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Abstract

We show that a necessary and sufficient condition on the initial weighting
w;, —o0 < 2 < oo, of a reinforced random walk Xj, X;,..., to guarantee that
P( 11_)rr01o | Xn| = 00) =0, is that both § w;? = oo and i w?,; = co. Together with
annold result of T. E. Harris, this czhzalra,cterizes thosel__i_rllitial weightings which, if
unreinforced, correspond to a recurrent process, but which, if suitably reinforced,
yield a process converging to infinity with positive probability, and in particular

shows that there are such initial weightings.
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In this note it is shown that a necessary and sufficient condition on the initial
weighting a;, —o0o < ¢ < 00, of a reinforced random walk Xy, X7, ..., to guarantee
that P(nli_)rilo |Xn| = 00) = 0, is that both i‘;a;z = oo and io:l aZ? = co. Together

i= =
with an old result of T. E. Harris, this characterizes those initial weightings which,
if unreinforced, correspond to a recurrent process, but which, if suitably reinforced,

yield a process converging to infinity with positive probability, and in particular

shows that there are such initial weightings.

It is easily seen that any Markov process, with state space the integers and
stationary transition probabilities p; ; which satisfy p; ;41 + pii-1 = 1, pii+1 > 0,
and p;;—1 > 0, is associated with a set w;, —oo < i < o0, of positive numbers,

unique up to multiplication by constants, by the relations

Wi

Diit1 =1 —pj;1 = ———.
w;—1 + w;

(1)

We will refer to w; as the weight of the interval (¢,7 +1). We have p; j4+1/pii—1 =
w;/w;—1, that is, the transition probabilities from 7 to :+1 and :—1 are proportional

to the weights of the connecting intervals. For example, to get ordinary fair coin



tossing random walk, the weights of all intervals must be equal.

Recently Coppersmith and Diaconis introduced a model in which the weight
of each interval (¢, + 1) is initially 1 and is increased by 1 each time the process
jumps across it, so that its weight at time n is one plus the number of indices
k < n such that (X, Xgy1) is either (3,2 + 1) or (¢ + 1,7), where X, is the state
of the process at time n. Given {Xo = t0,...,Xn = tn}, Xny1 is either ¢, + 1 or
in — 1 with probabilities proportional to the weights at time n of (5,4, + 1) and
(2n — 1,45) respectively. See [2] or [4] for a more detailed description of this and
related processes, as well as a description of the methods of exchangeability theory

and random walk in a random environment which may be used to study them.

In [2] the author considers the more general setting in which any positive ini-
tial weights are permitted and any nonnegative reinforcement which does not de-
pend on the future is allowed. In this situation the methods mentioned above
can not be used, and martingales are the principal tool. Formally, let I stand for
the integers. We define a reinforced random walk (RRW) on the integers to be
a sequence Xp, Xq,... = X of integer valued random variables and a collection

w = {w(n,j), n=0,1,2,..., j € I} of positive random variables such that

i) w(n,i) 2 w(n—1,4),0<n < oo, i € I, with equality unless (Xn—1,X,) is either
(2,44 1) or (i + 1,2), and

i) P(Xnt1 =i+ 1Xn =1,Fn) =1— P(Xnp1 =i —1|X, =i, Fn)

= w(n,1)/[w(n,i —1) +w(n,i)], n>0, i €I,

where F, = o{X;, 0 < j < n, wlk,i), 0 < k < n, ¢ € I}. Usually we will



just use X to designate a RRW, and do not explicitly mention the weights. We call
{w(0,7): j € I'} the initial weights of X, which from now on are assumed to be con-
stants; if they are not, X may be analyzed by conditioning on them. We call X ini-
tially fasr if all the initial weights are equal and initially recurrent if the Markov pro-
cess with transition probabilities p; ; satisfying p; ;41 = 1—p;,i—1 = w(0,12)/(w(0,7—
1) +w(0,1)), i € I, is recurrent. We set R(X) = {5 € I: X,, = j for some n}, and
call {R(X) = I} the set where X is recurrent and {R(X) has finite cardinality}
the set where X has finite range. In [2] initially fair processes are studied, and the

following theorem is proved.

Theorem 1. If X is initially fair then

P(range of X is finite) + P(X is recurrent) = 1.

Of course, fair random walk is recurrent, so one way to interpret this result is
to say that this property is preserved under reinforcement unless the reinforcement
is so strong as to trap the process in a finite number of states. This paper addresses
the question of whether this remains true for any initially recurrent RRW. Explicit
criteria are available for initial recurrence. An old result of T. E. Harris (see [2], or
[3] p.- 109) is equivalent to the statement that a Markov process like that discussed
in the first paragraph of this paper is recurrent if and only if both the sums i wj !

=1

and ) w>} are infinite, where the w; are given by (1). Thus a RRW X is initially

4 2
=1

recurrent if and only if both ) w(0,:)™* and ) w(0,~:)~? are infinite.
i=1 i=1

The purpose of this paper is to prove the following theorem.



Theorem 2. Let {a;, —00 < i < 0o} be a set of positive numbers. A necessary and
sufficient condition in order that for each RRW X with w(0,:) = a;, —0c0 < i < 00,

we have
P(X is recurrent) + P(X has finite range) = 1,

o0 o0
is that both > a;? and Y, aZ? are infinite.
: =1

=1 ‘
Proof. Our proof of sufficiency resembles the proof of Theorem 1 given in [2],
although that proof did not use the martingale square function while this one,
necessarily as far as we can tell, does. See also the proof of Theorem 3.3 of [2]. We

assume that £ Xy < oco. If this is not true we can just condition on the value of Xj.

o ) (o]
Let a;, —0o < i < oo, satisfy Y. a;? = ) aZ? = oo, and let X have initial
=1 =1

weighting w(0,¢) = a;, —o0 < 7 < co. We will show
P(limy— 00 Xy = 400, lim,, , X, > —oc0) =0, (2)

which immediately, by reflection, implies P(lim,,_, oo Xn = —00, limp— 00 Xn < 00) =
0, which together with (2) establishes sufficiency. To prove (2) it suffices to show

that, given n € {0,1,2...} and k € I,
P(X, >k, sup X; = oo, 1;13' Xnti > k) =0, (3)

and to prove (3) it suffices to prove it in the special case k = 0, since our condition

o0 oo
on a;, ¢ € I, is equivalent to Y w(0,7)™% = oo and Y w(0,—i)"2 = oo, which is
=1 1=1

clearly invariant under change of origin.

Now let n be fixed and put A = {X,, > 0}, T = inf{k > n: X < 0},

B = AN{T = oo} N {sup X; = oo}. To prove (3) in the case k = 0 we must show



P(B) = 0. Note that Z:Ow(n,z')_2 = oo a.s. since w(n, k) = w(0, k) for all but at

most n integers k.

For m > 0 put

j—1

G(m,j) =Y wn+m,i)™, j>1,

1=0
=0, 7<0,
and define

M)\ZG((H+)\)/\T,X(n+)\)AT), )\20,1,2,..

where A denotes minimum.

For A > 0 put
nfA
Hy=Mx+ Y [w(—1,Xie1)™ —w(@, Xim) (X > Xi1,i < T),  (4)
i=n-+1
where the sum is taken to be zero if A = 0. Then Hx, A =0,1,2,... is a nonnegative

martingale, and furthermore, if j > X,,, H;41 — H; = w(n,j)™! on

Di,jz{Xn+i+1=j+17Xn+i=ja IS'X’YSj, nS'YSn'*'Z}

For a proof of this see the end of the proof of Lemma 3.1 of [2], although the reader

will probably be able to construct the proof, which is just a calculation. Note since



oo
we assume j > X,, |J D; ; O B. Thus
=0

S(H) =H} + Y (Hiy1 — H;)?
=1

2

v

Il
o

w(n, 7)"2I(D;,;)

n

Il
5

=0 j

w(n, 7))~ I(D;,;)

Ms
Nk

0

> Y w(n,j)2I(B)
J=Xn
= OOI(B),

nZ

8 &

where I denotes indicator function. Now since H is a nonnegative it is L! bounded,
and thus a result of D. G. Austin ([1]) gives P(S(H) = c0) = 0, implying P(B) = 0,

concluding the proof of sufficiency.

To prove necessity it suffices, with no loss of generality, to let by, by,b2... be a
sequence of positive numbers satisfying i b, 2 < oo and to construct a RRW, such
i=1
that for £ > 0 the initial weighting of (k, k + 1) is by, which converges to +oo with
positive probability. We will use Y = Yp, Y7, ... to stand for this example, and the

associated interval weights will be designated v(n, k), defined by
70, k) =‘bk, k>0,
(k) —y(n —1,k) =k I(Yp-1=k+1,Y,=k), £>0, n>1,
y(n,k)=1 ifk<0O.
That is, if £ > 0 the weight of (k,%k + 1) is increased by b, each time the process

downcrosses this interval. We also specify ¥ = 1. In the discussion below, the

weights of (k — 1,k), k <0, are irrelevant.



To show this example has the desired properties we first prove the following

lemma. Much stronger results are known.

Lemma 1. Let fy, f1,... be a nonnegative martingale satisfying P(fo =1) =1 and

lim f, =0. Then P(3_(fi — fi=1)> > A) >0, A >0.
n—oo i=1

o0
Proof. Suppose to the contrary that there is a A\g > 0 such that P(Y (fi —
i=1
n
fiz1)? > Xo) = 0. Then E(f, — f;)2 = E Y. (fi — fi-1)® < A2, so that fo, fi,...
i=1
is an L2 bounded martingale, implying 1 = Efy = lim Ef, = E lirr%J fan=0,a

contradiction.
Now put 7 = inf{j: Y; = 0}, define

7—1
G(m,j) =Y y(m,i)™, >0

=0
= 0, j = 0’
and put 'y = G(n A 7,Y,ar), n > 0. Then T;, 7 > 0, is a nonnegative martin-

gale. The proof of this follows in a manner similar to the proof that the process
Hy, Hy, ... is a nonnegative martingale together with the fact that on {¥, > Y,_1},
¥(n,Yn-1) = 7(n —1,Yn_1), so that the expression corresponding to the sum in (4)
is zero. See [2], especially the comment after the proof of Theorem 3.1, for a fuller

discussion of this.

Now

ST = T2+ 3 (T~ Tica) )

=1

=14 (Ti—Tiq)?
i=1

<1+ io: io:(rl - Fi—1)2‘[{(y'i—1ayvi) = (ka k+ 1) or (k + 1’ k)}

k=0 i=1



=1 +ZZk,
k=0

where Zj is just defined to be the second sum in the inequality above, and the
inequality holds since I', = 0 if Y3 = 0 for some k < n, so that Z; for j < 0, if we

defined it analogously, would be 0.

Now

2 < S A6 B I ¥iga) = (b, B+ 1) or (B + 1,8}

=0

= y(11,k)"? + (2, k) 2+ ...,

where Y crosses (k,k + 1) for the ith time between times 7; and 7; + 1. For k > 1
we have, recalling that Yy = 1, that v(m, k) = bk, ¥(72, k) = bx, v(73,k) = 2b) (for
in fact y(m2 + 1, k) = 2bg, since the first downcrossing of (k, k + 1) occurs between

times 7 and 7 + 1), and in general 72,1 = T2 = nbg. Thus

o ]
Z, <2 (nbp)72 <4bp?, k21,

n=1
o0
and, similarly, Zy < 4b52, so that by (5) we have S(I')? < 4 Y b;%. Lemma 1 now
k=0

implies that
P(lim I'p =0)< 1,
so that

P(Y, > 0 for all n) > 0. (6)

We will now prove

P(0 < limp—oo Ys < 00) =0, (7)



which, together with (6), proves P(limY, = oo) > 0. To prove (7) it suffices
to show that, if A > 0 is an integer and n is an integer, and A(n,\) = 4 =
{Yn+i = A for infinitely many ¢, Yo4; < A, 7 > 0}, then P(4) = 0. To establish
this we assume that A > Y,, and note that there is a (random) integer ¥ such
that y(n, A — 1) = 9bx_1 and a (random) integer 6 such that y(n,\) = 6bx. Let
Ty =inf{j > n: Y; = A}, and T; = inf{j > T;—y: ¥; = A}, ¢ > 1, and put
Ap = {Tr < 0} N{ max Y; = A} so that 4; D A, D ... and ﬁ A; = A. Now

n<j<Tg =1

¥(Tk,A) = 6by, on Ay, while

’)/(Tk, A— 1) =br_1 + (k — 1)b,\_1 on Ag.

Thus

0b)
, k=1,
Pby—1 + (k—1)br_1 -

P(Yr41 = A+ 1|Ar,¢,0) =
and, since Y7, 41 = A — 1 on Agy1, this implies

6b>
-1 + (k — l)b)‘._l ’

P(A5.,|A 6) >
( k+1| k)"/’a )—'be)\

where E€ stands for the complement of F, so that

~ a 05 -
P ,Q Axl$,6) < kfz[ (1 S %_1) e

Thus P(A) = 0, completing the proof of (7) and thus the proof that Y,, approaches

oo with positive probability.

We remark that it is not difficult to show that in fact P( lim Y, = 00) = 1.
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