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Summary
Tables of Minimum Cost, Linear Trend-Free Run Sequences

of Two- and Three-Level Fractional Factorial Designs

Run orders of two- and three-level fractional factorial designs, tabled in National Bureau
of Standards Applied Mathematics Series publications 48 and 54, which minimize (or nearly
minimize) a cost function equal to the number of times the factors change levels during the
time sequence in which the runs are performed and which simultaneously have all factor main
effects components orthogonal to a polynomial time trend (usually linear) may be found by
applying the Generalized Foldover Scheme of Coster and Cheng (1988) to the run sequences

tabled in this report.



1. Imtroduction. Suppose an experiment is to be performed according to a given frac-
tional factorial plan. In some cases, the time order in which the runs or treatment combina-
tions are performed need not be randomized. Instead, certain systematic run orders may be
preferred. For example, if the runs are made in some time or space sequence, each observation
may be affected by a trend which is a function of time or position. In the presence of a time
trend, a non-randomized run order may improve the efficiency with which factor effects are
eétimatcd. A design objective of full efficiency is attained when the factor effects are orthogo-

nal to the time trend effects.

The cost of conducting an experiment is often of practical importance. A second design
criterion of interest is a cost function based on the number of times each factor changes levels.
The practical interpretation is that it costs a certain amount to change the levels of each factor,
for example, to reset a measurement instrument, change the fertilizer on a field trial, restart an
industrial plant and so on. If all level changes are equally expensive, run orders that minimize

the total number of factor level changes are optimal with respect to this second criterion.

Cox (1951) began the study of systematic designs, for replicated variety trials, with the
single criterion of efficient estimation of treatment effects in the presence of a smooth polyno-
mial trend. Certain 2" factorial designs robust to both linear and quadratic trends were found
by Daniel and Wilcoxon (1966). The cost criterion was introduced by Draper and Stoneman
(1968) in their exhaustive searches of some eight-run factorial plans. Dickinson (1974)
extended the work of Draper and Stoneman to 2* and 2° complete factorial plans with the
search restricted to minimum cost run orders. In an unpublished report, P.W.M. John extended
the method of Daniel and Wilcoxon to certain designs for factors at two and three levels and
discussed the foldover properties of such systematic run orders. Cheng (1985) gave a theoreti-
cal description of the cost structure in two-level factorial designs and provided some examples

of run orders optimal with respect to both our design criteria. The method of Daniel and
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Wilcoxon was further extended by Cheng and Jacroux (1987) for constructing trend free run

orders of two-level fractional factorial designs.

Coster and Cheng (1988) developed a Generalized Foldover Scheme (GFS) for generating
k-trend free, minimum cost run orders of fractional factorial designs with all n factors at the
same prime power number of levels. The tables of Section 3 list optimal (or nearly optimal)
minimum cost run sequences, which produce generator sequences for the GFS of Coster and
Cheng, for the two- and three-level factorial plans tabled in the National Bureau of Standards
Applied Mathematics Series publications 48 and 54, (1957, 1959). It is found that a majority
of thesé designs can be optimally ordered with respect to both design criteria. Before giving
the tables of run sequences, in Section 2 we briefly summarize the Generalized Foldover

Scheme and cost-structured decomposition of factorial run orders detailed in Coster and Cheng.

2. Generalized Foldover Scheme and Run-Order Cost. Attention is restricted to
designs in which all factors are at the same number of levels. Consider n factors, each at s
levels where s is a prime power. Let the s levels of each factor be the s elements of the
Galois field of order s, GF(s). We denote the s factor levels by 0, 1, ..., s—1, with O the
additive identity and 1 the multiplicative identity in GF(s).

A complete factorial design in all n factors requires s” runs. Let G = (s”*?) denote a
s7P fraction of the complete factorial, blocked in s” blocks each of size s”?~. Let

N = 5" be the number of runs in the design G. Let R = s™ P~ be the size of each block.

Design G is a group with elements {g;, ..., gy}. Without loss of generality, G is gen-
erated by some set of (n—p) linearly independent generators, say {g;,..., 8. }, the first
h =n—p-r of which generate the principal block. We call {g;, ..., g, } the within block gen-
erators. The between block generators are {gy,q, ..., 8,—,}. Then, any treatment combina-

tion in G is of the form
J— bl b2 .« .. bn-—p s .
g=¢7'¢g) 87 5 bj eGF(s), j=1,...,n—p. 2.1

In 2.1), if by = --+ =b,_, =0, the corresponding treatment combination lies in the



principal block; if by = -+ =b,_, =0, we write g =1 to denote the treatment combination
corresponding to all factors at level 0. Note that we assume that any design G is a main

effects plan, that is, no main effect is aliased with another main effect nor confounded with any

block effect.

We now give the definition of the Generalized Foldover Scheme (GFS) of Coster and
Cheng (1988) for generating a run order of a fractional factorial plan with n factors at 5 levels.
Following this definition is a restatement of Theorem 3 of Coster and Cheng giving a sufficient

condition for the resulting run order to be k-trend free.

DEFINITION 1. (GFS for G). Suppose that { gy, ..., 8,_, } are n—p independent genera-
tors of G. Let Uy=1. Then the run order of G produced by the GFS with respect to this gen-

erator sequence is given by U,,_, where

Ui=U;; =(U;1,Ujg;,..., Uig§™), j=1,..., np. 2.2)

Thus, the s/ runs of U ; are formed in proper order by first repeating the runs of U;_, a total of
s times and then multiplying the runs in the ith repetition by g}, for i =0,..., s—1. Recall
that all arithmetic on the levels of each factor in the generated runs is performed according to

the group operations of addition and multiplication in GF(s).

The resulting run order of G is said to be k-trend free, for k=1, if all n(s—1) main
effects components are orthogonal to the same smooth polynomial trend of degree k over the
run positions in every block. A sufficient condition for this trend free property to be achieved,

when the run order is generated by the GFS as shown in Definition 1, is:

THEOREM 1. For G generated according to (2.2), the run order is k-trend free if each fac-
tor appears at least (k +1) times at a non-zero level in the generator sequence or, if a factor
does not appear at least (k +1) times, that factor is at a non-zero level at least once in some

between block generator.

Note that the second condition for trend orthogonality simply exploits the assumption that

the same polynomial trend is present in every block.



The remainder of this section discusses the cost of a run order when the GES is used to
generate the runs of the design. The details, which are in Coster and Cheng (1988), are them-

selves an extension of the two-level results in Cheng (1985).

Recall the assumption that all factor level changes are equally expensive. Begin by

defining a cost or distance function between any two subsets A and B of G by

d(A,B) = min d(,V),

WeA,veB

where d(, v) is the number of factor level changes between runs ® and v. That is, for the n
factors named a,,..., a,, if w=a{ -+ a® and v=a)' ---a)", o;,V; eGF(s); then
d(®, v)=31 (w; #v; ) where I (6),- #V; ) equals 1 if ®; #v; and is 0 otherwise. In particular,
d(1, ) is the number of factors at a non-zero level in run ®. In what follows, assume that the
first block of G is the principal block, denoted by By, a Subgroup of G. Blocks Bz, .oy Bgr
are cosets of B; in G.
LEMMA 1. Let {g,..., 8, } generate G by the generalized foldover scheme of
Definition 1. Let
i-1
d;=d (g, I1gf™), i=L...,np. (2.3)
j=0
Then the cost of the run order so generated is

C = "ip (s-1)s* P~ d; . | (2.4)

i=1

Consider the following group structured decomposition of the principal block, B,. Begin-

ning with H{O) ={1}, we iteratively define a sequence of quotient groups G;=B/H l(i) and

subgroups H{") of B, along with a set of minimum within block costs {c;}, i=0,1,..., t—1,
by
Hf*V= G H ad c¢,y= mn dH,K),
! Htﬁf.-, 1 ey T K



where Sfi) = subgroup of G; generated by {H :d(Hfi),H)=ci+1}. Let m; = ISl(i_l) | =s",
N; =N;_y/m; and Ny = s"?. Note that G, =B, .

Each N; equals s” multiplied by the number of cosets of H{") in B, where for conveni-
ence we count H{" as a coset of itself, each coset being of size mm, - - - m;, while r;; is the
number of independent generators of S l(i), the subgroup of the quoﬁent group G; generated by
those elements of G; distance c;,; from the current subgroup H l(i ) of B;. The elements of
S l(i ) are cosets of H l(i ). The H l(i )*s form a nested sequence of subgroups, of strictly increasing
size, of B;. The sequence of costs {c;, i =1,..., t} is strictly increasing. The iterations ter-
minate when N, =s” for some t at which time Hl(') =B,. Note thatr|+ -+ +r,=n—p-r. At
each stage i =0, ..., r—1, there are arrangements of the s elements of Sl(i ) that have cost
C;+1 between any two adjacent elements in the arrangement. This produces a minimum cost
ordering of the elements of S 1(i). Theorem 2 below shows how the generalized foldover
scheme may be used to find such arrangements. When the principal block has been minimally
ordered, we repeat the above induction, starting with H 1(’ ) =B, and G replacing B, until some
N,,-=1and H{*)=G. The between block minimum costs {c,+1; ..., Cp4y} found from this
second iterative procedure, although strictly increasing, may be less than the within block costs

found when ordering B;.

This cost structured decomposition of G may be combined with the generalized foldover
scheme to produce minimum cost run orders as follows. At each stage i=1,..., ¢+, sup-
pose S{D is generated by {K;1, ..., K;,} € G;_;. By definition of S{~D, there must exist
independent runs z;; €K;;, j=1,..., r; each distance ¢; from run 1. Thus, at each stage, zZ;
has the minimum possible number of factors at a non-zero level. Setting ry=1 and zy; =1,

define a set of n-p independent generators of G by

i-1 1,
--—(HHgg,})(ng,hl)z,,, J=l .., =l 2.5)
q=1jy=1 Jr=l

Thus, g;; is z;; multiplied by the product of all previous generators raised to the power (s-1).



Since the z;; are independent in H {9, the collection
{gij’ j=1,...,r,-, l'=1,..'.,l'+l"} (26)
are n-p independent generators of G. With the help of Lemma 1, the following theorem is true.

THEOREM 2. If a run order of G is constructed by the generalized foldover scheme (2.2)
applied to the sequence of generators (2.6), the resulting run order has minimum cost given by
t+t

Cmin = E (Ni—l —Ni) C; . (27)

i=1

EXAMPLE 1. Consider the design G = 2{"4, a design for 8 factors in 2 blocks of size 8,
defined by I =ABEGH =ACFG =ABCD =ABEF with blocking effect ACE. (Note that this
design is too small to be of much practical use and serves only as an example here.) The prin-
cipal block contains three runs, abed, acfg and bdfg, each with fouf factors at a non-zero level.
Any two of these three runs are independent. Thus ¢;=4, r;=2, m;=4 and N;=4. Choosing
Z;;=abcd and z,,=bdfg, by (2.5) g11=abéd and g;,=acfg. With these generators, the sub-

group H{® and its coset HSV are

H{Y = (1, abed, acfg, bdfg)
H él) = {cdefh, abefh, adegh, bcegh}.

Now G, =B,/H{V consists of H D and its coset HY. Also, S O = G in this example.
Since each run in H Y has five factors at a non-zero level, cy=5,ry=1and Ny=2=s". If we
choose g;; =cdefh, then the final minimum cost ordering of B by the foldover method is H {!’
followed by H él) with the runs in the order shown. The second block of the design has three
runs with three factors at a non-zero level. Any one of these may be used as the required
between block minimum cost run. Thus ¢3=3. If we set z3; =bde, then, by (2.5), g3;=cdgh
and the resulting minimum cost ordering of B, is
B, = { cdgh, abgh, adfh, befh, efg, abcdefg, ace, bde }.

By (2.7), the overall minimum cost is 61 level changes.



Including the between block costs {c,,y, ..., ¢;y} in the cost decomposition described
above implies that the the observations for treatment combinations in each block are made
before the next block’s observations are begun. In reality, observaﬁons for runs in each block
may be made concurrently and there will be no between block costs. If this is the case, a run
order will have minimum cost of level chaﬁges if each block is minimally ordered according to
the withih block costs found above and any r independent between block generators may be
used in the GFS (2.2). With this added freedom, minimum cost run orders that satisify the
orthogonality design criterion above are more readily found. Expression (2.7) becomes

Cmin=sr Zt:(Ni_l—Ni)Ci. (28)

i=1

The results above provide a sufficient condition under which a run order of G is optimal
with respect to both design criteria: trend elimination and minimum cost of level changes.
Assume that the trend is of degree k. Let the cost structure of G be given by

t+’

{(rrseanry), ..., (Crantiy)}  where ¥ ri=n-p.

Let {zi]-, j=1,...,r, i=1,..., t+"} be some choice of n-p independent minimum
distance runs with respect to this cost structure. Let { g;;} be formed from these as in expres-

sion (2.5). All preceding results may be combined to give:

THEOREM 3. If each factor appears at some non-zero level at least (k +1) times in the
sequence of runs {g;;} which generate G by the generalized foldover scheme (2.2), or at least
once in a between block generator, the resulting run order, having minimum cost (2.7), or
(2.8) if the between block costs are zero, and being k-trend free by Theorem 2, is optimal with

respect to both design criteria.

The proofs of all results stated in this section are detailed in Coster and Cheng (1988).



3. NBS AMS 48 and AMS 54 Examples. The National Bureau of Standards Applied
Mathematics Series publication number 48 lists 125 fractional factorial designs with all factors
at two levels. The designs range in size from 16 run plans for 5 factors to 256 run plans for 16
factors. All plans are blocked in two or more blocks. The defining relations are chosen so that
all main effects and some two factor interactions are estimable if higher order interactions are

assumed to be negligible.

In all, 96 of the 125 plans in AMS 48 may be optimally ordered by applying the general-
ized foldover construction technique of Coster and Cheng, (1988). In Table II below, we
present one possible sequence of minimum cost runs {z;} with which an optimal sequence of
generators may be produced for the GFS by expression (2.5). For the 29 plans that do not
have an optimal ordering by the construction method of Theorem 5 of Coster and Cheng
(1988), Table II gives a sequence of runs that produces a nearly optimal run order in the sense
that all main effects are linear trend free while the cost of the run order is slightly more than
minimum. In such cases, column 4 of Table II lists the number of level changes needed; other-
wise, an * indicates a minimum cost order is obtained. The plan description in column 1 of
Table II is similar to the notation used in AMS 48. Thus, plan p.n.r of Table II represents a
design G = (2P) with 2" runs for n factors in 2" blocks of size 2" P~". The specific
defining relation and blocking effects used to find the runs of each design are available in AMS
48. Column 3 of Table II lists the minimum cost of an optimal run order. The format of

Table II is summarized in Table L

TABLE I
Column Table II Column Description
Plan p.n.r
Minimum cost sequence {z;, i=1,..., n—p}

Minimum cost given by expression (2.7)
Optimal run order (*) or cost of non-optimal order

DN AW N =

Number of quadratic trend free factors (* means all)




For small plans, the search for an optimal sequence of runs is readily done by hand. For
larger plans, the search was made by computer. This was achieved as follows: the program
would read the variables n, p and r (number of factors, defining effects and blocking effects
respectively) followed by the defining and blocking effects. The runs of the design would be
generated from this information. The minimum cost structure would be found by following the
iterative decomposition scheme described in Section 2 and all possible candidates for the r;
independent runs with cost ¢;, i =1, ..., t+t’, would be found and saved by the program. All
sequences of n—p independent runs, r; of cost ¢; for each i, would then be formed systemati-
cally from these candidate sets until one was found that met the linear orthogonality condition
of all such minimum cost run sequences had been tried without finding an optimal run
sequence. Note that only the variables n, p and r and p+r independent defining and blocking
effects were required as input. If the assumption of zero between block costs was added, all
non-pﬂnoipal block runs were candidates for between block generators. This made the search
for optimal run sequences more successful at the expense of increased search time over larger
candidate sets. If an optimal generator sequence was found for a particular plan, the search
was continued in an attempt to maximize the number of factors that were also orthogonal to a
quadratic trend. In 63 cases, a minimum cost generator sequence that produces a 2-trend free
run order was found. However, the search time greatly increased when 2-trend free run orders
were sought since all minimum cost linear trend free run sequences had to be checked for qua-
dratic orthogonality.

Note that the letters of the alphabet used to name the factors in AMS 48 do not include
“17, “q” or “r”’ while we use these letters in their usual places. Furthermore, plans 8.10.32
and 8.10.64 in AMS 48 are incorrectly blocked. For ease of presentation, Table II begins on

the next page.



TABLE II

Optimal or Near Optimal Minimum Cost Run Sequences

Plan Run Sequence Cain Cost | Quad
1.5.2 de abce be cd 38 *
1.5.1 de ab ce bd 30 * 4
1.6.3 beef adef cf cd bd 110 * *
1.6.2 de af beef cf ad 70 * *
1.6.1 de bf ce af bd 62 * 5
1.7. 4 defg abcd be cd af ag 222 * *
1.7.3 cdfg bdeg adef dg ce bg 238 * *
1.7.2 de bg af cefg dg ab 134 * *
1.7.1 fg de bg ce af bd 126 * 6
1.8.5 acgh bdefgh ae eg bc ab dg 510 * *
1.8. 4 cdeh befg adeg dg eg be fh 478 * *
1.8.3 efgh cdgh bdfg adfh cg eg ab 494 * *
1.8.2 gh ef cd ab bdfh dg ac 262 * 7
1.8.1 gh ef cd th bd ac bg 254 * 7
1.9.5 | cefi aegh abcd hi fi fg bi be 958 * *
1.9. 4 degh cefi befg adfi eh fg bc gh 990 * *
1.9.3 cd eghi dfgi bfhi afgh di bc eh 750 * *
1.9.2 gi eh df cf ab bfhi dg ac 518 * 8
1.9.1 ab cd ghei af cf hi fg 510 * 6
2.6.3 abcdef ab df bed 63 * *
2.6.2 cdef abef cd bde 55 * *
2.6.1 bdf bee ade cd 44 * 4
2.7.3 abce bedfg dg fg ce 118 * 6
2.7.2 beg acg cdef dg ab 94 * *
2.7.1 eg df ab cg bef 63 * 5
2.8. 4 bedeg adefh cg ab dh eg 270 * *
2.8.3 adg efgh abce dh fth cg 206 * *
2.8.2 bfg adg beh ach eg df 186 * *
2.8. 1 fh eg bgh acf adg ce 140 * 7
2.9.4 bdhi abefi ceghi fh ab dh eg 526 * *

10




TABLE IT cont.

Optimal or Near Optimal Minimum Cost Run Sequences

11

Plan Run Sequence Chin Cost | Quad
2.9.3 adg cfi bdhi efgh bi cg ai : 398 * *
2.9.2 bfg adg beh ach dei cg th 378 * *
2.9.1 ai fh eg bgh cfi adg ce ' 268 * 8
2.10.5 bedej abdfh abegi cd eg ab ef hj 1182 * *
2.10.4 bej eghi bcfg adef cd fg hi ij 862 * *
2.10. 3 fgij eghj cdij bdhi adhj eg cd bfh 1007 * *
2.10.2 dgi dfj deh cgj bfh aei bc cd 762 * *
2.10.1 ij fg cd ab dgj bfh deh ac 524 * 9
3.7.2 abcd efg adg abf : 49 53 6
3.7.1 abcd efg abf ace 45 53 5
3.8.3 ch abcdfgh bdh cdf efg 109 * *
3.8.2 abcd acfg abefh cdf ace 123 125 7
3.8.1 eh abcd efg ach abf 77 85 6
3.9.4 eghi abcdfhi gi bde abf fhi 277 * *
3.9.3 fgh efi abcdgi eh bde abf 209 * *
3.9.2 efi abhi bdfg abcd gi eh 214 * *
3.9.1 gi eh bdh ace fhi adg 141 * 7
3.10. 4 abcd aegij cfhij cj gi eh abf 527 * 9
3.10. 3 bdfi afgj cdgh abefh gi cj eh 502 * *
3.10.2 gi aej cdf abf dhij eh cj 318 * 7
3.10. 1 cj gi aej cdf fhi abf eh 284 * | 8
3.11.5 cthij adfgjk bdefgh cj dk gi eh agk 1279 * *
3.11.4 abcd bghik cfhij defik cj gi eh abf 1103 * *
3.11.3 afgj bdfi hijk abck cefhk gi dk eh 1014 * *
3.11.2 cj bde efi bfgk hijk acfg dk eh 662 * *

3.11.1 cj dk gi ace bde efg abgh bij 542 543 8
4.8.2 | abed efgh adeg abef 60 none 6
4.8. 1 abcd abef cdgh aceh 60 none 5
4.9.3 hi abcdefgi acei cdgi efgh 124 * *
4.9.2 hi abcd efgi acei cdgh 92 * 8




TABLE II cont.

Optimal or Near Optimal Minimum Cost Run Sequénces

Plan Run Sequence Chin Cost | Quad
4.9.1 hi cdef abgi efgi adfh 92 * 7
4.10.3 adeg bcij befh dgj agi chj 245 * 9
4.10. 2 bfj bhi abdefgj chj aej dei 193 221 8
4.10. 1 bfj bhi abdefgj cfj adfh agi _ 195 | 223 7
4.11. 4 befhjk acdgjk defgik aej ack bdk ehk 717 * *
4.11.3 bedej afghj cdfhk ceghi aej ack bfj 621 * *
4.11. 2 fgk dei ahjk cdgh abef cfi chj 409 * *
4.11. 1 fgk chj dgj ack bhi dei bfj 381 * 10
4.12.5 bdghij acefij ceghjkl aej dgj dei bfj efl 1469 * *
4.12. 4 befgl adehl befhjk defgik efl ghl abl chj 1293 * *
4.12.3 ijkl cdfhk abegk bcfgl bedej aej bhi fgk 1133 * *
4,12.2 fgk dei cdgh abef bckl ahjk bhi cdl 825 * *
4.12. 1 efl abl fgk chj ack dgj bhi cdl 765 * 11
5.10.3 ghij abcdefij efij abgh bcehj 157 * *
5.10.2 ghij cdef abij efgh bdfhj 125 * 9

5.10. 1 ghij cdef abij efgh bdfhj 125 * 8
5.11.3 bgjk bhik abcdefgh cfk dek efij | 278 * *
5.11.2 cdef ahjk bgjk abij cfk efgh 250 * 10
5.11. 1 cdef ahjk efij abcd ghij cfk 251 * 10
5.12. 4 abcd acefkl abefghij bfl ael ahjk cdij 624 * *
5.12.3 bfl dek abcd aeghijl cfk ahjk cdij ' 432 * *
5.12.2 ael bfl cfk ghij dek bgjk abgh 388 392 8
5.12. 1 ael bfl cfk ghij dek abgh agik 388" 392 7
6.11.2 efgk abcdk hijk adgi cdej 128 132 7
6.11. 1 efgk abcdk hijk cdej acth 126 132 6
6.12.3 efgh abcdegikl efij adkl abcd cdefl 293 333 10
6.12.2 abcd efgh abcdegikl efij adkl abefl 257 293 10
6.12. 1 abcd efgh abcdegikl efij abefl adkl 258 284
6.13.4 ehjkl efgikm abcdgjkm 692 * *

flm cdem bckl hikm

12




TABLE II cont,

Optimal or Near Optimal Minimum Cost Run Sequences

Plan Run Sequence Chin Cost -| Quad
6.13.3 fim ghij egikl abcdefij cdem bckl efgh 492 * *
6.13.2 flm gjkm abcd efij ghij cdem adkl 444 * 12
6.13. 1 fim abcd efij gjkm cdem ghij adkl 444 * 12

16.14.5 cdhjklm acefgjm bfgijkin 1700 * *

flm bin ghij abem abcd

6.14. 4 abfhjk aghiln defikn cdhjklm 1504 * *
flm bin adkl cegn

6.14.3 hikm bcegi cdijl agklmn abfhjk 1158 * *
fim bin cdem .

6. 14. 2 flm hikm abcd dehln afgkn bghjn bin cdem 918 * *

6.14. 1 bin flm gjkm cegn ajln hikm abcd efgh 828 * *

7.12.2 defghi acdghj abcjkl hijk cegil - 181 * 10

7.12. 1 abcjkl defghi hijk acefij befgk 153 177 8

7.13.3 efgh abcdegiklm efij adkl abcd abehik 302 350 *

7.13.2 abcd egiklm efij efgh adkl cdijlm 262 286 12

7.13.1 abcd efgh abegjk abeflm efij adkl 264 286 9

7.14. 4 efij ghijmn abcdehjklm mn bckl abed bdfgil 654 * *

7.14.3 mn efgh abcdehjkln efij adkl abcd abegjk 430 478 | 13

7.14.2 mn abcd egiklm efij efgh adkl abeflm 390 414 10

7.14. 1 mn abcd efgh abegjk abeflm efij adkl 392 404 10

7.15.5 abfgijmo acdjlmno bdeghjkmn 1948 * *
abjo dehm cklo cfjn hijk

7.15. 4 acdghj ghlmno abcekmn abfgijmo | 1564 * *
abjo dehm cklo aein

7.15.3 hijk ceflm abfkln acdgik ghlmno 1196 * *
abjo cfjn dehm

7.15.2 cfjn hijk egiko ejlmn acdeo abcjkl 1084 * *
dehm fgim

7.15.1 abjo cfjn cklo fgim acdeo abegh hijk aein 1026 1044 12

8.13.2 cdfghm bdejkm adilm abghk bcgjlm 168 180 10

13




TABLE II cont,

Optimal or Near Optimal Minimum Cost Run Sequences
Plan Run Sequence Crin Cost | Quad
8.13. 1 abcdehl cdhijk bdefgi beehim abghk 169 201 7
8.14.3 mn beefghjk adilm abghk bdfhjl befikl 246 270 12
8.14.2 mn cdfghm bdejkm adilm abghk bcgjlm 232 244 11
8.14. 1 mn abcdehl cdhijk bdefgi beehim abghk 233 265 8
8.15. 4 dhklo iklmn abcdefghjn 707 * *
adkn bcfmn defmo cijlo _
8.15.3 dhklo bgimo iklmn acefj adkn cegho bcfmn 631 * 14
8.15.2 bgimo dhklo bcfmn iklmn acefj adkn cegho 633 * *
8.15.1 dhklo bgimo acefj iklmn cegho bcfmn adkn 634 * 14
8.16.5 abklmnp adghinp acdefhjklo 1795 * *
abip adkn defmo bgimo cegho
8.16.4 abdglo ahikmo dgkmnop bcefghjk 1567 * *
abip adkn defmo ejklp
8.16.3 abip iklmn bdghn ahlno cdefjkn 1159 * 15
adkn cijlo fhjmp :
8. 16.2 abip adkn agmop bdlmp acefj ghikp 1083 * 15
bcfmn cijlo
8.16.1 abip adkn bgimo acefj bdlmp fgjln cegho 1083 * *
- ejkip

As stated earlier, 63 of the 125 plans listed in Table II have

at least one 2-trend free

minimum cost run sequence. Another search was made for 1- and 2-trend free generator

sequences under the relaxed assumption of zero between block costs. Table III lists minimum

cost run sequences for 33 plans for which some improvement was obtained. For 12 designs for

which an optimal generator sequence did not exist under the conditions of Table II, namely

plans: 3.8.2, 3.11.1, 6.12.3, 6.12.2, 6.12.1, 7.13.3, 7.13.2, 7.13.1, 7.14.3, 7.14.2, 7.14.1 and

7.15.1, optimal run sequences are given in Table IIl. For each of the remaining 21 plans, the

number of 2-trend free factors was increased, in most cases to a 2-trend free order. The

minimum costs listed in Table III are given by (2.8).
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TABLE III

Improved Run Sequences with Zero Between Block Costs

Plan Run Sequence Chin Cost | Quad
1.6. 1 de ce bf af bcde 60 * *
1.7.1 fg de ce bg ag bedefg 124 * *
1.8.2 gh ef cd ab bdfh dh acefgh 256 * *
1.8.1 gh fh eg cd bd ac bcdefh 252 * *
1.9.2 gi eh df cf ab bfhi fi acdefghi 512 * *
1.9.1 hi gi eh df cf bf af bc@gi 508 * *
2.6.1 bdf bce ade bef 42 * *
2.7.3 abce bedfg dg abcefg cdef 104 * *
2.8.1 fh eg bgh acf adg bcefg 138 * *
2.9.1 ai fh eg bgh dgi bcd abefgh 266 * *
2.10. 1 ij fg cd ab dgj deh bgh abcdefij 522 * *
3.8.2 bdfg acfg adegh bdh abcdefg 116 * *
3.10. 4 abcd aegij cfhij eghi beghj bcegh acdefj 496 * *
3.10.2 gi aej cdf abf dhij eh bcefgi 312 * *
3.10. 1 cj gi aej dfj thi bde acdfghij 282 * *
3.11. 1 dk cj gi bek efi aej bfhj abcdegjk 540 * *
4.10. 3 bcth adeg bcij dgj abedfhij abdeghi 224 * #*
4.11.1 fgk ack chj dgj bhi dei abcfjk 378 * *
4.12. 1 efl abl fgk ack chj dgj bhi bcdefhjkl 762 *

3.11. 1 cdef ahjk bgijk efij abcd cfghijk 248 * *
6.12. 3 ghij efij abcdehjkl acijk abghl fhikl 264 * *
6.12.2 abcd ghij efij ehjkl acghk cdefghijl 244 * 11
6.12.1 abed ghij efij ehjkl cdghl acefghijk 254 * 11
7.12.2 defghi acdghj befikl adehijl acdgik 168 * *
-7.13.3 ghij efij abcdehjklm bdehil cdehik fgjklm 272 * *
7.13.2 abed ghij efij ehjklm acehil cdfgik | 248 * 12
7.13. 1 abcd ghij efij cdijlm abehik adfgjm 260 * 12
7.14.3 mn ghij efij abcdehjkln acijkn abghln fhiklm 400 * *
7.14.2 mn abcd ghij efij ehjkln acghkn cdefghijlm 376 * 13
7.14. 1 mn abcd ghij efij cdghln abehik acthjlmn 388 * *
7.15. 1 cklo abjo cfjn fgim hijk efkmo bdefn acghijkin ' 1022 *
8.15.3 dhklo bgimo iklmn acefja 600 * *
bdejkm abdfjno cdfghikin :
8.16.3 abip iklmn bdghn ahlno cdefjkn 1128 * *
ejklp adfhjkmnp bgimo
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A source of fractional factorial designs for factors at three levels is National Bureau of
Standards Applied Mathematics Series publication number 54. For the forty one designs
presented in AMS 54, Table IV lists one possible minimum cost run sequence with which the
generalized foldover scheme (2.2) produces an optimal run order. As before, unless otherwise
stated, a run order is optimal if it is linear trend free (1-trend free) and has minimum cost of
level changes. All 41 designs may be optimally ordered: in general, as the number of levels s

increases, optimal generator sequences are more readily found.

As before, for design G = (3/'P) having independent minimum cost run sequence
{zy, ..., 2,,}, the sequence of generators to be used in the GFS is found from (2.5). This

expression simplifies to:
g =277 . 3.1)

So the generator sequence to be used in (2.2) is easily constructed from the minimum cost run

sequence listed in Table IV by applying expression (3.1).

A factor is linear trend free if it appears at a non-zero level in two or more generators
{g;}. In terms of the run sequences listed in Table IV, the linear orthogonality condition
becomes: each factor must change levels at least once after its first appearance in some run z;.
Because of the size of the search required for the larger designs, it is not guaranteed that the

run sequences shown maximize the number of quadratic trend free factors.

TABLE IV
Optimal Minimum Cost Run Sequences for AMS 54 Designs

Plan Run Sequence Chin | Cost |Quad
1.4.2 | ab%cd® ab? aZ 88 * *
1.4.1 | ab®> cd® ac? 52 * 3
1.5.3 | ab%cde a’b ae? cd 322 * *
1.5.2 | ace a’b%cd bc? b% 250 * *
1.5.1 | b2 ad? a’%? b% 166 * 3
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TABLE IV cont.

Optimal Minimum Cost Run Sequences for AMS 54 Designs

Plan Run Sequence Cnin | Cost |Quad
1.6.3 | abc’f c’de’? ae cd® b%c? - 916 | * *
1.6.2 | ac b2df cd%f %2 ad? 574 | * 5
1.6.1 | ae a*f cd?> b%de? be 490 | * 5
1.7.3 | adg bee?g® c?de’2 ef a%? be 2374 | * *
1.7.2 | ae cfg bd*2 adg bg dg? 1690 | * 5
1.7.1 | ae bg cd® a’f ab’c dg? 1462 | * 5
2.6.3 | abc’de’? b ce? ad’f v 378 | * *
2.6.2 | bee’f? ab%d*? b bde? 306 | * 5
2.6.1 | bf2 de’f a’cf ade 186 | * 5
2.7.3 | ab%cd’? b’c’deg? ce? fg? ab? 1132 | * *
2.7.2 | de’f ab%ce? abdg® f2g ce? 790 | * *
2.7.1 | £ bed ack® dZ%ef ab? | 562 | * 6
2.8.3 | adg’h? a’b’c%h® a’bc’df f2g ce? ab? 3076 | * *
2.8.2 | bh d%f? adg’h? a’c%h? fg? ce? 1762 | * 7
2.8.1 | bh fg® a’cg de’g c?d*h ab? 1534 | * 6
3.7.3 abcdef'zg czdzg2 t;de2 bc?f? 456 * *
3.7.2 | ab%df? bczezg2 cdg cf2g 312 * 6
3.7.1 | cdg b%d% a’bd* abg? 246 | * 5
3.8.3 | bedefg abc’d’gh a%’ abd® bce 1374 | = *
3.8.2 | abdf?g? cd¥2gh? a2degh aZc*f abd? 1194 | = *
3.8.1 | acdg a%bef b%%d%h? c%def? bee 966 | * 6
3.9.3 | bedefg a’d*%g?hi cZef’ghi® a%e’g bee cg?h® (4290 | *
3.9.2 | bed®g? ac%’g a2degh aef?hd a%?g bee 3624 | * *
3.9.1 | bdfi> cegi ad’h be?h% efgh? aZe’g 2910 | * 8
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TABLE IV cont.

Optimal Minimum Cost Run Sequences for AMS 54 Designs
Plan Run Sequence Cuin | Cost |Quad
4. 8. abc?d%ef?g?h a’b’gh? ef’gh? bc2f2h? 536 | * *
4.8.2 | abg’h c2d%f? e*g’h bci2h? 320 | * 7
4.8.1 | abg’h c2d%f? e*g’h bc*h? - 320 | * 6
4.9.3 | ab%cf?gi bcd%efh?  ab®gh? bedh  cZe?g?i? 1454 | = *
4.9.2 | abc’d®gh ce’fg’h% bZcd*fhi2 ab%?? bd%’g [1436 | * *
4.9.1 | ab’cd’ bfghi bc’eg’h® a’’gh’i efgh? 1208 | *
5.9.3 | abc?e?g’hi | d%efgii? bic%efi ad?e?g’h? 562 | *
5.9.2 | de’f’gi abc’d®’gh b2c%fi ad%e’g’h? 418 | * *
5.9.1 | de*f’gi b%c%efi acg?hi® cd’2gh® 400 | = 8
5.10.3 | ab’cf?gi abde’fghj b%d%%j b%ce’gh a’befj [1534 | * *
5.10.2 | d%fgh? a?bc’de? abfZhi%j bZcfg?® be?h%j (1228 | * *
5.10.1 | d%fgh? a?bc’de? ad’fhj? a%bd?h%? bc*Zej 1210 | * *
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