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I. ABSTRACT

A review of published literature indicates that heterogeneity within
populations of mammalian cells has been repeatedly observed and frequently
modeled. However, heterogeneity 1is not well enough understoocd to
ameliorate its consequences in populations of tumor cells. Our own
experimental observations, using time lapse photography, indicate that when
murine erythroleukemia cells are induced to terminally differentiate the
distribution of life times of unrelated cells becomes more heterogeneous
and that sister cells become more similar. Time lapse photography of
NIH3T3 murine fibroblasts reveals that the human ras oncogene decreases the
similarity of life times of sister cells and increases the similarity of
mother—-daughter cells. Observations of colony sizes also detect
héterogeneity of cell life times within a population. Inspite of this
heterogeneity, cell growth rates apparently persist wheﬁ‘primary colonies
are recloned and allowed to form secondary colonies since the sizes of
secondary colonies resemble each other and the primary colony from which
they were derived. The ras oncogene weakens the persistence of cell growth
rates since it increases the variance of sizes betwcen related secondary
colonies. These observations bhave lead to the development of a new Divided-
Colony Assay for detecting the respon;e of heterogeneous tumor cell
populations.to chemothefapuetic drugs in vitro. Inorder to better
understand obscrvations‘of clonal heterogeneity a Growth Rate Diffusion
model is outlined. In this model the growth rate of daughter cells take a
random walk away from the growth rate of mother cells. <{riteria are

suggested for evaluating this model, and other models for describing



heterogeneity within proliferating populations. Several open questions are
presented concerning our understanding of clonal heterogeneity of normal

and tumor cells.



IT. INTRODUCTION

Heterogeneity among cells in a population is the rule, rather than an
exception. It might be expected that a population of cells each derived
from a single cell, and growing within a common environment, would be
homogeneous. However, such populations are frequently reported to be
heterogeneous for cell growth rates, drug respomse, proliferative capacity,
tumorigenicity, state of differemtiation, and many other properties.
Heterogeneity is commonly recognized as a property of mammalian tumor cell
populations (1,2,3) but heterogeneity is also a property of non-tumor cells

(4,5,6,7), yeasts (8,9) and bacteria (10).

This paper will be concerned with growth rate heterogeneity -of
mammalian tumor cells and of non-tumor cells. After'é review of some
relevant literature our experimental observations will be described for
heterogeneity of cell life times, and for the heterogeneity of colony
sizes. Results of ionte Carlo computer simulations of colony size
distribution will be described, and a reference model (Growth Rate
Diffusion Model) for clonal heterogeniety wiil be outlined. Finally,
criteria will be suggested for the evaluation of models dealing with clonal

heterogeneity.

Time lapse photography has been widely used to measure the life times
of cells in pedigrees. The life tiwmes of individual cells can be

determined, and the life times of related cells can be compared. The



distribution of cell life times ( alpha curves) are skewed toward longer
times, and resemble log-normal distributions (11) and rate- normal
distributions (12L7 The heterogeneity of the distributions are indicated
by coefficients of variation which have values of 10% to 30% (13). The
distribution of differences of sister cell life times (beta curves) are
exponentially distributed (14) and are parallel to the alpha curves at long
times. Correlation coefficients of sister-sister cells is usually reported
to be positive, and of mother-daughter cells to be negative, although
positive and zero mother—~daughter correlation coeffiecients have been

reported ( 15).

These observations have been variously interpreted as being consistent
with the idea that cell life time heterogeneity is controlled by one rate
limiting step (11), two sequential steps (15,16,17,18,19), two or more
oppposing steps (20,21), or by several steps, no one of whi€h is critical
(12). Some egplanations of cell life time heterogeneity'éxpiicitly account
for short term inheritance of cell life times by counsidering the
possibiiity that one or more events in a mother cell affect subsequent

events in daughter cells (17,22,23,24).

Many models can fit the cell life time data (25), so collecting more
of the same kind of data can be useful bht has limitations in choosing
between different models té guide our understanding of the generation of
heterogeneity (26). It haé been emphasized that there are many possible
ways in which distributions can arise which are exactly log—normal (27) and

approximately log-normal (28).



The difficulty in using such observation and models to try to gain a
better understanding of generation of heterogeneity of cell life times is
illustrated by a comparison of the model of Kimmel et al. (29) with that of
Losata and HMackey (30). Each of these are mathematically sophisticated
cell cycle models which closely simulate life time distributions Qf
unrelated cells (alpha curves), differences Eetween sister cells (beta
curves), and correlations between sister-sister and mother-daughter cells.
However, the first model is based on the assumption of unequal division of
daughter cells, and the second model is based on the opposite assumption of
exactly equal division of sister cells. Clearly, we can not use these
results to evalutate the contribution of unequal or equal partitioning of
cell contents at division to the generation of cell 1life time
heterogeneity. The difficulty lies not with the formulation of the models,
but with the incompleteness of the kind of data which they describe. What
is needed to further our understanding of the generation of heterogeneify
is not more models attempting to fit the same kind of time lapse data, but

different kinds of experimental observations.

In addition to collecting traditional time lapse data of cell life
times, we have explored the possibility of using a different kind of
experimental observation to study the generation of heterogeneity, viz, the
distributions of sizes of microcolonies derived from single cells. We (31)
and others (32,33,34) have detected a pérsistance of cell growth rates in
pedigrees observéd by time lapse photography. These results suggested to
us that ceils growing with different rates might give rise to colonies of
different sizes, and that observations and analysis of colony size

distributions might be informative about cell growth rate heterogeneity.



Heterogeneity of colony sizes haé been observed previously. The
heterogeneity of mammalian cell colony sizes has been reported for
continuous cells lines which are immortal and do not differentiate (35,36),
for immortal cell lines which can be induced to differentiate (37,33,39),
and for non-immortalized cells which become senescent in culture (40).
Primary cells from tumors form colonies with heterogeneous sizes, and this
has been interpreted as reflecting the balance between stem cell terminal
differentiation (death) and .self-renewal (division) (41,42,43). Primary
cells of non-tumorigenic hematopoietic origin form colonies which are
heterogeneous in size, self-renewal capacity and expression of
differentiated phenotypes ( 44). The heterogeneity of colony size and
metastatic efficiency has been used as an indicétion of high frequency of
diversity associated with this stage of maligancy (45,46). Colony size
heterogeneity can be increased by X-irradiation, emphasizing the
possibility of lethal and sublethal damage as a facfér in colony size
heterogeneity of some populations (47,48,49)., An activated human ras
oncogene has been shown to increase the heterogeneity btween secondary
colonies (50). We are not aware of any treatment which can decrease colony

size heterogeneity.

Since colony size heterogeneity is commonly observed in cells derived
from tumors, taking it into account may improve the conclusions obtained
from in vitro chemotherapuetic tests which debend on evaluating the abilit§
of cells to clonally proliferate (clonogenic assays) (51,52,53). Taking
into account colony size heterogencity might also extend the efficacy of

clonogenic assays used to study fundamental aspects of cell proliferation



(54).

The observed heterogeneity of colony sizes, and of other phenotypes,
raises the question of the relative stability of these phenotypes. The
experimental procedure most often used to investigate persistence and
diversity of clonal phenotypes is subcloning. Typically, a single cell is
allowed to divide to give a colony of 50 to 100 cells, and then the colony
is dispersed into a suspension of non-aggregated single cells. Some or
all of the single cells are then allowed to form secondary colonies. The
size, or other properties, of the secondary colonies can then be compared

to each other and to that of the primary colony.

Subcloning procedures have been informative in several situations.
The self-renewal capacity of hematopoietic stem cells (55), T-lymphocytes
(56), and mast cells (57) have been studied by observing colony sizes
after replating cells in vifro. The self-renewal capaciiy of héﬁatopoietic
cell lines, which can be induced to differentiate in vitro, has also been
studied this way (37,38). Hematopoietic cells.injected into mice can form
colonies in the spleen, and these colonies are hererogeneous in size (
44,58). The self-renewal capacity of cells from several human solid tumors
has also been determined by measuring colony sizes before and after
replating, and then comparing the s&ze of each primary colony with the
sizes of the secondary colonies (59). In tumor biopsies, large primary
colonies may be thought to be derived from cells with a lafger probability
of self renewal, however replating experiments show that both large and
small primary colonies contain cells with‘high proliferative capacity (60).

In other words, larger colonies are not necessarily made up cells with a



permenantly greater self-renewal capébity than smaller colonies.
Similarly, populations of cultured cells with an apparently finite life
time may not age uniformly, but may contain Subpopulatioﬁs of uncommited
cells which can form large colonies (61,62). Clonal analysis of anchorage
independence (36,63), metastasis (45), drug response (3), albumin content
and cell surface antigen expresséon.( h4,65,66,67,68) has indicated that
many populations rapidly generate new diversity upon subcloning and/or

contain subpopulations that coexist in a dynamic state.

Modeling colony size heterogeneity can give some insight into the
kinds of factors which could contribute to the diversity between subclones.
Terminally differentiating populations have frequently.been modeled as a
"birth—and—death” process with differentiating cells undergoing "death" and
loss of colony forming potential, and dividing cells giving rise to more
cells by "birth". This kind of model has been used to fit data on spleen
colony sizes (58,69) and has been modified to accouint for stem cell
populations whose differentiation into two cells types can be observed in
vitro (44). The success of these models in fitting data on colony size
distributions suggested that self-renewal of pluripotential stem cells
occurs in a stochastic manner. A similiar model has been used successfully
to describe the proliferation of differentiated cells (57). Other models
with stochastic elements assign variability to progressive loss of self-
renewal capacity (43), to éelay in onset (70,71), to clonal differences in

growth rate (70), or to a combination of other factors (72,73).

A different tradition of modeling describes clonal heterogeneity in

terms of known ( or supposed ) molecular mechanisms affecting cell

9



reproduction (7). Discrete arnd rapid clonal variation in albumin content
of hepatoma cells has been modeled by envoking the possibility of discrete
amplification and deamplification of relavant genes, and segregation by the
rules of mitosis (64). The life times of T-lymphocytes is heterogeneous and
log-normally distributed. It has been proposed that this life time
distribution is a reflection of the log-normal density of cell surface
receptors for the hormone interleukin-2. Seperated subpopulations behave as
predicted by this model (74). Proliferation of other hematopoietic cells
(75) and fibroblasts (76) are dependent on different hormone growth factors
in serum. The existence of such extracellular factors has been
incorporated into models which describe control of initiation of DNA
synthesis by accumulation of a serum dependent protein with short half life
(77,78). A decrease in proliferative capacity, cellular senescence, has
been modeled by postulating molecules which are required for cell division,
which can be partitioned unequally in daughter cells, and which are lost or

inactivated during progressive division (79).

This short review indicates that clonal heterogeneity in populations
has been studied by time lapse photography of individual cell life times,
and independently by analysis of the distributions of phenotypes among
colonies and subclones. Models héve been proposed which account for clonal
heterogeneity by assigning generation of variability to different factors.
Additional experimental observations and modeling will be necessary before
we have a firm understanding of the factors which genefate clonal
heterogeneity within populations of mammalian cells. New insights may be
necessary before we can propose methods to amcliorate the consequences of

increased clonal heterogeneity of tumor cell populations.
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IIT EXPERIMENTAL OBSERVATIONS ON HETERCGENEOQUS POPULATIONS
A. Heterogeneity of cell life times

We have observed heterogeneity of cell life times of two kinds of
tumor cells, mouse erythroleukemia cells transformed with the Friend virus
complex, and mouse fibroblast cells transformed with the human ras oncogene
from a bladder carcinoma. For both cases, the cell life times were
obtained by time lapse video photography. Time lapse photography has the
advantages of providing the precise life time of each cell, and of
providing the exact relationships between of cells in pedigrees. Time
lapse photography has the disadvantages that it takes a long time to record
many pedigrees, and it is tedious to observe the recordings and reduce the

images to numbers.

Friend ervthroleukemia cells are virus transformed mouse hemopoietic
cells which proliferate continuously in culture (80). When exposed to
dimethylsulfoxide they undergo terﬁinal erythroid differentiation and cease
division after about 5 days (81). We used these cells to ask how
population heterogeneity is altered when a population of cells progresses
from a high proliferati;é capacity to low proliferative capacity. Our
experimenfal observations (82) indicate that median interdivisional times
increased from 11.8 hours, before exposure to‘dimethylsulfoxide, to 24.0
hours at 72 hours after exposure. The fraction of dividing cells decreased

from 1.0 to 0.807. The heterogeneity of interdivisional times, as

indicated by the percent coefficient of variation, increased from 8.5 to



40.8%. The correlation coefficient of sister cell life times increased from
0.622 to 0.925. These changes in sister-sister correlation coefficients and
the coefficients of variation of the entire population suggest that sister
cells remained relatively similar to each other while unrelated cells

became more diverse.

Inorder to better understand the control of 1leukemia cell
proliferation, we sought a mathematical model that would fit the cell life
time data, and whose features were suggestive of biological processes. We
considered several mathematical models which have been used to described
the distributioﬁ of cell life times. These included models which assume
that cell cycle progression is influenced by a single rate—limiﬁing step
(11) or two or more rate controlling steps (12,17,19,20,83). After
comparison of the data with several models we found that the data could be
accounted for by a model which assumes two opposing steps (20) and which
explicitly includes a fraction of non—proliferatinﬁ cells (82)., Our

modification of the Murphy adaptation of the Erying-Stover formulation is
$ = (F/l+exp(-alpha(tau-t))) + (1-F)

where S§ is the probability that a cell has not divided (survives), alpha is
a measure of population heterogeniety, tau is the median interdivisional

time and F is the fraction of cells that will not divide at a time very

long compared to the median interdivisional time.

A comparision of experimental data and mathematical models, cannot

identify a "correct” model. But in this case, the comparison has been
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instructive in four ways. One, it has emphasized to us that indicators of
population heterogeneity can change as populations progress from being
dominated by proliferating cells to being dominated by terminally
differentiating non-proliferating cells. Secondly, it has reminded us that
the fraction of cells which are observed not to divide can be large, and
should not be ignored in analyzing real data or in formulating models.
Thirdly, it has suggested to us that the cell cycle might be governed by
several opposing steps rather than by a single rate limiting step.
Fourthly, it has reminded us that there are many models which can generate

exponential tails on distributions of cell life times.

The second kind of population of tumor cells that we observed by time
lapse photography was mouse fibroblast cells transformed by the human EEEFJ
oncogene. These transformed cells were compared to isogenic cells that were
not transformed. We used this pair of cell lines to ask how a single gene
alters population heterogeneity. The DNA base sequencé-of the ras proto-
oncogene has been determined, its protein product is known, the molecular
basis for its activation to an oncogene has been shown to be a single base

change, and similar activated ras oncogenes have been found in many human

tumors (84).

Qur experimental observations indicate that the presence of an
activated human rasBJ oncogene decreases correlation coefficient of sister-
sister cell life times from 0.558 to 0.288, and increases the mother-

daughter correlation coefficient from -0.418 to -0.276. More specifically,

it makes the life times of pairs of cells less related and more random.
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The correlation coefficients were calculated after correcting for
biases arising from pooling data from populations with clonal heterogeneity
(31). Previous work with bacterial populations suggested that growth rates
may run in families, and that combining data from different colonies may
bias the estimates of correlation coefficients (31,85). The relationship
between the uncorrected correlation coefficient (insert 1) and the
corrected correlation ccefficient (insert 2), which we used (31) is given

by:

(insert 3)

|

A

insert

\

where the observed variance (insert 4) is considered to be the sum of the

variance components due to pooling experiments (insert 5) and pooling 13\$2Y+,PL¥3

colonies (insert 6), as well as the intrinsic variance (insert 7),  e.g. Z,W&,&ﬁr“\’ﬁl()‘l:‘:
g
(insert 8). : ih%e—r*l () 4z )

Analysis of variance, for both ras transformed and non-transformed

i

cells, indicated that pooling data from different colonies, and from
different experiments contributed to the estimates of total variance (3.
This realization was important for two reasons. First, it allowed us to
calculate correc;ed correlation coefficients estimated from pooled data.
the corrected correlation coefficients differed from the uncorrected
correlation coefficients by decrease i;m magnitude, and in some cases, by a
change in sign! Secondly, it emphasized that there can be a tendency for

cell life times to persist within families of eukaryotic cells as well as

prokaryotic cells.



B. Heterogeniety of colony sizes

We have sought a more rapid method than time lapse photography for
obtaining data on cell proliferation kinetics. The concept that cell life
‘times perist in pedigrees, suggested to us that microcolonies derived from
founder cells with different life times should give rise to microcolonies
with different numbers of cells, when observed at the same time. Therefore,
observations on the distribution of numbers of cells in colonies might be
informative. Observing colony size distributioﬁ rather than cell life time
distributions would have a practical advantage -- data on large numbers of
colonies could be more easily obtained than data on large numbers of
individual cells. We asked if there was a difference between the
distributions of colony sizes of EEEEJ oncogene transformed and non-
transformed cells, and if those differences persisted upon subcloning.

As expected, we observed a heterogeneous distribution of numbers of
cells per colony, ranging from 2 to more than 50 (50). This range is
greater than could be accounted for alone by cell cycle asynchrony of the
initial cells, and was probably a reflection of the heterogeneity of cell
life times previously observed by time lapse photography. fhe persistence
of cell life times, suggested by the analysis of vargance of time lapse
data, was also observed when the sizes bf secondary colonies were compared
to primary colonies (50). Secondary.colonies have an average number of
cells per colony similar to that of the primary colony from which they were
derived. The EEEFJ oncogene affects the persistence of cell life times,

since it increases the variance of sizes between secondary colonies

15 .



compared to the size of their primary colony. Nevertheless, cells
containing an activated oncogene give rise to secondary colonies whose
average size continues to resemble the size of the primary colony from

which they were derived.

These ohservations suggested to us a method of improving_in vitro
clonogenic assays for determining the drug response of tumor célls (51,53).
We call this new method the Divided-Colony Assay (50). Previous test
results had been confounded by the problem of sampling from a population
which is heterogeneous for growth rate. Because of this heterogeneity,
treated and untreated control subpopulations may not have equivalent mean
" growth rates. The recognition of the persistence of growth rates suggested
a solution to this problem. We showed that primary colonies divided in
half form two groups of secondary colonies, omn two separate plates, with
indistinguishable mean colony sizes. We exploited this observation by
dividing primary colonies into two groups of secondary Eolonies, one group
is left untreated as a control and the oﬁher group is treated with a
chemotherapeutic drug. The size distribution of treated secondary colonies
is then compared to the size distribution of untreated secondary colonies

from the same primary colony.

This procedure has been shown to be able to detect response of
heterogeneous EEEFJ transformed tumor cells to low conceétrations of two
different drugs, cycloheximide whicﬁ affects protein synthesis,and cytosine
arabinoside which affects DﬁA synthesis. The Divided-Colony Assay is
proposed as a modification of the human tumor cloning system. [t may be

used to increase the sensitivity and reliability of clonogenic assays used

16



to determine the chemotherapeutic drug response of heterogeneous tumor cell

populations.

17



IV MATHEMATICAL MODELING OF HETEROGENEOUS POPULATIONS

A. The Need for Models of Clonal Heterogeneity

Experiments with heterogeneous populations have lead to observations
which appear, at first, to be contradictory. When cells from a
proliferating population of tumor cells are dispersed and allowed to form
colonies, the colonies are found to be different from each other in size.
Yet when such primary colonies are dispersed, the secondary colonies
resemble each other and the primary clone from which they were derived.
The heterogeneity of the primary colonies indicates a tendency for growth
rate to diversify, and the similarity of secondary colonies indicate a
tendency for growth rate to persist. For.clonal heterogeneity of growth
rate to exist, there must be both a tendency for growth rate to diversity,
as well as a tendency for growth rate to persist. Diversification and

persistence of growth rate coexist.

Mathematical models can be useful for describing experimental results.
Such models can serve several purposes. They can summarize the previously
observed numerical data by explicit mathematical formulation, even without
reference to biological mechanisms, or they can serve as a heugistic device
}o help suggest which biological mechanisms may govern. The models which
are most useful to biologists summarize paét data, provide a heuristic
framework for biological mechanisms, and suggest new experiments. Even a

non-rigorous outline of a mathematical model may be useful to a biologist

if it is presented in an accessible way, and if its assumptions and



possible resulting behaviors are made explicit.

B. Computer Simulation of Colony Size Heterogeneity by a Cell Cycle

Compartment Model

We have simulated the colony size distribution of non—transférmed
mouse NIH3T3 fibroblast cells using the CELLGROWII program written by E.
Stubblefield and C.E. Donaghy (86). The purpose of these numerical
simulations was to determine what factors had to be specified in order to
generate results resembling experimental observations. The CELLGROWII
program is a Monte Carlo simulation system in which means of cell cycle
compartments (Gl, S, Gp, M, Gp) are specificied by the user. In our case
the mean times were estimated from.time lépse data and flow cytometry.
Times spent in each cell cycle compartment are generated from built in
distributions. S phase is Guassian distributed with a standard deviation of
0.2 times the mean, truncated at l.7 times the mean, and the other states

are exponentially distributed and truncated at 5 times the mean.

In the first round of simulation all colonies were initiated by cells
in G}, the proliferating fraction was equal to one, and cell life time
variabilﬁy was generated by the built-in distribution of time in states.
Successive generations had no memory of parental times. This model
resulted in a 'simulated colony size distribution, comﬁared to the
experimentally observed distributioﬁ, which had a larger median and a
smaller variance. In six subseduent simulations, several factors were

modified, seperately or together, inorder to reduce the median size and to

increase the variance of the distribution. The final simulation, which
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adequately simulated the observed colony size distribution, incorporated
‘the following features: initial cells were in all stages of the cell cycle
(asynchrony), the proliferating fraction was less than 1 and was
proportional to the time spent in G|, the G; time distribution was
increased from the built-in distribution by using cell life time variances
estimated from the life times observed by time lapse photography. When all
of these factors were utilized the CELLGROWII cell cycle compartment model
was able to satisfactorily simulate the heterogeneous distribution of

colony sizes of NIH3T3 mouse fibroblast cells.

This series of simulations taught us several lessons about the
heterogenecity of colony sizes. The first lesson is thét the broad
distribution of colony sizes may be partly the result of the broad
distribution of individual cell life times observed in asynchronously
proliferating cell populations. Secondly, cells which do not divide may
constitute - a considerable fraction within a prolifefating population,
Such cells may be ignored or not analyzed in time lapse records of dividing
cells, but .their existence increases the number of small colonies observed
in the colény size distribution measurements. Thirdly, the classical cell
compartment model ,as used in the CELLGROWII program, together with the
features we have described, is an adequate description of proliferating
héterogeneous populations, at least by the criteria of primary colony size
distributions. Fourthly, the simple cell cycle compartment model generates
diversity of cell life gimes, but it does not account for the persistence
of life times. The life time of every cell is determined by the same

probability distribution of time in states, regardless of the life time of

its parent. The difference between cells results from a random number

20



generator which chooses from the probability distribution of time in
states. No account is taken of the life time of the parent cell. However,
experimental results demonstrate that secondary colonies resemble their
parents and each other more than unrelated colonies. This observation

requires a model that includes memory from one generation to another.
C. Growth Rate Diffusion Model for Clonal Heterogeneity

We have begun to develop a reference model-to take into account the
persistance, as well as the diversity, of cell life times detected by
observing single cells in pedigrees and groups of cells in microcolonies.
This model visualizes proliferating cells as taking a random walk in rate

space i.e. cell growth rates diffuse from one generation to the next.

The Growth Rate Diffusion Model is subsumed under the the class of
models refered to as multitype branching processes. ‘This class of models
has been frequently used to describe uniparental populations which are
heterogeneous with respect to some characteristic(s). Specific multitype
models have been developed to describe the persistence of cell growth rafes
(87,88), and the distribution of cell growth rates (12,89,90). Other random
walk models have been described for related phenomena (24,29,65). Extensive
techniques have been developed for the analysis of branchiné processes

(91,92,93).
Qur Growth Rate Diffusion Model has the following features:

a) Types. Each cell is born as one of i=1,2,...,n types.

21 .
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b) Rate space. A cell born as type i has an associated rate }ambdda =

1 Aw
1 / (expected lifelength), where 0 < lambdeay < lambédsay’

c) Random walk. A daughter of a cell of type i will be of type 1 + 1,

i, or i -1 witﬁ respective probabilities p, r and q, where p + q + r = 1.

d) Boundary condition. At states i =1 or n, attempted steps to 0 or

n + 1 are forbidden and a daughter cell will remain the same type as the

mother. Steps fromi =1 to 2, or 1 = n to n - 1, are still possible.

The idea of random walk on a rate space provides a mechanism for short
term persistence of rates, as well as for diversification. The short term
persistence of rates occurs since daughter cells may take only one step

from their mother cell.

It is useful to consider the behavior of the model for different
values of the parameters. The parameters p and q are the probabilitities
that daughter cells take a step up or down in rate respectively. The
tendency for shiftup in rates can be described by setting p larger that q,
shift down by q larger than p. The parameter r, the probability that a
daughter cell grows at the same rate as the mother cell, captures the idea
of rate of diversification. A large value of r, i.e. near i, corresponds
to a low rate of diversification sincé daughter cells are likely to be the
same type as the mother celi, while low values of r, i.e. near O,

corresponds to rapid diversification since daughter cells are unlikely to

be the same type as the mother cells. The model also captures the short

©



term inheritance of rates where progeny grow at rates more similar to
mother rates than to rates of unrelated cells, while allowing for the
eventual dispersion of rates of offspring as exemplified by the loss of
synchrony of cells derived from on or many newborn cells. As long as there
are a finite number of types the process will always converge to a unique
steady state of distribution of types (i.e. growth rates), regardless of

the initial type(s) of the ancestor(s).

The behavior of this model can be described in terms that can be
directly compared with experimental observations on colony size
distributions. According to this model, as well as some other models, the

following would be expected:

a) Populations of cells of a wide variety of types will produce

colonies growing at a variety of rates.

b) Two different cells, both of the same type i, will in a constant

interval of time T (roughly a few generations) tend to produce colonies of

comparable size.

c) The previous point remains true even if p, q, and v are different

for each clonal line.

d) If differences in p, q and r in each clonal line exist, cells in

each colony would drift away from each other in type by time T.

Behaviors similar to these have been observed experimentally (50).

23



First, a broad distribution of primary colony sizes was observed. Second,
when cells from primary colonies are replated, secondary colonies are
comparable in size to primary colonies. Third, drift in type to lower or
higher rates in secondary colonies is detected when sizes of primary and
secondary colonies are compared. Fourthly, when primary colonies are
divided and replated onto separate plates, drifts in growth rates of both

groups of secondary colonies are similar.

The difference in behavior of EEEFJ transformed and non-transformed
"cells, greater intercolony variance of secondary colonies, may not be
accounted for simply by different values of r. If this is so, then it would
suggests that the two cell lines differ in the values of several
parameters, or that the reference model outlined above needs to be refined.
These possibilities will be evaluated by computer simulations based on this

reference model and its refinements.
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V. OPEN QUESTIONS

The Growth Rate Diffusion reference model outlined above provides a
heuristic device fér considering diversification and persistence of cell
life times. While it is being developed formally, its major features ére
being incorporated into programs for computer simulation of cell life times

and colony size distributions.

Our goal will be to determine if the model accounts for the
experimental observations on cell life times and colony size distributions.
If it is successful, we will consider its implications for understanding the
molecular processes which govern cell proliferation. If not, it will be
modified to improve the correspondence with experiments. It is useful to

explicitly list the experimental observations against which the behavior of

the model will be tested:
l. Cell life time heterogeneity,

a) sister—-sister correlations are positive,

b) mother-daughter correlations are negative (although positive
and zero correlations have been reported and this should
be taken into account),

¢) approximately log-normal or inverse normal distribution of

I3

cell life times, alpha curves,

d)‘approximately log distribution of differences between sister
cell life times, beta curves,

e) beta curves approximately parallel to alpha curves,

f) altered slope of alpha and beta curves by modification of
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medium components, inducers of terminal differentiation,
gene mutation, or introduction of new genes such as activated
oncogenes,

g) persistence of cell life times within pedigrees,

h) divergence of cell life times after a few generationus,

i) difference in mean life times of different pedigrees

within the same population,
j) not all cells give rise to two viable daughter cells.
2. Colony size heterogeneity,

a) colony size distributions are broader than would be expected by
asynchrony of the initial cell only,

b) secondary colony sizes resemble the primary colony size from
which they were derived,

c) subsets of secondary colonies resemble each other

d) the ras oncogene increases the variance between related

secondary colonies.

Preliminary numerical experiments have indicated that there are
several features of the Growth Rate Diffusion model which will have to be
addressed carefully. These include the following:

l. Boundary conditions. Required to prevent explosion and to maintain
stability. What is the fate of cells that reach the boundry? Do
they die, do they pause and try again, or are they reflected back?
Do cells behave the same at the upper and lower boundries? Do all
cells behave the same at boundries?

2. Generation of diversity. For non—tumor cells and more so for tumor

cells. What features, or numerical values, distinguish
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non—tumor from tumor cellg populations, and proliferating from
differentiating cell populations? These may be size of step,
probability of step or not step at each cell division,
asymmetry of size or probabilty of step up or down, cell
death linked or not to other features.

3. Incorporation of biochemical mechanisms which are known to affect
cell proliferation, such as growth factors, growth factor
receptors, signal transducing mechanisms, DNA replicapion and
initiation signals, mutations in genes recognized as oncogenes,
etc.

4. Suggest numbers or kinds of steps which could be experimentally
and clinically manipulated to reduce the extra heterogeneity

of tumor cells.

We are interested in developing this model to better understand the
mechanisms governing cell proliferation of normal and tumor cells., 1t has
alreédy been useful in guiding us to.carry out subcloning experiments, and
to devise a practical improvement in a clinically relavent in vitro
predictive test for tumor sensitivity to chemotherapeutic agents (50).
Perhaps future work will indicate the molecular mechanisms which govern

clonal heterogeneity, and allow us to suggest therapies which would reduce

the heterogeneity of tumor cells.
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