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Abstract
The objective of this paper is to derive explicit expressions to distributions of the supre-
mum of Brownian motion processes having a change-point. Such processes are character-
ized by a drift parameter which is subjected to a change over time. For that purpose, we
make use of several straightforward results on the supremum of general Brownian bridge
process, via conditioning arguments. Several different cases are considered and the result-

ing distributions are illustrated through their p.d.f.’s.
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1. Preliminaries.

Brownian motion and associated processes serve as a very useful limiting approximation
for many statistical models. Frequently, such approximations appear in models involving
partial sums (of r.v.’s) and in a large sample setup. Although, one can find examples in
which these type of approximations yield some what poor quantitative results, their great
advantage is as a comparison tool of competing procedures. The literature dealing with
such approximations is extensive and covers many varieties of applications. For several
examples of such applications we refer the reader to Sen (1981) and Siegmund (1985).

Approximation techniques, via processes associated with the Brownian motion process,
(Brownian bridge and Bessell processes), can also be applied to many statistical mod-
els involving the change-point problem, as shown (amongst others,) by Hawkins (1986),
Siegmund (1986) and James, James and Siegmund (1987). When the statistical model
under consideration has a change-point, one would expect the approximating Brownian
motion process to have a change-point as well. Moreover, in some applications involving
the change-point problem, (see for example Boukai (1988)) it is required to express the
approximating process in terms of the supremum process of a Brownian motion with a
change-point. This type of process is characterized by a drift parameter which is sub jected
to a change over time. To the best of our knowledge, distributional characterizations of the
supremum of such processes are not available in the literature. Such distribution plays an
important role in providing the asymptotic power functions of several tests for a change-
point, as shown in Boukai (1988) . Therefor The main objective of this paper, is to derive
the distribution of the supremum of Brownian motion process having a change-point.

We begin in Section 2 with a short discussion on the important Brownian bridge process.
We present several auxiliary results on the supremum of a general Brownian bridge process
and provide an expression for the distribution of the supremum of a Brownian motion
process with arbitrary drift. Although various formulations of the results in Section 2 can

be found in the literature (see for example, Siegmund (1985) Sec. 3.3 and Shepp (1979)),
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we repersent them here however, with the intention to provide a self contained article and
to shed some insights to their construction. These results are then used in Section 3 to
derive the main results on the distributions of the supremum of Brownian motion processes

having a change-point, as discussed in several cases.

2. The Brownian Bridge process.

Among the stochastic processes related to the Brownian motion process, the Brownian
bridge process is considered to be one of great importance. This type of Gaussian process
is naturally encountered in situations involving restricted (or rather, conditioned) random
walks and similar processes. As will be shown, it also plays an important role in the
derivations of our main results.

We begin with some notations. Let Wy = {Wy(¢), 0 < ¢t < oo} be a standard
Brownian motion (Wiener process), defined on some probability space (2, F, P). We use
the conventional term “standard Brownian motion” to refer to a Brownian motion process
with mean zero and variance one per time-unit. For z € R, a € R, let WZ = {WZ(¢),
0 <t < oo} denote the Brownian motion process obté,ined by adding = + at to Wy(t),

t > 0, that is:
(1.1) Wa(t) =z +at+ Wy(t), t>0.

We will often abbreviate the process W2 by W,. The process W, is usually referred to
as Brownian motion with drift of size «.

Consider now a Brownian motion which begins at some arbitrary fixed point =, z € R.
Such Brownian motion is being realized by Wg. We wish to “deform” it so that it
passes through a fixed point y, y € R, at a fixed time-point ¢y, ({ > 0). This type of
constrained Brownian motion process is often called a Brownian Bridge or a tied Brownian

motion process.



Let us denote by Bﬁj’-”) = {Bﬁf’”)(t), 0<t<t}, z,y €R, the Brownian bridge
process as constructed above. We are interested in obtaining the distribution of the supre-

mum over [0,%] of Bg:’y) for any z,y € R, and a fixed ¢y, o > 0. In the literature,

-'l-',y)_

one can find many discussions on various versions of the Brownian bridge process B§o

In particular, there are many results dealing with the standard version B:EO’O), as well as
results on its supremum. Such results can be found for exapmle, in Robbins and Siegmund
(1970), who have used for their derivations martingale properties of certain functional of
the process Wy . Here however, we have chosen to take the direct approach, based on a well
known result by Doob (1949), to present the distribution of the supremum of the general
Brownian bridge process Bg:’y) .

As given in Hida (1980, pp. 109) the Brownian Bridge Bg:’y) has a general representation

in terms of the standard Brownian motion process Wy as:

(1.2) B0 = o)+ 0o - Lwi) v, wyer

It is clear that Bg:’y) is Gaussian process satisfying the required restrictions BE:”y)(O) =
z, Bg:’y)-(to) = y. Furthermore, it is intuitively understood that a Brownian bridge process
is a conditional Brownian motion process. We state that formally in the following trivial

lemma.

LEMMA 1. For arbitrary x,a € R, let W2 be the Brownian motion (1.1), and for ty > 0,
y €R, let Bﬁj'-”) be the Brownian bridge defined in (1.2), then

{WZ(s) 0<s<to|WZ(to) =y} 2 BEY,

The following lemma will be of great use in the construction of the distribution of

sup Bt(:’y)(t) for any z,y € R, and ¢, > 0.
0<t<tg

LEMMA 2. (Doob (1949)) Let Wy be a standard Brownian motion and let a > 0,b>0,
then |

P(sup(Wy(t) — at — b) > 0) = ¢2%
€0
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With the use of Lemma 2 we are now able to present the distribution of the supremum

of the Brownian bridge process.

THEOREM 1. Let Bg:’y) be the Brownian bridge (1.2) with to > 0, and z,y € R. Then

for z > 0 we have:

e~2(z—2)(z=y)/te 5 max(z,y)

P( sup B® ’y)(t) > z) =
0<t< . )
1 otherwise.

Proof. Suppose that z > max(z,y), from Lemma 1 and (1.1) we have:

P( sup Bff’y)(t) >2z)=P( sup Wg(t)> 2] Wi(to) =v)
0<t< 0<t<to

writing ¢ = to/(1 + s), s € [0,00), and using the properties of the standard Brownian

motion, the latter probability becomes

P(sup{Wo(1+ )+ 10108 +z}>2|Wo(to)=y—z—aty) =

= P(sup{ 1—+—(t(1)/2W0(1 + S) + Olto — (Z — :1:)(1 + S))} > 0 | Wo(l) = (3/—_1/201—2&0))
$2>0 $ tO

= Pl (852 Wa(s) + 832 Wa(1) + ato — (s — 2)(1 +5))} > 0| Wo(1) = L= 1/2 ),

where, Wy(s) = {Wo(1 + s) — Wy(1)} is a standard Brownian motion, independent of

Wo(1). Hence, this conditional probability becomes

P(supl (/" Wa(s) - (= = 2)s = (z = 4)} > 0) =

— T z —
= P(sup{ Wo(s) — (= 72 ), { 5 /Zy) } > 0) = e~ 22—y /to
0

where the last equality was obtained by using Lemma 2. For the case of z < max(z,y),

the result follows by definition. |

Remark 1. (i) As was mentioned before, Robbins and Siegmund (1970) have obtained

the above result by a different approach.



(ii) It should be clear from Lemma 1 (as well as from Theorem 1) that the distribution
of Bﬁj’-’” (as well as of i s%)t Bi:’y)(t)) does not depend upon the drift parameter o of
the original Brownian mo:io—noprocess.

One of the immediate applications of Theorem 1 is in obtaining the distribution of the

supremum of a Brownian motion process with an arbitrary drift. We present this important

result in the following theorem.

THEOREM 2. Let o € R and let Wy = {Wy(t), 0 <t < co} be the Brownian motion

process (1.1). For every t > 0 define: M,(t) = SUPg<s<t Wals), then for >0

T — ot T+ ot
Vi Vi

where ® denotes the standard normal c.d.f. whose density function is given by:

(1.3) P(Mu(t) >z) =1 —

2aa:(1 _ CD(

) t>0

1
$(2) = \/2—7,6—z2/2 VzeR.

Proof. Fix t >0 and z > 0, by conditioning we have
(1.4) P(My(t) > z) = E{ P( sup Wa(s) >z | Wa(t))}
0<s<t

According to Lemma 1 and Theorem 1, the conditional probability at the r.h.s. of (1.4)
can be written as:

P( sup Wa(s) > o | Wa(t) = y) = P( sup B"¥(s) > z)
0<s<t 0<s<t

(1'5) e—22($—y)/t > y

1 <y
for any given y € R. Since Wy(t) ~ N(at,t), we obtain from (1.4) and (1.5) that:

—at —at, dy

R AR

where by an appropriate change of variable, yields (1.3) as required. |

P(Ma(t) > 2) = / 8(2 e~2ele—n) /1y ¥ = O

The results presented in the following two corollaries are well-known, yet we show that

they can be obtained directly from Theorem 2.
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COROLLARY 1. Forany a € R and z > 0;

e2** a <0
tll)nolo P(My(t) > z) =
1 a>0

COROLLARY 2. Let { My(t), 0 < t < oo} be the supremum process of the standard

Brownian motion Wy, then for £ > 0;
P(Mo(t) > z) = 2(1 — @(-%)) Vt>0.
Proof. Substitute & =0 in (1.3).‘ . [

Remark 2. (i) Robbins and Siegmund (1970), obtained, by a different approach, an
expression similar to (1.3).

(i1) Traditionally, the proof of Corollary 2 uses the reflection principle for Brownian
motion.

(iii) One can obtain the result of Corollary 1 directly from Lemma 2, since for z > 0;

e?* @ <0
P(sup Wyo(t) > z) = P(sup{ Wo(t) +at} > z) =
>0 >0 1 >0

Furthermore, if the original process has a constant shift of size 2z, z € R, then again;

Lemma 2 implies:
P(sup WZ(t) > z) = P(sup{ Wo(¥) + at + 2z } > 1)
>0 >0

e22(z=2) 4 <0, > 2

1 otherwise.



3. Brownian motion with a change-point.

In the present section we consider a Brownian motion process, which has a change-point
at some fixed time. We derive the distribution of the supremum of such a process in several
cases as described below.

Let T' denote the time interval [0,1] or [0,00) and let Wy = {Wy(¢), t € T} be a
standard Brownian motion process (over T'). Given a ﬁxed instant of time 7, 0 < 7 € T,
and constants ag,a1 € R, (a0 # 1), consider the process X, = {X.(¢), t € T}
satisfying:

aot + Wo(t), 0<t<r
(3.1) XA (t) =
apT+ a1t —71)+ Wo(t), 7<teT.

The process X, as given in (3.1) is called a Brownian motion process with a change-
point (at time 7). Indeed, up to the time instant 7, the process X, is a Brownian motion
process with a drift of size ag, while, for all times passed the time instant T, this process
has a drift of size o;. The time instant 7 in which the change in the drift occurred, is
therefore called the change-point of the process X,. Let M, denote the supremum of the

process X, over T, that is
(32) M, = sup X,(t).
teT

We wish to find the distribution of M. r for any given fixed 7. This distribution will indeed
depend upon the change-point 7 and the drifts ag,a; as well as on the time interval 7.
Accordingly, while constructing the distribution of (3.2), we will differentiate between the
two cases: (i) T = [0,1], (ii) T = [0,00). These two cases, while being essentially similar,
require somewhat different derivations of the distribution of M, .

For convenience sake, we consider at first a simplified version of the process (3.1) cor-
responding to the case of ag = 0. This will enable us to furnish in Theorems 3 and 4

below the results on the distribution of (3.2) in a more presentable fashion. The results
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corresponding to the process (3.1) in its general form are given at the end of this section.
Hence, until stated otherwise, we take in (3.1) ap = 0 and put a3 = 6. Accordingly, we

will consider the process X, given by:
(3.3) X,t)=6(t—-7)T+Wo(t), teT

where (z)t = max(0, z), together with its respective supremum M, = sup{X.(t), t € T'}.
In the following two theorems we present the distribution function of the r.v. M, for the

two cases; (i) and (ii) respectively.

THEOREM 3. (case (i)). Suppose that T = [0,1] and consider the process X, as given in
(3.3), with a change-point at time 7, 0 < 7 < 1. Then the distribution function of M, is

given by:
Q(z;6,7) — Q(—~=z;6,7) 2>0
P(M: <z)=
0 z2<0

where for any z € R, § € R and 0 < 7 < 1 we define

. P z/\T '
Q=8 =8Z0) - [ sy +bi)dy
(3.4) VT ) e
) , (267+2) /T
_ 826 1'+26z/ ¢(y)¢(ay +b2)dy

with the quantities a, b; and by are given by

24 6(1+7)

T W2op = _(EM), , = _(_\/1T—7')'

1+ Vit

a=(

THEOREM 4. (case (ii)). Suppose that T = [0,00) and consider the process X, as given
in (3.3) with a change-point at time 7, 7 > 0. Then the distribution function of M, is

given by:
Q(z6,7) — Q(~z;6,7), §<0, 2>0
PM:<2z2)=
0, 6>00rz<0



where for all p > 0, p <0 and y € R, we define:

Y 2 2up +
(3.5) Qy; s p) = B(-) — 2 o2y (LY

a VP

Proof of Theorem 3. Let z > 0, since T = [0,1] and 7 € T is fixed, we have by
conditioning that;

(3.6) P(M, <z)=E{ P( wp X (1) <z, 2up X (r+h) < 2| X, (7), X- (1))}

where p = 1 — 7. Using (3.3), together with the properties of the standard Brownian
motion and Lemma 1, one can easily show that for given z,y € R

D
(@ oiltl<pr’(t)IXT(r)=x,XT(1)=y = SupTWO(t)IWo(T)=z sup B(0 =)(¢).

[ISh

z (x)y)
) 52, K Pl mexmy = S8 Wi Pl oy = 22 B0 OV).

Furthermore, the independent increment. property of the Brownian motion process implys
that:
(c) given X-(7) = z, X-(1) = y, the two restrictions of the process X, to the time-
intervals [0,7] and (7,1] are conditionally, independent. |

By using statements (a) - (c) above and Theorem 1 we obtain that for z > max(z,y)

P(OEI:ETX (1) < z, sup (X (T+h)<z| X (1)=12, X;(1)=y)

(3.7)
=(1- e—2z(z—2)/r)(1 _ 6—2(z—z)(z—y)/p)_

Moreover since X, (7) ~ N(0,7) and X,.(l)le(r)m: 2 Wg(p) ~ N(z +6p, p), we have by
(3.6) and (3.7) that for 2 <0 P(M, < z) =0 while for z >0
(3.8)

7) = —2z(z—z>/r e—2(z=2)(z=9) y—dp—=z dy dez
P(M; < z) / / (1- )1 — )¢(\/_)¢( NN

=J1—-Jy— J3+ Ja.



Using ordinary change-of-variables techniques the integrals Ji,...,J; can be presented in
an explicit form. Let a = (7/p)'/?, (p =1 — 1) then we have:
z/T 2

= i - X ar 6P'— i
h=Z2)- [ pe)aar+ N

ar =% =T L bpt2)

=2~ [ s@ates + L i

_ agtriass [CUTHINVT (61 +7)+2)
Jy =27t /;oo #(z)®(az — 7 )dz

and

(267—2)/v/7 AN
Jy = 62621-—262/ 2 ¢(:v)<I’(a:c _ (6(1 +\/;) ))d.'IJ

Finally, by collecting the terms of Jy,...,Js into the form of the function Q(.) in (3.4)

the proof is completed. ' |

"The proof of Theorem 4 is similar to that of Theorem 3. Since in case (ii), T = [0, o), we
would replace the r.h.s. of (3.6) with E{ P( sup X,(t) < z, supX (7 +h) <z | X, (1))}
o<tlr h>0

and use Theorem 1 and Remark 2 (iii), to establish that for § < 0 and 2 > 0

P(MT S z) _ /;z‘ (1 _ e_2z(z—'_t:)/‘r)(1 _ e26(z—:r:))¢(%)7:cF

=Q(z6,7) — Q(—267)
where the function Q(-) is defined in (3.5).
Remark 3. It should be noted that the integrals appearing in definition (3.4) of the Q(-)
function could be written in terms of a bivariate normél c.d.f.
The premise of Theorem 3 can be extended easily to a more general case where the time
interval T' is any closed interval of the form T = [0, 7*], for some 7* > 0, with 7* > 7. To
obtain the exact distribution of M, = sup X,(t), one has only to replace the quantities

0<tlr*
a, by and b, which appear in Definition (3.4) of the Q(-) function, with those of

b __( — (™
= T
10

z+6(t* 4+ 1)

T) *
)y b= -




and to apply to Theorem 3 appropriately. It should also be noted that case (ii) can be
viewed as a limiting case for case (i) of Theorem 3, with T' = [0, 7*]. Indeed, by passing to
the limit as 7* — oo, the results of Theorem 3 imply those of Theorem 4, as can be seen
directly from the definitions (3.5) and (3.4) of the functions Q(-) and Q(-) (respectively).
Furthermore, by assuming that no change in the drift of the Brownian motion X, has
occurred, we would expect that the distribution of its supremrlm should be independent
of the value of 7, - now being just an arbitrary “break” point for the process X,. This
is equivalent to assuming that 6 =0, méaning that the Brownian motion X, retains the
same drift before and after the time instant 7. Indeed by using certain properties of the

Q(.) function, we obtain that for § =0 Theorem 3 yields

P(M: < z) z>0

= 2@(_\/_2_*) - la

for any 7 € (0,7*). This of course coincides with Corollary 2.
Let T € (0,1), and consider now the supremum M, of the process X, = {X,(t), 0 <

t <1}, as defined in (3.1). That is, for ag,a; € R
(3.9) X () =Wo®) +ao(tAT)+an(t—7)F, 0<t<1,

where (z Ay) = min(z,y). We use the proof of Theorem 3 to present the following general

result.

THEOREM 5. For ag,a; € R, let X, be defined in (3.9), then the distribution function

of the random variable M, is given by:

Q(z — @T,q1,T) — eza“Q(—z —aoT,01,T) 220
(3.10) P(M, < z)=
0 z < 0.
Proof. The proof is essentially the one given for Theorem 3, which together with Remark

1 (ii) provide us with a similar expression to (3.7). There is, however, one distinction. Since
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now, the random variable X,(7) is normal with mean a7 and variance 7, one has to

substitute ¢(£'\'/—“1__°-1) for ¢(%) in (3.9). Accordingly we have (for z > 0);

P(M, < z)= / ’ / ’ (1 — e 2G=2)2/7y(] _ o= 2e=o)==0)/p) g T — 20T
- —c0 J—c0 | VT
y—c—awp, dy do
IV
The result is then obtained by straightforward integrations and the use of the definition
(3.4) for the function Q(-).

- ¢(

Remark 4. (i) The results of Theorem 3 can be obtained from Theorem 5 by substituting
ap =0 in (3.10).
(ii) Further examination of (3.10) reveals that if ap = a; = « (say) (that is the process

5(, has no change-point and therefore 5(,- = W,), then
P(M; <2)=8(z—a)—e**(1-&(z+a)), z>0.

which coincides with the result stated in Theorem 2.

We close this paper with a couple of illustrations. In Figures 1-2 below, we present
the plotted graphs of the (approximated) probability density function of the r.v. M, for
7= 0.2, 0.5 and 0.8, and for different choices of @y and ;. Ordinary numerical integration
techniques were used in conjunction with Theorem 5 to evaluate the grid points required

for these graphs.
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Figure 1 Figure 2

the p.df.of M, forag =1, a3 = —1 the p.d.f. of M, for ag = -1, 0 =1.
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