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The Malliavin Calculus refers to a part of Probability theory which
can loosely be described as a type of calculus of variations for Brownian
motion. It is intimately concerned with the interplay between Markov
processes with continuous paths (i.e., diffusions) and partial differential

equations.
A time homogeneous diffusion X with values in R" can be represented as

a solution of a stochastic integral equation of the form

L X, = x + JZ a(Xg)dB, + fz b (X, )ds,

where B is a Brownian motion on R®™ (also known as a Wiener process), pro-
vided X solves mild regularity conditions. From a statistical standpoint,
the diffusion X is determined by its transition probabilities, since it is
a Markov process : P (x,A) = P(X,,, €A | X, =x), all u=20, all £t > 0.
The measures P, (x,dy) induce operators on bounded Borel functions

P E(x) = I f(y) P,(x,dy), and since they are a semigroup of operators there
is an infinitesimal generator (P; = I)

P E(x) - £(x)
Lf(x) = 1lim R
t$0 t

for an appropriate class of smooth functions £. This operator L is given by
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where the sums over i and j are implicit, and where the a; and b' are from
(1) which can be alternatively written (1L £ i < n)
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(2) x] =x' + 2 J; al (x,)aB} + Ig b’ (X, )ds.
-l

a2

Here Dij denotes ; Dy denotes — .
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If, for example, f has bounded partial derivations of first and second
order (and a and b are at least Lipschitz continuous) then

— P f = Lf.
ot 't
Moreover if the measure P, (x,dy) has a density P (¥,y) with respect to

Lebesgue measure, then Kolmogorov realized sixty years ago that p,(x,y)
satisfies (for fixed y)

J
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and if L* is the adjoint of L then (for fixed x)



o "
(4) 30 Pe0Y) = Ly PGy

The adjoint L* can be calculated :

N |-

L*g = E; Dij(a; a{ g) - Di(big).

Equations (3) and (4) are known respectively as Kolmogorov's backward

and forward equations. In the case where the diffusion is simply Brownian

. _ 2
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motion itself (in R'), the density P (X,y) equals
2Tt

8

1
is the fundamental solution of the heat equation 5%-= E-Ap .

'In principle all knowledge of a diffusion is contained in the transi-

tion probabilities, and hence one wishes to study the regularity of the

measures P, (x,dy). There are basically two approaches : the first one is to
assume very little smoothness of a and b, and to use lots of ellipticity of

the operator L. This approach is known as the martingale problem approach,

and is presented in the book by Stroock and Varadhan [10]. The coefficients

need not be Lipschitz continuous, as continuity alone often suffices. The
second approach is to assume that a and b are very smooth (e.g., C™), but

to allow the operator L to be degenerate. This second approach 1is the
framework for the Malliavin calculus.
In equations (1) and (2) we represented the diffusion X in terms of

the It6 integral. This was important to allow the consideration of the mar-
tingale problem approach. Henceforth a and b will be assumed C*, and thus

we can represent X in the form :
t t
(5) X, = x + 0 a(Xs) °© dBg + 0 ao(Xs)ds

where the stochastic integral is a Stratonovich integral (the a and a; of
(5) are different from the a and b of (1) and (2) if X is the same ; how-

ever they are easily computed by simple transformation rules). The operator
L can now be written :

m
1

L=ag + —-EE a%
2 x=1

where a; is a first order operator and a% is a second order operator.

One of the goals of the Malliavin Calculus is to show that if a and a;
are sufficiently smooth, then Pt(x,dy) has a density which is also smooth.
The perfect tool for this is Hérmander's theorem. Let Y; denote the differ-
ential operator

X:

m
o
Yj = EE a; 5—— , 0<j=r,
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. € CP(W).

where U is an open set and aj;

Define

r
Gu = EE Y? u + Y0 u + cu .
j=1

Then G is hypoelliptic if whenever Gu = f 1is satisfied for two distri-

butions u,f (i.e., generalized functions) on U, then the following holds
for any open subset V of U such that flv € C(V), then u|v € C¥V). Let

[Yi,Yj] denote the Lie bracket of Y; and Yj . Hérmander’s theorem states
the following : if every vector field on U can be expressed as a linear
combination (with c® coefficients) of

{(Yi)iZO ’ [Yi»Yj]i,jZO ’ [Y’i ’ [Yj:Yk]], S

then G is hypoelliptic. Hérmander's theorem, applied to the operator L (or
its adjoint), gives conditions such that the transition density is
Indeed, Hoémander’s theorem translates as follows : if for each x € R°

the rank of the (infinite) system of vectors

{(a)\)7\21 ’ [a}\’ap.])\'p.ZO ’ [[a}\:ap.]yav])\'p,'vZO P

is equal to n, then for each x the measure P, (x,dy) has a C*® density. Note
that A 2 1 for the first term : The inclusion of ay leads to a slightly
weaker result.

What Malliavin did was to provide a probabilistic proof of Hérmander’s
theorem by constructing a kind of calculus of variations for Brownian
motion. This in turn gave probabilistic proofs of the smoothness of the
transition densities. This has the advantage of giving probabilistic
insight and intuition into what is seen as a fundamental probabilistic
result ; it has the disadvantage of giving a 1longer and perhaps harder
proof of Hoérmander’s theorem than is available in the PDE literature (e.g.,
[4]). However Malliavin's methods (credit should also be given to those
whose work he built upon such as Gross, Kree, Kuo, Eels, Elworthy, ...)
are profound, and they are already having ramifications in other areas of
probability.

For example, one important operation that has emerged from the
Malliavin calculus is known (colloquially) as Malliavin's derivative (It

could also be called Kree's derivative, as it existed in the literature

before Malliavin’s work). This is an operator that maps random variables
into processes : if F is an L% random variable on Wiener space, let
(DgF) >, denote the process that is the Malliavin derivative of F. Ocone
(8] has shown that for nice F,

F = E(F) + Iz E{D,F | ¥ ) dB_ ,

where F is a random variable on the Wiener space of a Brownian motion

(Q,yu(Jﬁ)tzo,B). Also, Nualart, Pardoux, Zakai and the reviewer have used
the Malliavin derivative in a series of articles [6], [9], [7] to under-

stand further the Skorohod integral, building on work of Gaveau and Trauber



[3]. (See also the work of Ustumnel [11]).

Let us turn now to Denis Bell’s book, which is the first of its kind :
it is an attempt to treat the Malliavin calculus in a pedagogic manner,
bringing together the two basic approaches that have developed since
Malliavin’'s fundamental papers : The first approach, close in spirit to
that of Malliavin, is identified with Stroock, §S. Watanabe, Ikeda,
Shigekawa, Kusuoka, Meyer, ... ; the second approach is identified with
"Bismut, Michel, Bichteler, Jacod, ... . The first chapter contains "back-
ground material”. The sophistication that the author assumes of the reader
is strange. For example, the book begins with abstract Wiener space, which
is unnecessary for an introductory treatment ; one does not really need
abstract Wiener space - simply Wiener space would suffice. Also if the
reader actually needs a two page summary of stochastic integration, there
is mnot much hope ; especially if he takes Bell's advice and looks to the
work of Mc Shane "for a more general treatment". Finally, there is one
lemma which is key to every treatment of the Malliavin calculus : a measure

i is absolutely continuous if its firstderivatives (in the sense of distri-

butions) are measures. This lemma (Lemma 1.12. on p. 13) should be proved.
Bell then presents, quite concisely, the Stroock et al approach in
Chapter 2, followed by Bismut’s approach (using Girsanov’s theorem) in
Chapter 3. The two approaches are related (following the work of Zakai) in
Chapter 5. Chapter 6 is the heart of the book. Here the author makes use of
Norris’'simplifications to give a proof that =1 is in LP for all p €N,
where 2 is the famous "Malliavin covariance matrix". Chapter 6 could have
been expanded. Chapter 4 is a treatment of Bell’s own contribution to the

subject. The key idea of Bell is to examine what happens in a finite dimen-
sional setting (i.e., Rd) and then take 1limits to derive some of

Malliavin’s results. This has the advantage over the function-space
approach of being easy and perhaps more intuitive, albeit less elegant.

Chapter 7 is, perhaps, the most provocative part of Bell’s book. The
author is no longer concerned with the smoothness of transition densities,
but rather with novel applications of the tools of the Malliavin calculus.
While the applications wusing the Malliavin derivative (already discussed)
are not mentioned by Bell, he does nevertheless present diverse applica-
tions in Chapter 7, including such disparate subjects as filtering theory
and infinite particle systems. Here he could be a bit more authoritative
For example, in the filtering theory section he should mention further
work, at least at the bibliographic level (e.g., [1], [2] and [3]).
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