as n — oo.

Expanding (;4,, +n~1B))" and observing that B2, = 0 we have

. l(nt3)/2] 4
(A+n7'B(Q))" = An+ kZ_: D_Ii(k), (37)
k=2 y=1

where [a] is the greatest integral part of the positive real number @ and
Lik) = ZAl-(n'By)- A2 - (0 Byg)- - A1 - (n71By),
L(k) = X((n~'Bio)- Aj? - (n7'Byo) -+ A% - (7' Byo) - A,
Is(k) = X(g(n " Bio)- Al (n"'Byg)--- A% (n"1B,),
L(k) = T(gAl-(n'By)- A% . (n_%on) ce- A1 - (071 Byo) - A, (38)

In (87) k — 1 is the number of times B,, appears in the expansion, and each sum in (38)
runs over the corresponding i’s taking values greater than or equal to one and adding up
ton— k-1 for each k. By convention I3(2) = 0. It is easy to see that the number of terms
in ;) and 35 are (:::) while 335 and ¥, have (:::) and (::’1‘) terms respectively.
The desired result shall follow if we show that the sum in (37) converges to 0 uniformly in
QEDasn— oo,
A simple calculation shows that
;1,':' = (Ao+n"'By)™ + (A + n~'By,)™ +

1 m—1 . .
~ Y (Ao +n" By)’ - By - (A + n~ 1B, )™, (39)
=0
A™.By, = (A1 +n71By)™ - Byo +

1 = - $ - m—1-3
; Z (Ao +n lBoo) . BOl . (A1 +n an) 1 Blo. (40)

=0

14



“Thus as in the proof of Lemma 2.5, we have for all m <n and Q € D
am am M, m
14zl < M, and [|AZ - Bio|| < —(1 + ne™), (41)

where M, M, are two absolute constants and a = supgep(||Ail| + n~Y||Byfl) < 1 for
sufficiently large n.

By (38) and (41) we have

L@ < (""“)(n-lan||)'=-‘Mf-‘

k-2
M3
n(k —2)t’
and similarly
Mgt
< =3
M2
< 4
”I3(k)” = nz(k _ 3)"

where M3 and M, are absolute constants. It is now easily seen that Z[("+3)/ 2 I|Z;(k)|| — O
as n — oo uniformly in Q € D for j = 1,2, 3.

Finally from (38) and (41) it follows that

, k-1 ..
Lk < Mi(n7)*'Ty HIIA;’-BloII
n—2k+2

< MMy;~la~ (3 Z () H(1+na"), (42)

=1 j=1

where 3 ;) for every fixed i (the value of 4;) runs over {(i1,...,41) : Titii=n—k-
t+1,41,...,%-1 > 1}. Also note that 3 (s) has (";f;') terms. By Lemma 2.6 and (42) we

conclude that

[ Za()

IA

=Py k—2

=1

k—1 n—2k+2
MIM (n k— )(1+na)k 2(1+nan 2k~ |+S)

MsMk—l n—2k+2 1 an—2k-|’+3
< -
s LTS »

=1 n

15



where My and Mg are suitable constants. Since a < 1, the above inequality leads to the
result that limp.o, S\°F % | 1, (k)| = 0. O

Proof of Theorem 2.1. In case (a) choose a positive integer v so that (29) is satisfied.
In case (b) given any arbitrary € > 0 choose v = v(€) as in Lemma 2.3(b). Having chosen
this v we hold it fixed, and writen = I + pwith!1=0,1,2,...and 4 =0,1,2,...,0v - 1.
Since u is bounded, we note that n — oo if and only if | — co. Thus as in Lemma 2.3,

defining Q(v) = v1 Yo RIQR”~'~i  we find that

(R+n7'Q)" — (R* +17'Q(v))* - R* =
= [(B+(v+m)7'Q)" - (B +17'Q(v)) - R¥

HER+ (v +p)7'Q)" - (R + (Iv + 1) "'Q)* — RH. (43)

Note that

v—1
(B+(wv+u)7'Q) =R + (v +p)™' Y RIQR 7 4 O3,

=0
where () is uniform in Q € D as I — co. Furthermore since (w+p)? = () -

n(lwv) 7 (lv + )2, from the above we obtain
(R+(Iv+#)71Q)" = R + I7'Q(v) +1"'Cy(w, Q), (44)

where Ci(v, Q) — 0 uniformly in Q € D asl — oo. Using (29), we have ||[R* +171Q(v)||* <
1+ Y QIIR|»-Y)* < exp([|Q[ll| B||*~!) < constant (depending only on v) forall k <
and @ € D. Using this and (44) we can apply Lemma 2.4 to the first term on the right
hand side of (43) to conclude that its norm converges to 0 as I — oo, uniformly in Q € D.
The fact that (R”+171Q(v))" is uniformly bounded also tells us that [(R+(v+u)Q)|
is uniformly bounded in ! and Q € D. Since u is bounded, we see that ||(R + (Iv +

WQ) — R < The, (IRIF (0 + 1) IQN)* — 0 as t — oo uniformly in Q € D.

16



Thus we arrive at the convergence of (R + n™1Q)" — (R” + I"1Q(v))' - R* to 0 as | — oo
uniformly in Q. By the choice of v, R* = R4 + A” with ||A¥|| < 1 and an application of

Lemma 2.7 leads us to
(B +n71Q)" - (R + 17 Py - Q(v) - Py)' - RE|| - 0 (45)

as [ — oo uniformly in Q € D.

Case (a). In this case Ry = P, = P; = Il and we get the desired result for B.(Q)=0
(and hence also for B,(Q) # 0 by the remark after Lemma 2.4) by applying Lemma 2.3(a)
and the result that li'ml_.oo(I + 171 A)} = exp(A) uniformly for all A in a bounded set of
B(X) (see Kato [1], pages 35-36). |

Case (b). Write N = Lv + J with L = 0,1,2,..., J = 0,1,2,...,v — 1. Since

lRg + L7 Po- Q(v) - Poll* < (1+ LY Q|I)* < exp(/|Q]]), we get that

v—1
lim N"(RS+L7'P,-Q(v)-P)t 3 RE=0 (46)
N—oo p=Jd+1
uniformly in Q € D. Thus by (45) one has

. 1
131—:[020 N =0 (47)

N L v—-1
2 (R+n71Q)" ~ S (RS + I"'Py- Q(v)Po)' Y RY
n=1 1=0 u=0

also uniformly in Q € D.
Given an arbitrary € > 0 we have fixed v so that (80) is satisfied and hence by Lemma

2.3(b)

v L 1 vl

I—VZ(RK +17'Py - Q(v) - Py)* - {; X_:ORS‘ — P}

1=0

< eexp(||Q]). (48)

Since P, =1II (see Remark 2.1), we have by (32) and (33)
(RS +17'Po - Q(v) - Po)' - TT = (T + 17 - Q - TM)* - 10| =
= [l(RS +17"Po- Q(v) - Po)' — (Rg + 7' - @ - T0)'] - T
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< 3} B + 1Ry Q) - PaIFI(Be- Q) - Po—TT-@ T 1)

NI+ Q - T

< @l exp(2l@l)e. (49)

Combining (47), (48), (49) and the standard result referred to earlier in case (a) we arrive

at

N
‘% Y (R+n1Q" ~T-exp(ll- Q- )
n=1

lim < Ce,
N—oo

where C is a constant independent of Q and e. Since ¢ is arbitrary, we have the desired
result for B,(Q) = 0 and by the remark after Lemma 2.6 we arrive at the general result.

O
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3 Markov Chains

Returning to the Markov chain example discussed in Section 1, in view of (10), using (7)

with s = 1, it easily follows that

Qu - II' + @12 - Mg(1)* = 0. (50)
In view of (7), applying Theorem 2.1(a) to (15) and using (12), we have

Im(Pa(s))® = TI(s) - exp(II(s) - Q(s) - Ti(s)) = TI(s) - exp(Q(s) - TI(s))

= Ti(s)- [ xp(Qu TL +6Qu Tiz) 0 ]

_ [ IT* - exp(Qq - TI* + Q15 - My(s)) 0 ] (51)
g (s) - exp(Qu - IT* + sQ1z - Tg(s)) O |°

Finally using this in (14) we have the desired limit result for the distribution of S, in terms

of its p.g.f. given by

[!h(s) e gd(s)]T = ,!i,f{}o[gm(s) e gdn(s)]T
m ] . '
= [ mye) |, R@u 0+ 900 TG (s)) - Ly

= I'I{:('s) J » exp(—Qyz - (TIg(1) — s (s))) - 1 (52)

where at the end we have used (50) and where TT3(1) — sII4(s) is a (d — k) x k matrix

given by

Hl(l - SGk+1(S)) s Hk(l - SGk+1(S))

g(1) - sIg(s) = (53)

M(1—-sGu(s)) .-+ L1 - sGqys))
The above limit [gy(s) - - - g4(s)]T gives us a matrix analog of the p.g.f. of a compound

Poisson distribution. Again instead of asking for the limit behaviour of Sy, the time
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spent in the set {k+1,...,d} during the first n steps, we might consider studying the
limit behaviour of the joint distribution of the vector [S,(k + 1)... Sn(d)] where S,(j) is
the time spent in the state j during the first n steps, with j = k + 1,...,d and S, =
E?=k+1 Sn(7). The above analysis can be easily adjusted by introducing d — k dummy
va.riables (Sk+15+..,84) instead of a single dummy variable s. An application of Theorem
2.1 as before, would this time lead to a matrix analog of the p.g.f. of a multivariate

compound Poisson distribution.
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4 Finitary Processes.

4.1 Generalities.

In section 3 we started with a Markov chain {Yi,,...,Y,,} with state space S = {1,...,d}
and then studied the function of this process given by X;, = f (Y;n) were f was the indicator
function of the set {k +1,...,d}. We shall now describe the concept of finitary processes
(see[2] for more details) which generalizes the notion of function of Markov chains and at
the same time allows one to apply the matrix theory methods of Markov chains.

Let 5 be a finite set (we will take S = {0,1}). Let d be a positive integer (d will be
fixed throughout this section) and 17 and ¢ € R%. Foreachi € S, let A; be a d x d matrix.

We assume the following axioms are satisfied.
Axiom 4.1 . nT.¢ =1,
Axiom 4.2 A-§ = §, where A =35 A;,
Axiom 4.3 For every positive integer m and for all 1y, ... »im € S we have
T
n A A - €20
A system (R%n;€;A;,1 € S) satisfying Axioms 4.1, 4.2 and 4.3 is called a finitary
system. This system is said to be stationary if
nT-A=nqT. (54)
For every finitary system (R? n; €; A;,1 € S) there exists a stochastic process {X;, X3,...}
such that for every positive integer m and for all 1,,... yim € S we have
P[X1=i1,“-aXm=im]=’7T'Ai;"'Al'm'E' (55)

Such a stochastic process {X;, X3,...} is called a finitary process. The following summa-

rizes several facts whose proofs can be found in [2].
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Proposition 4.1 (a) If (R%n;¢; Ai,¢ € S) is a finitary system, then there ezists an-
other finitary system (R%;n";¢"; Al,i € S) (called a reduced system) with d' < d,

such that

(1) For every positive integer m and for all 4y,...,i, € S, n'T - Al -+ A € =

ﬂT'An"'Ai,.. - €.
(2) {A},---Al_ -¢:m>0,4,...,i, € S} spans RY.
(8) {(nT- Al ...Al :m>0,iy,...,i, € S} spans RY.
(b) Every function of a finite Markov chain is a finitary process, and a finitary process s
a function of a Markov chain if and only if it has a finitary system (R n; €; A;,i € S)
such that all the entries of the vectors n and ¢ and all the entries of the matrices

A;,1 € S are nonnegative.
(c) A finitary process is stationary sf and only if its reduced finitary system is stationary.

From the above proposition it is clear that without loss of generality we may assume
that the system is reduced. However, the system with nonnegative entries referred to in
Propoéition 4.1(b) will in general not be reduced.

We now take S = {0,1} and suppose for each positive integer n that {Xi,,..., Xon} is
a finitary process given by the reduced finitary system (R%;7,; &,; Ai(n),7 € S). We want
to find the possible limit laws of S,, = %, X;,,, as n — oo. For this we look at the p.ef.,

gn(s), of S,, which is easily seen, using (55), to be given by
9a(8) =17  (An(s))" - €ns (56)
where 0 < s <1 and A4,(s) = Ao(n) + s4;(n).

In the sequel we assume that 7, and ¢, both converge as n — oo. Consequently it is

sufficient to study the possible nonzero limits of (A,(s))" as n — co. This we do in the
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next subsection for the case with d = 2.
4.2 Finitary Processes with d = 2.

In Theorem 2.1 we studied the limit of (4,)" with
1 ,
A.=R+1@+B.(Q) (57)

given that R" converges and ||B.(Q)|| — 0, as n — oo uniformly in Q € D. We now study
the converse question (with d = 2) namely that given (4,)" converges as n — oo for the
same form of A, as above, we prove that R does converge. This along with Theorem 2.1
will allow us to compute the form of the limit of (4,(s))" as n — oo for a finitary process

with d = 2.

Theorem 4.2 Let A, = R+ n"'(Q + B,(Q)) with R,Q and B,(Q) as defined in Theo-
rem 2.1. Assume furthermore that (A,)" converges to a nonzero limit, say C. Then R"

converges to a nonzero operator, say II.

Remark 4.1 The proof of this theorem is given in the appendix. Note that our Theorem
4.2 is limited to A,’s specifically of the form (57). In fact if we only assume that A, —
R,(A,)" — C(# 0) and R™ — II(# 0) hold, then (57) is not necessarily satisfied. For

instance take

o 1
A, = (1 + ;) P+ ﬁpz, . (58)

with a real and P; and P, are mutually orthogonal projections with their sum equal to

the identity.

Finitary systems with d = 2 can be given fairly explicitly. Consider the closed convex
cone C consisting of all limits of all linear combinations with nonnegative coefficients of

vectors of the form A;, --- A;, - € where m > 0and 4y,...,1, € {0,1}. This cone is clearly
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invariant under the operators A; for all 1 € S. By Axiom 4.3, C # R? and the case were C
is one dimenisional is trivial. Thus there are two linear independent vectors, a and 8 such
that C = {aa + b8 : a,b > 0}. Since ¢ € C, we may choose a and 8 such that §=a+p.
We first express the matrices £, Ag and A, in terms of basis (e, ). The fact that C is
invariant under Ag and A, implies that the entries of Ag and A, are nonnegative. Next

Axiom 4.2 states that Ag + A; is a stochastic matrix. From this it also follows that
¢ =[1,1, " =[p1-p], for0<p<i. (59)

If the process is stationary then 5 will be the invariant probability vector for A+ 4,. We

thus have

A(s) = Ag+ sA; = [ 1-a _dc+_s£1 - S)b 1—-d —ae-*_—s(cl — s)f (60)

where all the parameters are nonnegative,a+b+c < 1,and d+e+ f < 1. The eigenvalues

of A(s) are given by

A = |a(e) + (s) £ /(ale) = A + 4lat se)(d+ o9)| (61)

where a(s) =1—e¢~ (1-s)b—cand B(s) =1—d—e— (1—s)f.

Suppose now that the parametei's a,b,c,...depend on n with the matrix in (60) denoted
by An(s). Since we are interested only in the nonzero limits of (An(s))™ with Ap(s) of the
form (57), in view of Theorem 4.2 and the Remark 2.1, the maximal eigenvalue of Ap(s),
Ain in (61), must converge to one as n — 0o. The next lemma gives the necessary and
sufficient conditions for this to occur. The proof of the lemma, being straightforward, is

omitted.
Lemma 4.3 (a) 0<|A_,|<A;n <1,

(b) Ain — 1 if and only if at least one of the following three conditions holds.
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(1) an,b, and ¢, — 0.
(2) dn,e, and f, — 0.

(8) bnycpn, e, and f, — 0.

We will consider the three cases of Lemma 4.3 one by one, but first we consider a

“case 0.” Suppose that ay,, by, cn,dn, e, and f, — 0. In accord with (57) we assume that

na, — a,nb, — b,ne, = ¢,nd, — d,ne, — e and nf, —» f. Then

R(s) = lim An(s)=1, = lim R"=1

o | —e—-(1-8)b-c¢ a+ sc
QR = JLI&"(A"(S)_I)_ d + se ~d—e—(1-3)f

(62)

(63)

We can easily calculate the exponential of a 2 x 2 matrix B with trace 7, determinant 4,

and eigenvalues A.. The matrix satisfies its characteristic polynomial B2 = 7B — §I. This

can be used to obtain a difference equation for B". If the eigenvalues are distinct, the

result is
n__\n n-1__ yn-1
- A+ A_B - A+A_ _—_A-‘- A—

B =3 Y

I,
If A is the only eigenvalue, then
B"=nA""1B - (n— 1)A"I

From this we may calculate respectively

o Brn At _ - A_eM — Ae-
exp(B) = ng—n—!-— A.,.-—A-Bf SV I,

exp(B) = €*B+ (1—A)e*l

Thus from (63) we obtain

(X — -)Q + (Aped- - A_er)I

exp(Q) = 3
+ -
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where

Si = Aul) =g (a+ B2 V@— AP +aa+s)(d+sa),

[»3}3
I

&)= —a—(1—s)b-c, B=B(s)= —d—e—(1—29)f, (65)

a'vba c’d’ca fZO

The conditions that the two eigenvalues of Q would be equal for all s implies that Q=
—:\(1 — s)I, which implies that the limiting distribution is Poisson. Thus we may assume
that (64) is the form of exp(Q) except for the two values of s that‘ are the roots of the
quadradic equation (& — B)? + 4(a + sc)(d + se) = 0. For exp(Q) as in (64) the limiting

p.gf. of S, is given by

Jim nT[An(s)]"¢ = [p,1-p]-exp(Q)- ¢

0(1 — s)(*- — M) + A, el — At
A=A

(66)

where 6 = p(b+¢) + (1 - p)(e + f) > 0 and :\t = As(s) are as in (65). In contrast to the
cases considered below we are not able to describe the distribution of this p-gf. in terms
of well known distributions. In what follows we treat cases (1), (2), and (3), but assume
that we are not in “case 0.”

Next consider the case 1 of Lemma 4.3.b where a, — 0,b, — 0 and ¢, — 0. We
suppose that na, — a,nb, — b,nc, — ¢,d, — d,e,, — e and f, — f whered + e + f>0.
Also we suppose that n(d, — d) — z,n(e, — €) — y and n(f, — f) — 2. One may then

calculate the following matrices as before. For 0 < s < 1, we have

[ 1 0
E(s) =  d+se 1—-d—e—(1-38)f (67)
_[-a-(- )b — a+
Q@ = ‘ :l(:+s: ‘ —z—y—?;—s)z] (68)
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[ 1 0] |
II = d+-se ) (69)
| dtet(1=0)f Y
e_'f(') o.
H-eXP(H-QTI) = | s(s)e® o (70)
where
(s) (1—s)(ae+af+bd+be+cd+cf+ce+bf +s(ce —bf))
1 dte+(1—s)f
d+ se
5(s) dtet+(1-9)]
Finally -

lim nT[_AL.,(s)]"E =[p,1 ~ p] ‘IM-exp(Il-Q-M)-§£=(p+ (1 — p)&(s))e"’(‘). (71)

n—oo

This distribution has a fairly nice interpretation. We will transform the parameters to

make this more apparent. Set

A= )= o0

T dte+f
_ J
17 d¥e+s
I—y af(e+f)+c(e+f)(d+e+f)'
(d+e+ f)lale+ f) + (b+c)(d+ e+ f)]
. _ d
1—-7r = 6(0)—m—_|:—f.

Note that g,r,r’ all belong to [0,1] and 4(s) = A(1 —s(1 —r+ 51115}.)1)) Then e~*) is the

p.gf. of

y[0iEN=0
TSN X N>

where {N, X1, X3, ...} are independent random variables with N being Poisson with mean

Aand P[X,=1]=1-r and P[X,=m]=r(1— ¢)g™? for m > 2 and all n. The factor
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p+ (1 — p)é(s) in (71) is the p.g.f of a random variable Z for which

P[Z = 0]

p+(-p)1—r)

PlZ=n] = (1-pr'(1—-q)¢" ! n>1.

Thus the p.g.f. in (71) is the p.g.f. of the sum of the two independent random variables Y
and Z respectively. |

The second case of Lemma 4.3(b) where d,, — 0,e,, — 0 and f,, — O can be dealt with
as in the previous case by interchanging the states and thus does not yield any new limit
laws.

Consider now the final case of Lemma 4.3(b) where b,,¢,,, €,, fn — 0 as n — oo. We
.suppose that a, — a and d,, - d witha > 0,d > 0 and a + d > 0. We also suppose that
nb, — b,nc,, — ¢c,ne, — e,nf, — f,n(a, — a) — z and n(d, — d) — y. Then as before we

obtain from (57)

(1—a a 1 d a
R = | d 1—d]’ 1-[_a+d[d a]

Q = [ —z—c—(1—s)b z+ sc ]
| yt+tse  -—y—e—(1-3s)f
H-Q- = —(1-s)AIl

where A = (ae + af + bd + ¢d)/(a + d). Finally with n and £ as in (71) we have
T -M-exp(Il-Q-M) - £ = 2179, (72)

which is the p.g.f. of a Poisson random variable with mean ).

This completes the discussion of the two dimensional finitary case.
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A Appendix.

Here we give the proof of Theorem 4.2, for which we need a result about continuity of
eigenvalues, eigenprojections and eigenilpotents under continuous perturbation and some
lemmas.

Let G, (n = 1,2,...) and G € B(X), dim(X) = d < o0, and let their Jordan forms be

given as:

G, = z.f:lu.-(nm(n)+v.-(n)1,}
(73)

G = Z}=1[A,-P:,-+DJ-].
For each A; (7 = 1,...,7) define S(A;) = {#]1 < ¢ < d, lim,,o Ai(r) = A;}. Then we
have the following version of a theorem in Kato [1], (Theorem 5.1, page /24).

Theorem A.1 Let G, converge to G as n — o0o. Then for j =1,2,...,9
(a) the sets S(A;) are non-empty and mutually disjoint,
(b) Xiesr;) Fi(n) and Tics(a;) Di(n) converge to P; and Dj respectively as n — oo.
The following lemma is given without proof and will be needed in the sequel.

Lemma A.2 Let a, be a sequence of complex numbers converging to a with |a| =
Furthermore, let (a,)" converge to 0 as n — co. Then n|a, — a| — 00 as n — co.

For d = 2, we write the Jordan forms for A,, R,C of Theorem 4.2 as follows:

A, = A(n)Py(n) + Az(n) P(n) + D(n), }

R = Al.l)l +A2~P2+D, (74)

C = pP+pP+D

In (74) it is understood that D(n), D and D are zero respectively if the correspondlng two
eigenvalues are distinct.

Lemma A.3 Let A, R and C be as in (74) satisfying
(a) A, — R, and |
(b) (4n)"—C
as n — oco. Then _
(1) Ai(n) = Ay, A2(n) — A2, Pi(n) - Pl,Pz"(n) — P;,D(n) — D,
(2) (Aa(n))" = o1, (A2(n))" = p2, A= P, P = P,
(3) n{(M(n))"* + (Az(n))"*|D(n) — D.

The proof of this lemma is an easy consequence of Theorem A.1. Note that if [A\;} <1
and |A;| < 1 then C = 0. The next lemma rules out one of the various possibilities for the
eigenvalues of C.
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Lemma A.4 Assume (a), (b) of Lemma A.S, equation (57) and also p; = p, = 0. Then
C=0.

Proof: As mentioned above if |A;] <1, ¢=1,2, then C = 0. On the other hand when
A1(n) # Az(n) for sufficiently large n (which must happen if A; # A; and may happen even
when A; = };), D(n) = 0. This means D =C =0.

The only remaining case is when |A;| = 1, ¥ = 1,2 and A(n) = Ai(n) = Az(n) for
sufficiently large n onwards. Writing A(n) = A + a,, using (1), (2) of Lemma A.3 and the
result of Lemma A.2, we find that R = XA + D, a, — 0,n|a,| — co. Next by (57) we have

Apn=A+an+D(n) =A+D+n7'Q +o(n™?) (75)
or :
(an + D(n))? = a? + 2a,D(n) = n"(DQ + QD) + o(n?)
or

e +2D(n) = (ne) ™ (DQ + QD) + 0 ((n|aa)*) — 0
as n — oo and we conclude D = 0. Substituting this in (75) above, we get a, + D(n) =
n'Q + o(n™'), and on multiplying both sides by n(A(n))*! we find

nen(A(n))"" + n(A(n))" "' D(n) = Q(A(n))"* + of1). (76)

Note that Q(A(r))"* — 0 and n(A(r))*'D(n) — 1D by Lemma A.3(3) as n — oo
proving the convergence of na,(A(n))"! to 8, say. Thus D+ 28 = 0 which implies D = 0.
Hence C =D =0. O :

Proof of Theorem 4.2: In view of Lemma A.4, we need to consider only two cases,
Case I: p; # 0, + = 1,2, and Case II: p; # 0,p, = 0.

Case I: Consider the subcase p; # p,. Then it is easy to see that A\;(n) =1+ n"1a; +
o(n™') and A;(n) = 1+n"la; + o(r~?) where o; = log p;, i = 1,2. Since A;(n) # Az(n), we
have that D(n) = 0= D and R = I, and C = p; P, + p P;. Now if instead p; = p, = p # 0,
we see that if also A;(n) = A;(r) = A(n), then A(n) = 1+ na+o(n~!) with a = log p. On

the other hand from Lemma A.3(3), 2n(A(n))""*D(n) — D leading to nD(n) — (20)71D
or D = 0 which implies that R = I. If A;(n) # A3(n) for all n, then D(n) = D = 0 so that
R =T again.

Case II: In this case A(n) = 1+ n7la; + o(n™?) and Az(n) = Az + a, with a; =
log p1, [Az] < 1. Since by Lemma A.2, n|a,| — oo, A;(n) # Az(n) for sufficiently large n
onwards, and hence D(n) = 0. Thus D = D = 0 and R = P, + A, P,. If moreover 1Az} < 1,
then R™ — P;. On the other hand if \, =1, then R=1I.

Finally let |Az| = 1,A2 # 1 and P; # 0. In such a case we show that (57) is violated.
From (57) we have that

(Az - 1)[P2(n) ke Pz] + a,,Pg(n) = n"l[Q - 01P1(n)] + o(n‘l). ‘ (77)

Using an orthonormal basis {e;}i=12 of R? such that e; is an eigenvector of P; with eigen-
value 1, we find that

(Az = 1+ an)(e1, Po(n)es) = n7' (e, [Q — ey Pi(n)]ez) + o(n™?),
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leading to (e, P;(n)e;) = O(n~1). Next the simple identity:

(€1, Pa(n)es) ?
(e2, P2(n)e,)

(e2, [Pz — Pz(n)]e;) = (78)

tells us that
(32: [P2 - PZ(n)]CZ) = O(n—z)a (79)
since (ez, P;(n)e;) — 1. On the other hand from (77) one has

(Az — 1)n(ez, [Py(n) — Pyles) = {(e2, Qez) — as(ez, Pi(n)ez)} — nan(es, Pr(n)es) +o(1). (80)

Since n|a,| — oo, clearly (79) contradicts (80). Thus P, = 0 which implies R = P, = I.
D .
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