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1. Introduction

In biological assay (or bioassay), standard statistical procedures have been used for
estimating the potency of one substance relative to another by means of responses produced
in biological systems. The typical problem is that of finding the amount of a new drug
that is equivalent to a specified amount of an old and standard drug. In Finney (1947,
1979, 1983) some methods of quantitative estimation between drugs in terms of biological
responses are discussed. More precisely, suppose that two substances S and T can produce
analogous responses in appropriate biological material, and that the magnitude of response
depends upon doses. Let Y7, Y3 represent a typical response to a dose z of S, T respectively.
It is assumed that E(Y1) = F(z), where F(z) is a single value function of z. By the
condition of similarity, the expected response of a dose z of T follows F(pz), where p is
the potency of T relative to S under some conditions. The function F will have unknown

parameters. Good estimators for the potency p and the unknown parameters are needed.

It is usually assumed that F follows a linear regression on the logarithm of dose in a

certain range of interest, i.e.
F(2) =fo+ P1lnz = By + Bz, where z = In z.

Then by the condition of similarity,
F(pz) = o+ B1(lnp +1n2),
= Bo + Bi(z — u),

where

z=Inz, p=—Inp;
which is equivalent to say that the two regression lines are parallel. So we need to estimate
Bo,P1, and g = —Inp. Box and Draper (1959) addressed the problem that subliminal
deviations from the assumed model may result in a large bias term in estimation. Validity
of these estimates requires that the assumptions of linearity and parallelism of the two

regression functions are satisfied. They are usually tested before doing the estimation.

In Section 2, we shall see the effect of model inadequacy in testing, especially for

parallelism. In Section 3, we will review several optimal design criteria for detecting
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model inadequacy and propose two design criteria for the test of parallelism and parameter
estimation. In Section 4, we will find the optimal designs under the two new design criteria

from a specified class of designs.

Suppose that the responses {¥;1,f = 1,...,n1}, {Yi2,¢ = 1,...,n2} are obtained
independently from normal population with the same variance at dose levels {z;,7 =

1,...,n1} and {2;2,1 =1,...,n2} of S and T respectively. Let
zi;=Inz;, 1=1,...,n, 3=1,2.
For these responses, p is to be estimated. In this case, the model to be fitted is
(1.1) Y=Xf+e=Xnup+XaB2+e
where

Y'= (Yll,--'sYnllaYIZa---sYn12),

(]
g = (511’-"’enll,€12a-"9€n32),

B’ = (Bo1, P11, Poz, P12),

1 1 ... 1 0 o ... 0
X’ — i1 T21 cee :Bnl]_ 0 0 0

0 o ... 0 1 1 ... 1

0 0 “ee 0 T12 T22 ... Tna2

_ (X1 0
0 X3
under the assumption that ¢ ~ N(0,02I). Let b = (X'X)~1X'Y be the least squares
estimator of 8. Then the residual sum of squares is

SSE=Y'(I - X(X'X)"1X")Y.

The pure error sum of squares SSPE with n. degrees of freedom and E(SSPE) = n.o?

is obtained in the usual manner, assuming there are replicates for S and/or T'.



Now well known methods of calculation then give an analysis of variance in the fol-

lowing Table 1.

Table 1. ANOVA for linearity and parallelism

Source d.f. Sum of Squares
Classes 1 SS(boz — bo1)
(adjusted for mean)
Single slope 1 S58(b11 + b12)
Deviation from parallelism 1 SS(b11 — b12)
Deviation from linearity N —4 —n,
(Lack of fit)
Within doses N,
(Pure error)
Total N-1

Note that SS(b11 — b12) = (¢'d)’D~1(c’b), where ¢’ = (0,1,0,—1), D = ¢'(X'X) 1.

The pure mean square error SSPE/n, estimates 02. The usual lack of fit test for

linearity is performed by using the ratio

g _ SSLF/(N —4-n.)
B SSPE/n. ’

large value of F' means the assumption of linearity is rejected.

2. Model inadequacy in testing

If the postulated model is the correct model to consider, then the least square esti-
mate b = (X’X)~1X'Y of § in the model E(Y) = XJ is an unbiased estimate. If it is
not the correct model, then the estimate is biased. The effect of model inadequacy on
testing, especially for parallelism is the main concern here. If the lack of fit test is falsely
accepted, then even under the condition of similarity, the test of parallelism may reject
the assumption of similarity of the two drugs with a large probability. In the following, we

shall see how model inadequacy affects the test.

Suppose the true model is

(2.1) Y = XB+ Zv +e,
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where ) )
Z’= (.’B%l, 321, esey .'I:nll, 0, cesy 0) — (Z]_, Q )
o, ..., 0 z¥, ..., z2, 0, Z
'7' = (ﬂ21’ﬂ22)1 €~ N(0,0‘zI),

or in an alternative form

Y=X(B+ A7)+ Qv +s,

where
Q=27Z—-XA,
with
A=(X'X)"'X'z
being the usual bias matrix, and where X’Q = 0 (see Draper and Smith (1981) for such
expressions). Then b = (X'X)~!X'Y is biased for # with E(b) = 8 + Ay. The residual
sum of squares is
SSE=Y'(I - X(X'X)"'X")Y
=4Q Qv+ 29 Qe +&'(I - X(X'X) ' X')e,
and
E(SSE) = (n—4)0? + YQ'Qy = (n — 4)0? + Ao?
where Ao? = 4'Q'Q~.

So according to the analysis described earlier we will test, at level a, for lack of fit
using the ratio

F' = {SSLF/(N — 4 —n.)}/{SSPE/n.}.

Theorem 2.1. When the true model is as in (2.1), F’ is a noncentral F distribution with
(N — 4 —n.) and n. degrees of freedom and noncentrality parameter A\; = v'Q'Q~/0?.

(This result can be found in most textbooks, see e.g. Draper and Smith (1981).)

Now we denote the upper tail a—percentage point of the central F variable with
ni,ny d.f. by Fy, n,,o. The null hypothesis of linearity will be falsely accepted when

F' < FN_4—n_,n,,a With the true model as in (2.1). So the power of the test in this case
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would be P{F' > FN_4_n_,n.,a}- If linearity of the regression function is accepted, as in

the usual analysis, a test of parallelism will be performed. The ratio

[ (c')D~1c'd
~ SSPE/n,

will be used and parallelism of the regression lines will be rejected if
F" > Fi,ne,as.

Note. We use SSPE/n. in the denominator of F”, instead of SSE/(N — 4) even when

linearity is accepted to avoid complexity when the true model is not really linear.

Theorem 2.2. When the true model is as in (2.1), F” is a noncentral F with 1 and n,
degrees of freedom and noncentrality

A2 = (1/0®){(B + Av)'eD ™' (B + A7)}, where D = ¢/(X'X) Le.
Proof: Since b = (X’'X)~1X'Y is distributed as normal with mean 8 + A~ and variance-
covariance matrix o2(X'X)~!, then (02)~1(c'd)’ D~ (c'b) will be distributed as noncentral

x? with 1 degree of freedom and with noncentrality parameter

Az = (1/0%){(B + Av)'eD™1c'(B + Av)}, where D = ¢/(X'X) Le.

Also it is easy to see that (1/0?)SSPE is independent of (62)~1(c'b)’ D~1(c'b) and is

distributed as x? with n, degrees of freedom. This proves the theorem.

Corollary 2.1. When the true model is quadratic and the two regression functions for

Y1,Y> are parallel and the location parameter is u, i.e.
EY) = fo1 + Puz + f22?,

(2.2
EY; = o1 + Pu1(z — ) + Ba(z — p)?,
then
2
AL = (%) (24T — Xux (X}, X01) "1 X1) 20t
Zé(I - X22(X£2X22)_1X22)Z2]a
(2.3) and
2
Az = (%—) D7 2p+ (0, 1)[(X}, X11) " X7, 21—

(X35 X22) "1 X3, 2]}
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3. Optimality Criteria

In Section 2, we have seen the effect of model inadequacy on the test of parallelism. In
this section, we will review several optimal design criteria for detecting model inadequacy

and propose two design criteria for the test of parallelism and parameter estimation.

In the following, the region of interest R will be defined to be {—1 < z; <1,-1+4+v <
T2 < 1+v}. Since we can always define the region for z, as [—1, 1], v represents our choice
of the region for zz . We do not transform the region of z, to be [—1, 1], because we don’t
know the value of the location shift parameter u, which we need to estimate. Also when
we discuss the problem of design, there are actually two parts of the design. One is for
z1, the other is for z;. Since ¥; and Y, can be taken independently within the range R
for z;, z3, and their expectations take the same parametric form, we can see easily that
the optimal design &3 for z2 is just a location shift of the optimal design ¢F for z4, i.e.
£ = &7 + v. In other words, for the distinct design points z;; in €, z;2 = i1 + v with

the same weight as z;;.

3.1 Optimality criteria for detecting model inadequacy

In order to discriminate between models (1.1) and (2.1) when (2.1) is true, the opti-

mality criterion for the design of the experiment reduces to the maximization of
(3.1) A ='Q'Qv/d?,

A1 = (v/0)'L(v/0),

where
(3.2) L=2Z"{I-X(X'X)"'Xx"}Z.

The choice of the design to maximize A, depends, of course, on (y/0), which is un-

known. There are several kinds of optimality criteria considered here.

(i) The maximization of |[L| = determinant of L as a criterion for constructing designs to

detect model inadequacy was proposed by Atkinson (1972). The criterion has also received
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considerable attention from others such as Kiefer (1961), Atwood (1969), Studden (1980)

under the heading of D,—optimal, i.e. D-optimality for a subset of the parameters.

(ii) The A, —optimality criterion proposed by Atkinson and Fedorov (1975a). A;—optimality:
A design {7 maximizing A; over all designs from some class of permissible designs A is
called a A;—optimal design, where A contains at least one design for which L has full rank,

and
(3.3) Ay = ilég Y Ly; &={y:4"W~>6>0},
)

where W is positive definite which is constant for all designs. For a special choice of W

and more details, see Jones and Mitchell (1978).

(iii) The Ap;—optimality criterion proposed by Jones and Mitchell (1978). A;—optimality:

A design £ maximizing A, over all designs in A, where

(3.4) Ay = / 4'L~dB/ | dB,
@o QO

and dB is the differential to the area on the surface of the ellipsoid
o = {y:7/' W~ = 6}.

(iv) The minimum bias designs proposed by Box and Draper (1959) which are chosen to
minimize J, the mean squared deviation of 17(1:) from the true response n(z), averaged
over the region R of interest and normalized with respect to the number of observations

and the variance, i.e.
N 5 2

(3.5) J = — E[Y(z) - n(z)]*dz =V + B,
o° Jr

where V is the “variance error” and B is the “bias error”.

(v) The D-optimal design for model (2.1).

In our case, the assumed model is of the first order over the region R, i.e. EY; =

Boj+P1jx;, § = 1,2; while the true model is of second order, i.e. EY; = ﬂ0j+ﬂ1,-xj+ﬂ2,-z?.
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So when W is chosen as the special choice in Jones and Mitchell (1978), D,—, A;—, or
A2— optimality yields the same optimal design, i.e. placing 1/4 of the observations at each
end of the two intervals I, I, and the remaining 1/2 at the centers. The second order
design places 1/3 of the observations at each end and the center of the two intervals. The
minimum bias design using the approach of Box and Draper (1959) places the design points
at the center with certain weight and at two other points symmetrically near the ends of
each interval, so that the root mean square distance of the design points from the center

is approxmately .6 for each interval, i.e. ¢; = (%) >3 (zij — T;)? is approximately .36,

and the fourth moment of z;, say d;, dj = () Y74, (=i — %;)*, is not small, for j = 1,2.

3.2. Optimality criterion for the test of parallelism

Our concern now is whether the model is parallel (location shift). We would like to
find designs which will have larger probability of accepting the parallel hypothesis when
the true model is quadratic and parallel, even if we have used an inadequate simple linear
model to do the test of parallelism (location shift). Now let

SSLF/(N —4—~n.)
SSPE/(n.)

(3.6) P1 = P{F' = < FN—4—n,,n, ,aIAl}

which is the probability of fasely accepting the null hypothesis of linearity under a, (so
large values of A; are more favorable); and let

(c'b)D~1{(c'b)

(3.7) P, =P{F" = SSPE/(n)

> FlsnualAz}

which is the probability of falsely rejecting the parallelism when the true model is quadratic
and parallel, (so smaller values of A, are more favorable). Therefore we propose to select

a design that minimizes Q; over all designs from certain specified class, where
(3.8) Q1 =P P,

is a measure of the chance of using an inadequate model and then incorrectly rejecting the

parallelism (location shift property).



3.3 Optimality criterion for parameter estimation

If the location shift property of the model is accepted, even if we have used an in-
adequate model, then we need to estimate the parameters of the assumed model. Some
kind of minimization concerning J is needed. We would like to give more weight for those
J values which have more chance of being used. Therefore P;(1 — P,) is treated as a
weighting factor in the following criterion. The second criterion we propose is to choose a

design to minimize
(3.9) Q2 = Pi(1 - P)J,

where P;, P, are as defined above, J is as defined in (3.5), Y (z) is the least squared
estimate based on model (1.1) and #(z) is based on model (2.2).

Example 1: In this example we will use the three optimal designs for detecting model
inadequacy as described in Section 3.1 to see the effects of model inadequacy on the test
of parallelism and the parameter estimations. The three exact optimal designs are given

in Table 2 when N = 2n = 18.

Table 2. Design points for the exact designs
The number of points at z is n(z)

Design S T
. A—,Ds,-optimal n(+1)=2, n(0) =5, n(+l+v)=2,n(v)=>5,
II. Second order n(+£1) =3, n(0) =3, n(xl1+v)=3,n(v)=3,
D-optimal
III. Minimum bias  n(£0.9) =2, n(0) =5, n(+0.9+v) =2,n(v) =5.

Then for these designs the corresponding values of P; and P; are

SSLF/2
(3.10) P = P{F' = -.ST.TE//IE < F2,12,_05 = 3.89IA1}
and

'b D—l ’
(3.11) Py = P{F" = M > F1,12’_05 = 4.75|A2}

SSPE[12

with corresponding values of A, As.
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The curve of 1 — P; versus A; is plotted in Figure 1 and Figure 1’. The curve of P,
versus Az is plotted in Figure 2 and Figure 2. From the graph we can see clearly that
when A; is not large, say 1 < A; < 6, we have a chance of over .5 of making the mistake
of falsely accepting linearity. Also when A2 is not too small, say 2 < A2 < 6, we have a

chance of over .2 of falsely rejecting the hypothesis of parallelism.

For designs which distribute the observations equally on z; and z2, i.e. ny = ny =
N/2 = n, and are symmetric about the center of the corresponding intervals for z;, z, i.e.
E:;l zy = 0,23 = zs1 +v,t = 1,...,n, we can easily show that under the conditions of

Corollary 2.1, A; and A2 in (2.3) can be written as follows

B2\? & 1 [ :
=1 =1

(3.12) ,
=2n (ﬂo_z) {C4-—c§};
_(8\ _1 _2,)2
(3.13) . (a) .-z::ﬁ?l s
=(2ﬁ2>2(u—v)2,

where c; and c4 are the second and fourth moment of the design for z;. Also J can be

expressed as

wo  aeaff]e (8 [ 2])

In Table 3, under the conditions of Corollary 2.1, the values of A;, A2 and J are given
for the three optimal designs in Table 2. Now let ¢; = (82/0)%,¢2 = (2B2/0)%(u — v)2.

Table 3. The values of A;,A; and J for the three designs.

Design A1 A2 J
I.  A—,D,-optimal ()¢ 3¢z 3.50+ (.202)(9¢1)

II. Second order 44 &¢z  3.00+ (.400)(9¢1)
D—optimal
III. Minimum bias  (2.916)¢; 22¢, 3.86 + (.179)(9¢1)
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The performance comparison of the three designs under optimality criteria Q;, Q2

will be discussed in Section 4.

4. Some results on optimal design

From Section 3.1 we see that the three optimal designs for detecting model inadequacy
under different optimality criteria are all from the class of designs with 3 design points and
are symmetric about the center of the corresponding intervals for z; and z;. Therefore

in this section we will find optimal designs from this class under the optimality criteria

@1, Q2.

More precisely, the region of interest is R and we divide the observations equally on

z1,z5. We will find optimal designs from the class A where

A= {(fl; fZ)Ifl(_z) = fl(z) =D 61(0) =1- 2p:0 <z S 1,0 < b4 < 1/2’

and &2=&14+ v, e zpp =z +v,i=1,...,n}

Now we express the noncentral F distribution with noncentrality parameter A and
degrees of freedom nj,n; as a mixture of ratios of independent x2? variables, i.e. the

distribution function of F' can be expressed in the form

| % _—X/2 2/2 k
(4.1) PF<z)=)_ ‘_.__76(7/_)10 (F,.1+2,,,,,2 < n—l'-‘ifﬁ> .
k=0 )

For such expression, see e.g. Muirhead (1982).

Then when A; and Az are not too large, @; and @2 can be written approximately in

terms of A; and A, as

= (= (437 0) (-0 (55%) %)
< (e (557 0) (- (5572 )

(4.2)



where
q = FN—4—n¢,n,,a,

q2 = Fl,n,,a’

81 = P(-F‘N—Al—nc,ne < QI).= 1-— o

N"'4_ne
= o <|>—=
s2 P(FN 2 "”"‘”(N——Z—ne)ql)’

t1=P(Fin, < q2) =1-—a,

ty= P (Fs,n, < (%ql)) ,
and
(43) Qi ~ (1 Ca- (1‘—‘;‘&) ,\1) (1 Ca- (1”;2‘“-) h) J

Now we substitute the values of A; and A5 in terms of the second and fourth moment

of the design &; into Q; and Q2, where ); and A are as in (3.12) and (3.13). We obtain
Q1 ~ (1 — a— nbi(cq — ¢3))(a + bz /(nez)),

and

Q2 ~ 2(1 — a — nbi(cs — €3))(1 — a — bz/(nc2))
{0 i)+ (8) (-3 8]}
b= (1—a—s2) (%)2,

o (52) (2 0o

Since b; and b, are both greater than zero, it can easily be shown that we should

where

choose designs such that ¢4 = ¢2 in order to minimize @, and Q2. Therefore the design
points for z; should be at —1,0,1. Now we only need to find the optimal values of ¢; to
minimize @1 and Q2 respectively, which can be found fairly easy now. In Example 2, we

will find the optimal designs under the design criteria Q1, Q2 when N = 2n = 18.
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Example 2. Let N = 2n =18,(82/0) =1, (p—v) = 1/2, and a = 0.05. Since the designs

for z; are on 3 design points, then n, = 12, ¢; = F3,12,.05 = 3.89, and g2 = Fy,12,.05 = 4.75,

sz = P(Fy,12 < 1.95) = 0.833312,
ty = P(Fs,12 < 1.58) = 0.754301;
and
by = (.95 — .83) = .12,
be = (.95 — .75)/2 = .10.

i.e.

Q1 ~ (.95 — 1.08(e2 — ¢2))(.05 + .10/(9¢z)),

Q2 =~ 2(.95 — 1.08(c2 — ¢2))(.95 — .10/(9¢2)) { (1 + 51—2 +9 [(cz _ % )2 + fg]) } .

The graphs of Q; and Q2 versus ¢, are plotted in Figure 3, 4, for 0.1 < c2 < 1 ( we
assume Az is not too large). It can easily be shown that @, is minimized when ¢ = .633,
and Q2 is minimized when ¢3 = .463. Note that the minimizing ¢2 for both Q; and Q- are
within the range .444 and .666, which correspond to the ¢s values of the A—, D,—optimal
design and the second order D—-optimal design respectively. The values of @1, Q2 in terms

of ¢z for the three optimal designs in Section 3 are also indicated in Figure 3, 4 respectively.

In Example 2, f2/0 = 1 represents the case that the quadratic coefficient f; is of
about the same size as the standard deviation o of random error. (g — v) = 1/2 means
the interval where the observations Y2 can be taken, are misplaced for about 1/2 away
from the true location shift distance, here 1/2 is a relative measure compared to the total
length 2 of the two intervals. If (u — v) = 0, then the test of parallelism (location shift)
is the same for both linear and quadratic models, and there is no problem in rejecting
parallelism with large probability. Therefore it is important for us to choose a reasonable

range for z; in order to minimize the effect of model inadequacy on the test of parallelism.

For other values of §2/0 and (g — v), the optimal designs under Q; or Q2 will have
c2 values following a certain pattern. When (g — v) = 1/2, and the size of §2/0 is larger

than 1, then the optimal ¢2 values under @Q; or Q2 are smaller than the two c; values in
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Example 2 respectively. When f2/0 = 1 and (p — v) is larger than 1/2, the optimal ¢,
values under Q; or Q3 are larger than the two ¢z values in Example 2. When 82 /0 gets
larger and (p — v) gets smaller or vice versa, then the optimal ¢; values depend on the
comparative size of 8z/0 to (u — v). Most of the time, we do not have a unified answer
concerning the two criteria. Therefore we will have to choose a criterion which is more

important, or a compromise between these two criteria.

The minimum bias design does not perform well in both @1, @2 criteria. The reason

is that it is not performing well in testing model inadequacy and in testing the parallelism.
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Figure 1. The probability of rejecting linearity when the true model is

quadratic for N = 18, a = 0.05.
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Figure 27 Hva probability of rejecting parallelism when ..ﬁ.-o true model is

quadratic and parallel for N = 18, @ = 0.05.
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Figure 4. The value of Q; versus ¢, when (,32/0) =1l,and p—v=1/2.
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