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ESTIMATING COVARIANCE MATRICES I

BY WEI-LIEM LOH

Puyrdue University

Let S; and S; be two independent p X p Wishart matrices with
81 ~ Wp(21,n1) and Sz ~ Wp(Xz, ng). We wish to estimate (I,
32) under the loss function L(f)l,flz;El,Zz) = Z,-{tr()]i_lﬁg)
—log | 7 1$3; | —p}. Our approach is to first utilize the princi-
ple of invariance to narrow the class of estimators under consid-
eration to the equivariant ones. The unbiased estimates of risk
of these estimators are then computed and promising estimators
are derived from them. A Monte Carlo study is also conducted
to evaluate the risk performances of these estimators.

1 Introduction

A great deal of effort has been expended on constructing minimax estimators
for a covariance matrix, ¥, of a multivariate normal distribution with the
aim of getting substantial savings in risk when the eigenvalues of 3 are close
together. The literature includes Stein (1975), (1977a), (1977b), Haff (1980),
(1982), (1988) and Dey and Srinivasan (1985), (1986). In this paper, its two
sample analogue is examined. Namely, we consider the minimax estimation
of two covariance matrices, (X, X2), of two multivariate normal populations
with the aim of getting substantial savings in risk when the eigenvalues of
2221_1 are close together. For example, this would be useful in estimating
(21,%2) when one has prior information that the eigenvalues of 3;, 1 = 1,
2, are likely to be far apart and the X;’s are approximately proportional.

We shall use the following notation throughout. If a matrix A has entries
ai;j, we shall indicate it by (a;;). Given a r X s matrix A, its s X r transpose
is denoted by A'. | A |, A~! denote the determinant, inverse of the square
matrix A respectively. The trace of A is indicated by trA and I denotes
the identity matrix. If the p X p matrix A is diagonal and has entries a;;,
we shall write it as A = diag(au1,...,app). Finally, the expected value of a
random vector X is denoted by EX.

The precise formulation of the problem is as follows: Let S; and S,
be two independent p X p Wishart matrices where S; ~ W,(2,n;1) and
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Sa ~ Wy(22, ng). We wish to estimate (X1, X3) under the loss function:

2 .
(1) L($1,55; 51, 5s) = ) _{tx(Z;'%) — log | 3715 | —p}.

=1

This loss function is convex and is the natural extension of Stein’s loss in
the one sample case, where Stein’s loss is given by

L3 %) = tr(Z718) — log | =718 | —p.

The loss function Lg was first considered by Stein (1956). As it is, the above
problem is a canonical formulation of the following more common situation:
Let Xi,...,Xn,+1 and Y3,...,Y,,41 be two samples from two multivariate
normal distributions Np(£1,%1) and Np(€2,X2) respectively. We wish to
estimate (21, X2). The sufficient statistics are

X = ‘[1/(n1+1)]ZX,-, S =) (X - X)%,

1

Y o= [1/(n+1)] X%, Sp=) (Vi-Y)

t

Since Sy ~ Wp(Z1,n1) and S; ~ Wp(X2, ng) with S1,S; independent, this
reduces to the above formulation.

In the course of giving a talk at Stanford, I was informed that Bilodeau
(1987) has also worked on the estimation of more than one covariance matrix.
However the method used, loss function and results are distinctly different
from ours.

2 Two Important Identities

We shall first state and prove two important identities: namely the Normal
and Wishart identities. These identities are crucial in the developments that
follow.

A function g : RP*" — R is almost differentiable if, for every direction,
the restrictions to almost all lines in that direction are absolutely continuous.
If ¢ on RP*™ is vector-valued instead of being real-valued, then g is almost
differentiable if each of its coordinate functions are.

The following lemma is essentally taken from Stein (1981) and hence the
proof is omitted.



Lemma 1 (Stein’s Lemma) Let Y = (Y1,...,Y) ~ Np(&,I) and b :
R? — R be an almost differentiable function with E[Y; | V;h(Y) |] finite.
Then

EVh(Y) = E[(Y - OR(Y)],

where V = (Vy,...,V,) with V; = 8/8Y;.

Now we state and prove the Normal identity. The Normal identity was
first proved by Stein (1973).

Theorem 1 (Normal Identity) Let X = (Xi,...,Xp) ~ Np(¢,X) and
g : B? — RP be an almost differentiable function such that E[}; ; | 39:(X)
/8X; || is finite. Then

E[E7HX - §)d'(X)] = E[Vd'(X)],
where V = (8/0Xy,...,0/8X,).

PROOF. Let Y = X~Y/2X and h(Y) = ¢g(X). Then Y ~ N,(Z~1/2¢,1).
We observe that for all i,k =1,...,p, E | dht(Y)/dY; | is finite and that
hy is almost differentiable. Now it follows from Stein’s lemma that for each
i,k=1,...,p,

Ohy(Y)

Y;

. ng(X)BX
o EE 0X; BY

- E 2(21/2) agk(X) .

Er(Y)Y -37Y%); = E

This implies that
E[s~YY(X - &)¢'(X)lx = E[ZYV2V¢'(X)ae.
Thus we conclude that
E[=7Y(X - )¢'(X)] = E[Vg'(X)].

This completes the proof. d
Let S, denote the set of p x p positive definite matrices. Also we write
for 1 <i,5<p,

V= (‘”7,"1')1,)(?, where 6,':,' = (1/2)(1+ 5,':,')3/38,‘_,,',
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where 6;; denotes the Kronecker delta.
The following theorem and its proof are taken from the unpublished
notes of Stein (1977a).

Theorem 2 (Wishart Identity) Let X = (Xi,...,Xy) be a p X n ran-
dom matriz, with the X) independently normally distributed p-dimensional
random vectors with mean 0 and unknown covariance matriz 3. We suppose
n>p. Let g: S — RP*P be such that z — g(zxz') : RP*™ — RP*P 4s almost
differentiable. Then, with S = XX', we have

(2) Etrs~1(S) = Btr[nS~2¢(S) + 25¥(g(S)S™Y)],
provided the ezpectations of the two terms on the r.h.s. ezist.

PROOF. We first consider the special case ¥ = I. We recall from Stein’s
lemma that

EX,'kf(X) = E3f(X)/3Xilc

for almost differentiable f : RP*® — R provided the expectation on the
r.h.s. exists. If we specialize f to z > z;xh;;(zz') with hi; : S, — R almost
differentiable, and such that the expectations used below exist, then

a
EX;kakh;j(S) = E———-aX [Xjkh,'j(S)]
ik

d
= Bl6ijhi(S) + Xjgoe—his(S)]
<~ 9hi;(S)

= E[5ihij(S)+ X 3 —5 2
=1 O

(1 + 8;50) Xj0i ]

» .
= E[&'jh,‘j(S) + 2Xjk Z Vj:,-h,'j(S)Xj:k].
Jj'=1

Summing over k from 1 to n, we get
(3) ES;ihij(5) = Elnijhi; (S) + 2(SV)jihi; (S)].

If we consider the h;; : S, — R as coordinates of a function h : §, — RP*?P
we find,by summing (3) over ¢ and j from 1 to p and letting h(s) = g(s)s~1
that

(4) Etrg(S) = Etr[nS™¢(S) + 25V (9(S)S™Y)],

which is the special case ¥ = I of (2). To prove (2) when X is arbitrary, let

Y=oaa.



With S and X as in the first part of the proof, that is, with the columns
of X independently normally distributed with mean 0 and the identity as
covariance matrix, and with § = X X', let

s() = aSd/, s() = aso’
and also

VD = (1/2)(1 + &;)8/8s).

It is not difficult to verify that

V=dVlq,

With
h(s(l)) = ag(s)a"
we have
(5) trg(s) = trE"lh(s(l))
and .
(6) trs—lg(s) = trs(l)_ h(s(l))’
and
trsV(g(s)s™1)
= tra_ls(l)a_lla'ﬁ(l)a[a_lh(s(l))a—ll(a_ls(l)a—ll)—l]
(7) = trs(l)e(l)[h(s(l))s(l)—l].

Substituting (5), (6) and (7) in (4), we find
Btz h(SW) = Etrlns® ™ h(sW) 4+ 25T (R(sW) sy

which is (2) except for the difference in notation. O

The Wishart identity was proved by Stein (1975) and Haff (1977) inde-
pendently. Next we state two lemmas which are proved in Haff (1979b) and
(1981) respectively.

Lemma 2 The matriz

087 1)3sy = —S7lee'tSTT k=1
—S_l(ekell + e;e'k)S"l k#£1,

where e; denotes the ith unit vector.
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Lemma 3 Let F and G be matriz functions of S. Assuming all relevant
products and derivatives exist, we have

V(FG) = (F'V)'G + (VF)G.

With these two lemmas in hand , we prove the following corollary of the
Wishart identity.

Corollary 1 Let X = (Xy,...,X},) be a p X n random matriz, with the X,
independently normally distributed p-dimensional random vectors with mean
0 and unknown covariance matriz X. We suppose n > p. Let g : S, — RPXP
be such that z — g(zz') : RP*™ — RP*P 45 almost differentiable. Then, with
S =XX', we have

Etry~1¢(S) = Etr[(n— p — 1)S71g(8) + 2Vg(S)],
provided the ezpectations of the two terms on the r.h.s. ezist.

PROOF. First we observe from Lemma 2 that

trS(g'(S)V)'s1
= > siul(d'(S)V)us"

i,k
= Y ga(Virs")sir

ik
= - E {951[SYeje' ;1S iisinbjx

t.7,k,l

+(1/2)g51[S " (eje'k + exe'5)S uisin(1 — 6ix)}

= —(p+1)trS1g(8)/2,

where S—1 = (s'!). This implies that

trSV(g(5)S™Y) trS[(Vg(8))S~1 + (4'(S)V)'(s71)]

tr[Vg(S) + S(¢'(S)V)' (571
(8) = tr[Vg(S) - (p+1)S7¢(S)/2].

Substituting (8) into (2), we get

Etrx1g(S) = Etr|(n — p ~ 1)S1¢(S) + 2Vg(S)).

This completes the proof. 0



3 Equivariant Estimators

The problem which we are concerned with is invariant under the following
group of transformations:

(9) I — AT A", S;— AS;A' VA€ GL(p,R), i=1,2.

Theorem 3 Let Sl ~ Wp(El,nl), Sz ~ Wp(zz,ng) with Sl, Sg indepen-
dent. Then under the group of transformations given in (9), (£1,3;) is an
equivariant estimator of (X1, 52) if and only if (X1,3;) can be expressed as

$1(S1,82,n1,n2) = B Y(I - F,ny,n3)B",
32(S1,82,n1,n2) = B'®(F,ng,n;)B"!,

where @, ¥ are both diagonal matrices, B(Sy + S2)B' = I, BS;B' = F and
f12 > fy with F = diag(fy, .., fy).

PROOF. Suppose (31,3);) is an equivariant estimator of (21, 23), then

2i(S1,82,n1,n2) = ATIE(AS1A', ASp A, ny,ng) AL,
(10) VA € GL(p, R).

We observe that 3B € G L(p, R) such that B(S;+S;)B' = I and BS;B' = F,
where F = diag(f1,..., fp) with f; > --- > f,. Hence it follows from (10)
that ‘

3%:(S1, S2,n1,n2) = B718;(I — F, F,ny,n3) B™L.
By invariance again, we have
$:(I — F, F,ny,n3) = D;(I — F, F,ny,n,)D, VD = diag(+1).
This implies that 3;(I — F, F,ny,ny) is diagonal for § = 1,2. Writing

‘I’(I—F7n17n2) = 21(-1-_-l'-';li‘)""la""'2)7
@(F,nz,n]_) = 22(I—F,F,n1,n2),

proves the necessity part. For the sufficiency part of the result, the proof is
straightforward and is omitted. O
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4 Calculus on Eigenstructure
Let S; ~ Wp():}l, n1) and Sz ~ W,(22, nz). For simplicity we write:

],c = (i) jks 65.‘,3 = (1/2)(1+ 61)3/3s%]) Vi, 7, k,

where §;; denotes the Kronecker delta. We observe that 3B € GL(p, R)
such that BS;B' = I — F and BS;B' = F where F = d1ag(f1, .» [p) with
f1 > +++ > fp. In this section, the partial derivatives of B~1 and F with
respect to S1 and S, are computed.

Theorem 4 Let Sy ~ Wy(Z1,n1) and Sy ~ Wy(Z2,n2). Then with F,
B = (by), B™1 = (b") as defined above, we have
‘”75-]1;)fe = —fibijbir,
6§i)f:‘ = (1 - fi)bijbix,
Vi = E[Z ¥ (Bobue + bokbi) 7
’#l

6&‘7")1’{! — _[E b" (b' Jbu, + b; 'kbl:l) f f
i ¢

] + = b"sz bk,

] + = b’lbngzk

PROOF. On differentiating Sy = B™1(I — F)B'1 and S; = B-1FB'~1, we
have

dS; = (dB™')(I- F)B"!'- B YdF)B"' + B~Y(I - F)(dB'Y),
dS; = (dB"Y)FB"1+ B~(dF)B"! 4+ B 'F(dB'Y).

Multiplying these equations by B on the left and B’ on the right we get

(11) B(dS$1)B' = B(dB™')(I- F)~- (dF)+ (I - F)(dB"!)B,
(12) B(dS;)B' = B(dB~')F+ (dF)+ F(dB™)B'.

It follows from (12) that

(I- F)F7'B(dS;)B' = (I-F)F 'B(dB™Y)F + (I- F)F~(dF)
(13) +(I - F)(dB™Y)B'.

CASE I. Suppose that dS; = 0. Subtracting (11) from (13) gives

—B(dS,)B' = F7'B(dB~')F — B(dB ')+ F~1(dF),



which reduces to

(14) (dF) = —FB(dS;)B' — B(dB™Y)F + FB(dB™').
Hence for all i, j, k,
df; = —fi[B(dS1)B'x
= —f; Z’;b,-,-(dsg.}))b,-,,.
i _

Thus we conclude that _
Vﬁ)fe = ~ fibijbig.
Next from (14) we have
(AF)i; = — fi[B(d$1) B'lij — [B(AB~1)}ij f5 + £i[B(AB ™))
which gives
[B(dB~1))ii(fi — f3) = (dF)i; + £[B(dS1) B'];;.
If 7 # 4, then

BBy = EBs)p,

= —-f’— b,'k (dsg))bﬂ .

fi - f] K,
Furthermore, adding (11) to (12) gives
B(dS;)B' = B(dB™ 1)+ (dB'"1)B'.
Considering the diagonal elements, we get
1
[B@B™)s = 5[B(dS1)B'la
1
= 32 bi(dsfy)ba-
k,l
Thus we have

(dB71):;

{B~[B(dB~")|};
=2 b [B(dB~)a

..y ) 1.
2 b ff—‘f bie(dsy)b + 2% > bia(ds)en.
2 AR Y kit '
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Hence we conclude that

ﬂ?b" [Z b (barsbu + b 'kle) ] +3 b"b,, bik.

£l

CASE II. Suppose that dS; = 0. The proof of

6%3)'& = (1 - fi)bijbix,

Y = G (bublk+b¢'kblz) f"]+ 20 biibik-
I?l_.l

is similar to that of Case I and hence is omitted. This completes the proof.
0

5 TUnbiased Estimate of Risk

In this section we shall compute the unbiased estimate of the risk of an
almost arbitrary equivariant estimator of (21,X2). First we start with a
lemma.

Lemma 4 Let B, = diag(¢1,...,dp) and ¥ = diag(y)1,...,vp) be defined
as in Theorem 3. Then

trVv(B-l¥B-1) = E[¢,+f, a(1 f +¢,

J#t
trv@(B~l@B'!) = Z[¢.+(1 )3?’+¢,Zf___’;"_].
j#i 0t

PROOF.

trv(B~1gB1)
= Z V(l)(B_l\I’B'—l)j;

= ZV‘”(bJ‘wkb’*)
1]’

= DITP )b + b (VD)o + b7 (TP,
’]’
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Now it follows from Theorem 4 that
trﬁ(l)(B-quB'—l)

= BB bubes + 5 3 6 (Busbas + bijbi) ]
i,4,k l;,gk f "'fk

d
b]kbtkz:( fmbmlbmj) ¢k

+¢kb”°[ b"‘bk,bk,+ Zb" (Biribrj + birjbri) fi 1}

2 i1k fi’ - fk

Z{¢k[ += Z f" ARRLFTS ¢f)

2 iz

fz'
+'¢‘k[ + = %:k fk
I
%:[% + fka(l —rat %bk;c - fk]'
The second part of this lemma can be proved similarly. O

With this lemma in hand, we shall now prove the main results of this
section.

Proposition 1 Let 3 be an estimator for 31 where
$1(S1,82,n1,m2) = B (I Fyny,ng) B,
¥ = dia_q(i,bl, ceey ¢p), B(.S’1+.S'2)B' =1, BS;B'=F = dz'ag(fl, ceey fp) with

J12 -2 fp. Suppose U satisfies the conditions of the Wishart identsity in
the sense that

Etr(S713) = B2V (8)) + (ny — p — 1)S7154).

Then under Stein’s loss, the risk of 331 is given by

Rs(S1;%y) = E{Z["1 Y i oy,

J#s —Ji
O i
+2fig "_b 75~ loe ] ‘_[’ = logxd, s — 11}
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PROOF. We observe from the Wishart identity that

Etr(Z7'8) = Eu2VO(E) + (m — p— 1)8718)
= Etr{2VI[B-19B | 4 (n; — p— 1)S71B 0B}
= Btr{2VI[B-10B" + (n; - p— 1)(I - F)~10}.

Now it follows from Lemma 4 that

Etr(Z718) = E{E["1 ¢‘+2¢,Z fi
i i = 4

(15) | +2""’+2f‘a(1 )]}

Finally the risk of 3, is given by
Rs(51;31) = ELs(E4;3)
Eftr(Z7131) — log | 27181 | —p]
Eltr(27'8;) — log | S7151 | —log | 27181 | —p]
= E[tr(Z7'8)) - log | 7181 | - ZlongZzl-—i+1 - p|

= E[tr(zllzl)—ZIog f — > _log X}, _i41 — Pl-

1

It follows now from (15) that

“ n
Rs(S;3) = E{Z[ — —2i) f’ 7 T2
J#
_ 31!%‘ Y 2
This completes the proof. m|

Proposition 2 Let 3y be an estimator for S5 where
22('5’17 S27 ni, n2) = B_I(D(F) nz, nl)B'—17

@ = diag(gs, .., ), B(Si+5)B' = 1, BB = F = ding(}s, ..., ) with
fi 2> fp. Suppose ® satisfies the conditions of the Wishart identity in
the sense that

Etr(23185) = B2V (8g) + (n1 — p — 1)85715,].
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Then under Stein’s loss, the risk of (31,3) is given by

RS (22; 22 = ‘E{Z:[n2 ¢t + 2¢1 Z f] + 2¢1
= Tim 1

3¢ $i
+2(1 - fi) 55~ log - — logxn, i1 — 1]}

PROOF. The proof is analogous to that of Proposition 1 and hence is
0

omitted.

Theorem 5 Let (£1,5;) be an estimator for (£1, ;) where

B~YW(I — F,ny,ny)B' 1,

2].(‘5'17 ‘5'2’ ni, n2) -
B71®(F,ny,ny)B"?,

22(S1, S2,n1,n2) =

s 8p), ¥ = diag(¢n,..., %), B(Sy + S2)B' = I, BS,B' =

® = diag(¢s,. ..
+ > fp. Suppose ® and U both satisfy the

F = diag(f1,...,fp) with f1 >
conditions of the Wishart identity in the sense that

1. Btr(Z718;) = Et2VO(8) + (n1 — p— 1)S715y],
2. Btr(23'8) = Etr[2VO(8,) + (ng — p— 1)S5718,].

Then under the loss function L given by (1), the risk of (£1,32) is given by

R(£1,82;51,3,) = E{Z[nll__p]: 1 — 2t E f’ + 24;
$ i FE2)
: Y _ i ng—p—1 .
+2f¢ 3(1 _ fg) lOg 1 _ fg' + f;' ¢t
345:

1-f
+26 Y -+ 24 +2(1 - f)

¢ .
f log an —-t+1 — log X?lg—i-{-l - 2]}
[

—log —

PROOF. This theorem follows directly from Propositions 1 and 2 since the

loss function under consideration is the sum of the respective loss functions
3

of these two problems.
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6 Usual Estimators and Minimax Risk

The usual estimators (f)l, 22) of (X1, X2) are of the form (151, ¢2S2) where
¢1, ¢2 are constants. The best usual estimator is that usual estimator which
minimizes the risk among the usual estimators.

Theorem 6 Let S; ~ Wp(Z1,n1) and Sy ~ W,(Z2,ng) with S1, Sp in-
dependent. With respect to the loss function L, the best usual estimator
(EPY,27Y) of (B1,%) ds (S1/n1,S2/n2). Also,

R(SBY $8V.%,,%3) = Elplogn; + plogny
— > (log X, —i41 +log xp,—it1)]-
i

PROOF. The risk of estimators of the form (c151, ¢252) is given by

R(c1S51,¢259;21,%82) = E[tr(El_lclsl) + tl‘(22_16232) —log | Z7%e18: ,
—log | 23%¢252 | —2p]
= Efcinip+ eznzp — ploge — ploge;
- 2(108 Xny—i+1 T108 X5, _i41) — 2p].
%
This is minimized when (c1, c2) = (1/n1,1/n2). |
We shall now review very briefly some results concerning the minimax
estimation of a single covariance matrix. Recall that Stein’s loss is given by

Ls(3;2) = tr(Z718) — log | 2718 | —p.
The next result is due to Stein (1956).

Theorem 7 Let S ~ Wy(X,n). With respect to Stein’s loss, the best esti-
mator equivariant with respect to linear transformations & — UZU', § —
USU', where U is nonsingularlower triangular, is EMM(S) = TDT', where
the j’th diagonal element of the diagonal matriz D is 1/(n + p — 25 + 1),
J=1...,p, and S = TT'!, with T lower triangular. This estimator is
minimaz with risk

Rs(3MM;5) = E[D log(n+p—25+1) = > logx?_; 4]
F 7



15

We shall now give a two sample analogue of Theorem 7. To do so, we shall
consider the class of equivariant estimators of (X1, X;) under the following
group of transformations,

(16) X; — U;sU], S; — U;S;U], 1=1,2,
where U; is a nonsingular lower triangular matrix.

Theorem 8 Let Sy ~ Wp(X1,n1) and Sy ~ W,(22,n3) with S; and S,
independent. With respect to the loss function L, the best estimator equiv-
ariant under the group of transformations (16) is (EMM $MM) — (TvD, 1y,
TyD,T3), where, for i=1,2, the j’th diagonal element of the diagonal matriz
D; is 1/(ni +p— 25+ 1) and S; = T;T}, with T; lower triangular. This
estimator 18 minimaz and has constant risk given by

2
R(ZMM, 5M 501, 5) = B{D D log(ni +p— 25 +1) — > logxl _isal}-
=1 3 J

PROOF. The group of transformations considered here is solvable. Hence
there exists a minimax estimator of (1, 32) equivariant under the group of
transformations given by (16). As in Stein (1956), (31, 32) is equivariant if
and only if

(17) (21,32) = (ThA1Ty, ToA2Ty),

where, for i=1,2, S; = T3T], with T; lower triangular, and A; = diag(i,.. .,
Aip). Since this group of transformations is transitive, without loss of gen-

erality, we shall consider only the case where (£1,33) = (I, I). For such a
(X1, 32), we have

R(ﬁla i\}2; I) I)
2
= B{)_[r(ATIT:) - log | A; | —log | TLT! | ~p]}
=1
2
= E) {2 (MixE4p-2i41 —logij —logx?,_;i1) — p}
=1 jJ
2
= > {2 l(ni+p— 25+ 1)X;j —log \ij — Elog X%, ;1] — p},
=1 g .
since the j’th diagonal element of T}T; is distributed as Xft.' +p-2j+1- This is

minimized by
(18) Np=1(m+p-2+1), Vg
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Thus a minimax estimator is given by (17) with the diagonal elements of
Ai, i = 1,2, given by (18). This estimator (XMM $:MM) has constant risk
given by

R(EYM $MM. 5, 5,)

2 |
= B{Y_[3 log(ni+p—27+1) - logx}, s}

i=1 j i

This completes the proof. O

We observe from Theorems 6 and 8 that (£87, $:BV) is not minimax and
that (EMM $SSMM) dominates (£PV, £8Y). This implies that in evaluating
the risk performance of an alternative estimator for (21, X3), the estimator
to compare with is (SMM SMM) 104 (SBU $:BU),

7 Alternative Estimators

It is well-known that the eigenvalues of S3(S; + S2)~1 are more spread out
than the eigenvalues of its expectation. By correcting for this eigenvalue dis-
tortion, we construct alternative estimators which compare favorably with
the constant risk minimax estimator (£MM $:MM ). Furthermore, these es-
timators give substantial savings in risk when the eigenvalues of 2221_1 are
close together.

7.1 Adjusted Usual Estimator
The best usual estimator (£PV,$8Y) can be written as
(E77,88Y) = (S1/n1,S2/ny)
(B_I‘I’BUB’—I B—l@BUBI—l)
where the j’th diagonal element of the diagonal matrix U8BV, BV i (1-

fj)/ ny, f; /na respectively.
A natural way to improve on this estimator would be to consider esti-
mators of the form

(£1,%) = (B~'wB'1, B~ laB"1)
where for some constants ¢;,d;,5 = 1,...,p, the j’th diagonal element of

the diagonal matrix ¥, ® is ; = (1 — f;)/c;, ¢; = f;/d; respectively. We
define the adjusted usual estimator to be

(21411, 2;1(]) — (B—I‘I’AUB’_I, B_]'@AUB'_I)
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where, for j = 1,...,p, the j’th diagonal element of the diagonal matrix
AU, @AV s gV = (1 - f;)/(n1 — p— 1+ 25), 4V = fj/(nz + p+ 1 — 2j)
respectively. .

We shall show in this subsection that:

1. Under Stein’s loss, £4V is a minimax estimator of 3.
2. Similarly under Stein’s loss, £4U is a minimax estimator of Z,.

3. Under loss function L, (££7,$47) dominates the constant risk mini-
max estimator (XM SMM)

Proposition 3 Under Stein’s loss, ﬁ‘.‘lw 18 @ minimaz estimator of X;.

PROOF. We observe from the proof of Proposition 1 that the conditions for
the Wishart identity hold in this case and

A n —_ —_
Rs(37imr) = B{OIPE et —aupt Y L oy
: 1- fi G f.’l
1,[)AU ,¢AU .
+fiz———=-1lo —logxn, —iv1 — 11}.
fa(l_f‘) g fg gx 1 t+1 ]}
For convenience of notation, we write a; = 1/(n1—p—1+2¢)fori =1,...,p.

Then on simplification, we have

Rs(3472) = B(Yl(m - p- o2y LOI L0 R
i i<i )

+20; — loga; — logx2 _;y1 — 1]}

= E{E[(nl —p+1)a +2Zf‘(1 ffﬂ)(;; — i)

(1= £3) = fi(1 = fi)]as
+2J§ fi—fi

—loga; —logx? _;4y — 1]}

Since f;(1 — f;)/(fi — f;) > 1 whenever j > ¢, we have

Rs(£4Y; %)

< E{Z[(nl p+ l)al + 2 Z a; — loga; — logxgzl—i+1 - 1]}
i<t
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= E{D [(n1—p—1+2)a;—loga; ~logx% ;s — 1]}
1

= EZ[(IOg(nl —p—1+2i)—log Xi1—5+1]
$

= EZ[(log(m +p+1-—2{)— logxil_ﬂ_l].
{

It follows now from Theorem 7 that the right hand side of the last equality
is the minimax risk. Hence 34U is a minimax estimator of ;. O

Proposition 4 Under Stein’s loss, ¥4V is a minimaz estimator of Z.

PROOF. The proof is similar to that of Proposition 3 and hence will be
omitted. |

Theorem 9 With respect to the loss function L, (S4V,34Y) dominates
(SMM MM Hence ($4V,547) ds a minimaz estimator of (1, D).

PROOF. This theorem follows directly from Theorem 8 and Propositions 3
and 4 since the loss function under consideration is the sum of the respective
loss functions of these two problems. O

7.2 Dey-Srinivasan type Estimators

In the estimation of a covariance matrix, Dey and Srinivasan (1985) con-
structed a class of minimax estimators for 3 by using a technique of Berger
(1980). In this subsection, we shall derive an analogous class of minimax
estimators for (21, X2) with the aim of achieving substantial savings in risk
when the eigenvalues of 2221'1 are close together. First we need some ad-
ditional notation. We let

2.103 — B_I\I’DSB'—I, 2,;)5 — B—IQDSB,_]',

where 05 = diag(¥P?,...,9P%) and P = diag(4P?, . .., ¢P5) with

1-f;

DS ]

‘l’; n1—p—1+2i+( fz)ﬂu
DS __ fi e

¢i = n2+p+1-—2i+f’7“

u = ?og?(l—f-"?;),
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fi
1-f;
- fi
Ji

a,b: Rt — R being suitable functions and ¢, d being suitable constants.
In particular, we shall show that under suitable conditions on a, b, ¢ and d:

/(e +v),
)1/ (d+w),

B: = [a(u)log(

v = [b(u)log(>

1. 3PS dominates 3347 in the estimation of £; under Stein’s loss.
2. 395 dominates 347 in the estimation of Xy under Stein’s loss.

3. (3PS, 5D5) dominates (24U, £47) in the estimation of (£, 33) under
the loss function L given in (1).

Proposition 5 In the estimation of X1 under Stein’s loss, 2{)5 dominates
34U whenever

1. a(u) > 0 and a'(u) > 0 for all u >0,
2. sup,>pa(u)(ni+p—1)/(2yc)=2z <1,
3. supy30a(u)(3 — 2)/[6(1 - 2)] < 2(p ~ 2)/(m +p - 1)%

Hence 3P% is minimaz.

PROOF. First we note that for1 =1,...,pand u > 0,

[ —p= 14208 | = a(w)(m—p—1+2) |log 2 | et )
< a(u)(n1—p— 1+ 2:)/(2Vc)
<

a(u)(n1+p — 1)/(2Ve).

Since sup,>g a(u)(n1 + p — 1)/(24/c) = z < 1, it follows from Lemma 2.2 of
Dey and Srinivasan (1985) that

—log[l+ (1 —p—1+2)8] < (n1—p—1+2i)°67(3-1z)/[6(1 - 2)]
(19) —(n1—p—-14240)6:.

We observe from the proof of Proposition 1 that the conditions for the
Wishart identity are satisfied and furthermore that the difference in risk
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between £P5 and 34U is given by
Rs(£7P%;%1) — Rs(34Y;34)

— _ f:,(l ft)ﬂz — fi(l - fj)ﬂ:f
= EZ{("'I P+ l)ﬂi+2§ -

~ logl1 + (ny — p— 1+ 2)i]}.

PR 9B

-2f;(1- 3/;

Now it follows from (19) that
Rs(2P5,3)) — Rs(24Y;3)

EY [(m — p+ 1) — 2£i(1 - )2f _

IA

(1 —p—1+20)p;

af;
i(1— fi)Bi — fi(1 — 3 — .
+2]z<; fi(1 f)i = ;‘( fi)Bi + T _ﬂ;) (n1—p—1+ 2’)2ﬂz'2]
— EZ[(Z 21),3, + 22 f:(l fn),@i - fi(l _ fj)ﬂj
it fi—Fi
(0) 21~ )G + g (m — = 1+ 208,

Next we observe that

Yle-20pi+23 fi(L= £)B: = £i(1 - £;)Bi,

fi—fi
i<s
_ Z[(2 2‘)13‘ + 22 fz(l ff])_(:?: — :BJ) + 22131]
f;(l - fJ)(ﬁ: — )
=222, g
(21) <0.

Also, we observe that

Z[ 2fi(1- Zi’ h(nl p— 1+ 2i)267

_ 2fi(1 - fi) ' 1
= Z’:{_ (c+ u)? [(c +u)(2a(u)log( )( + f
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+a(U)( -t )) ~ 2a(u) log* (7= )(

)]

f;
3 .
+6(1 z)(c+u)2a 2(w)(n1—p - 1+2z)2log (i_——f)}
< 2 e )a(u)(n1+p 1y
“%}Zl"gz(ﬁ)
(2) <o

since a is nondecreasing and a(u)(3 — z)/[6(1 — z)] < 2(p — 2)/(n1 + p —
1)%. We now conclude from (20), (21) and (22) that £P5 dominates 34U
Minimaxity follows from Theorem 9. O

Corollary 2 In the estimation of X1 under Stein’s loss, EDS dominates
EAU whenever

1. 0< a(u) < 12(p — 2)/[5(n1+ p — 1)?] and a'(v) > O for all u >0,

2. ¢ > 144(p - 2)%/[25(n1 +p — 1)?.

EDS

Hence 18 minimaz.

PRrROOF. This follows immediately from Proposition 5. O

Analogous to Proposition 5 and Corollary 2, we have the following two
results. Their proofs are very similar to the above-mentioned and are omit-
ted.

Proposition 6 In the estimation of 3o under Stein’s loss, EDS dominates
EAU whenever

1. b(u) >0 and ¥'(u) > 0 for all u >0,
2. SuPy>o0 b(u) (n2 +p- 1)/(2\/3) =y<l,
3. sup,»0 b(u)(3 - y)/[6(1 - ¥)] < 2(p ~ 2)/(n2 +p — 1)°.

EDS

Hence 18 minimacz.

Corollary 3 In the estimation of Ly under Stein’s loss, EDS dominates
EAU whenever

1. 0 < b(u) < 12(p — 2)/[5(n2 +p — 1)?], and b'(u) > O for all u > 0,
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2. d > 144(p — 2)%/[25(ns + p — 1)¥].

Hence ng ts minimaz.

Now we shall state the main result of this subsection.

Theorem 10 In the estimation of (21, T2) under the loss function L, (£P5,
%:D5) dominates (S4V, B4V whenever

1. a(u) >0 and a'(u) > 0 for all u > 0,

2. b(u) >0 and b'(u) > 0 for allu >0,

3. sup,>oa(u)(m +p—1)/(2Ve) =z <1,

4. supyzb(u)(nz +p - 1)/(2Vd) =y <1,

5. sub0 a(w)(3 — 2)/[6(1 — 2)] < 2(p — 2)/(m1 +p— 1),

6. sup,>o b()(3 — y)/[6(1 - y)] < 2(p~ 2)/(n2 + p — 1)%.

Hence (£P5 $D5) is minimaz.

PROOF. This theorem follows directly from Propositions 5 and 6 since the
loss function under consideration is the sum of the respective loss functions
of these two problems. Minimaxity follows immediately from Theorem 9.01

Corollary 4 In the estimation of (£1,X2) under the loss function given by
(1), (£P5, £D5) dominates (84, £4YV) whenever

1. 0 < a(u) < 12(p— 2)/[5(n1+p — 1)?], and a'(u) > 0 for all u >0,

2. 0 < b(u) < 12(p — 2)/[5(n2 +p — 1)%], and b'(u) > 0 for all u >0,

3. ¢ > 144(p—2)%/[25(n1+p—1)?], d > 144(p—2)%/[25(ns +p—1)2].
Hence (£P5,$P%) is minimaz.
PROOF. This follows immediately from Theorem 10. O

Analogous to Dey and Srinivasan (1985), one can construct adapted
versions of these minimax estimators. We let

f}fD — B_I\I’ADB’—I, 2,24D — B_IQADB’_15
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where UAD = diag(¢{0, ... ,t/);,‘D) and @40 = diag(s?,..., ¢§D) with

AD _ 1-f; \a.
¢i - ni—p _1+2i+(1_ft)ﬂn
AD _ i

&; = nzt+p+1— +fz’7n

v = Z[log(l'_fJ _)—%Z:log(ll)]2
7 k
B = a(u)flos( 2 )—%E B2/ (c+w),

k

% = b(u) [log( Zl

a,b: Rt — R being suitable functions and ¢, d being suitable constants.
We shall now state the results for these estimators. The proofs are very
similar to those of Propositions 5, 6 and Theorem 10 and hence are omitted.

Proposition 7 In the estimation of X1 under Stein’s loss, ﬁfD dominates
34U whenever

1. a(u) > 0 and a'(u) > 0 for allu >0,
2. sup,>¢a(u)(n1+p—1)/(2Ve) =2z <1,
3. supy»o a(u)(3 — z)/[6(1 - )] < [2(p - 3) + 4/pl/(n1 + p — 1)%.

Hence £4P is minimaz.

Proposition 8 In the estimation of X2 under Stein’s loss, EAD dominates
EAU whenever

1. b(u) >0 and b'(u) > 0 for all u >0,
2. supy»o b(u)(nz+p—1)/(2Vd) =y < 1,
8. sup,50 b(u)(3 - y)/[6(1 - ¥)] < [2(p - 3) + 4/p]/(n2 + p — 1)

EAD

Hence 18 minimaz.

Theorem 11 In the estimation of (31, 33) under the loss function L, (54D,
24DY dominates (AU, SAVY whenever

1. a(u) >0 and a'(u) > 0 for all u >0,
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b(u) > 0 aend b'(u) > 0 for allu >0,

Sup,>o a(u)(n1 +p—1)/(2yc) =2z < 1,

SUPu2o b(u)(n2 +p - 1)/(2Vd) =y < 1,

SUPy>o a(u)(3 — 2)/[6(1 — )] < [2(p — 2) + 4/p]/(n1 + p - 1)?,
supy>o b(u)(3 - y)/[6(1 - y)] < [2(p - 2) + 4/pl/(n2 +p — 1)°.

Hence (4P, 334D) {s minimaz.

SRR AN

7.3 Stein-type Estimator

By an approximate minimization of the unbiased estimate of the risk of an
almost arbitrary orthogonally invariant estimator of a covariance matrix,
Stein (1975) constructed an estimator whose risk compares very favorably
with the minimax risk. In particular, substantial savings in risk is obtained
when the eigenvalues of the population covariance matrix are close together.

In this subsection, this technique is applied to construct an alternative
equivariant estimator (£{7,3357T) for (21, 53). Let (31, ;) be an estimator
for (31, X2) where

2l(ShSZ,"’l: n2) = B—I‘I’(I — F,ny, nZ)B’_I’
f}2(‘5,1:‘S'2yn17”'2) = B—IQ)(F’ n2,n1)BI_1,
® =diag(¢1,...,%p), ¥ =diag(y1,...,¥p), B(S1+S:)B' = I, BS; B' =

diag(f1,..., fp) with f; > ... > f,. Under loss function I, we observe from
Theorem 5 that

R(%1,89;81,8,) = E{z:[n1 -2 ) ]:Jf + 29
J#i 7
A ;i
+2f' 6(1 _ f‘) IOg fi - lOg X?u—i+1 -1
22__ ; 2 i f.’l i
= ¢+¢§f, 7

+2(1 - f;) 3?: — log ?: 1°gxn2_¢+1 11}

= E{Z[nll—p}fl -2 i

J# —Ji
9 ¥i
1- fi)(l -

¥
l_fl

+2fi(1 - fi)a( fi) log
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-p+1
—Io _ + ; + 2
g Xm i+1 f ¢ ¢: ]E;h: f' f_1

+2fi(1 - f.) 37, f')—log i —log X2, _i+1 — 2]}

By ignoring the derivative terms in the unbiased estimate of the risk, we get

R = Z[m——w¢i—2¢ez 'i’

- log% — Elog szzz—i+1 - 2.

i
Now we minimize R with respect to ¢; and ¢;, i = 1,...,p. This gives
dR/op; =0, AR/3¢; =0, Vi.

On simplification, we have
%o = (l—fa)/[nl—pﬂ_zzm%fff-)],

I
(1 = fs
(23) & = fiflm—p+1+2y EUZS))
A fi i
We observe that the ;’s and ¢;’s should follow a natural ordering:

0<¢1 << Yy
G122y 2 0.

However with the ¢;’s and ¢;’s defined by (23), this ordering may be altered.
By applying Stein’s isotonic regression, Stein (1975), to these ¢;’s and ¢;’s,
we arrive at a new set of 9;’s and ¢;’s, denoted by 1,[);91‘ and ¢7T,i=1,...,p,
which satisfy

1i=1,...,p.

0< i < <7,
5T > > 457 > 0.
For a detailed description of Stein’s isotonic regression, see for example Lin
and Perlman (1985). We now define
3T = BYST(I- F,ny,ng) B,
337 = BT'@T(F,ng,m)B',
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where 5T = diag(457,..., $5T), UST = diag(¢$7, ..., ¥3T), B(S1+52)B'
= I, BS;B' = F = diag(f1,..., fp) with f1 > .-+ > f,. This concludes our
construction of the Stein-type estimator.

7.4 Haff-type Estimator

Haff (1982), (1988) constructed an estimator for a covariance matrix which
has a similar functional form to that of the Stein (1975) estimator. His
technique is briefly summarised as follows:

First, a prior distribution is put on the parameter space. Then the
average risk of an almost arbitrary orthogonally invariant estimator for &
is minimized via the Euler-Lagranges equations and the Haff estimator is
determined from these equations.

In this subsection, we shall apply Haff’s method to obtain an alternative
estimator, denoted by (BHF SHF) for (24, ¥2). We note that an equvariant
estimator (331, 33) for (2, 22) must be of the form

$1(S1,S2,n1,n2) = B Y9(I — F,ny,ny)B',
f}2(‘5'17‘5'27"'1’"'2) = B—IQ(F;nZ’nl)B,_la

where ® = diag(¢1,...,¢p), ¥ = diag(¢y,...,¥p), B(S1+S2)B' = I, BS,B'
= F = diag(f1,...,fp) with f{ > --- > f,. Then from Theorem 5, under
the loss function given by (1), the unbiased estimate of the risk of an almost
arbitrary equivariant estimator for (21, 3,) is

o= SR o

1 FES)
It Yi  ng—-p-1
+2f'a(1 - fl) ~lo °8 1- fl + fi ¢‘
f] 345,'
+2¢; %; 7= P2 f) 5 7

i
—log =~ 7 Elongzu—i+1 - Elogxlez—i+1 -2].

Since the 1;’s and ¢;’s follow the ordering:
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we write for each 1,

")bt(F) = ES%(F),

k>t

$:(F) = > e(F).

k>t
This implies that B can be expressed as

R = Z[————"ll‘_” — ek

[ k>1 k>i _17’-1

+22&k+2f,za(1

k>i k>i

(morly gy z

k>t k>i ]#:
de? €2
23 b+ 21 1) FF ~los(3 )
E>i k>i /% L

—Elogx?, _ir1— Elogx?, 41— 2.

k>|

Next we put a prior distribution on the parameter space {(21, 32) : £1, 22
being positive definite matrices} and let m(F) denote the marginal density
of F. The average risk of this estimator is

N 0 0 ] 3
/G(flaafp)¢17:¢p:¢177¢p1 a’.ﬁ:)) atﬁ:: a?::aa a?:
where

)dF,

G =mR.
The solution of the Euler-Lagranges equations minimizes the average risk.
These equations are

A d

S A

N g .

Gy, = Za— a_.;,L Vi=1,...,p,
7 J

where C:',p'. = 3G /8;, etc. Evaluating the above set of equations for each
k, lskSp,wehave

n _ dlogm
(24) ekZ[ 1= f —22 f’ +4—¢,.1+2f,~ a?-
i<k t A I

] =0,
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and
Y 2P 7 +2Z f’+4 ¢! —2(1—f.)ala°?m] = 0.
i<k t _1-7‘-1 i
(25)

Next we set

(26) m(F) = [[1/1£:(1- 7).

This is motivated by the observation that in order for the estimator (SH7,
$HF) 6 compete favorably with (SMM, EMM) and (34U, 54Y), the form
of (LHF $:HF) ghould approach that of (£4Y,5:4U) when the eigenvalues
of ¥3(2q +22) —1 are far apart. Substituting (26) into (24) and (25), we get

ekZ[nl P;’l 22 fJf] 4)'—1] — O,

i<k J#i
and
n +1
a2 fp +2Z _¢1] = 0.
i<k b ,1;/-'1

These equations can be solved by using an algorithm due to Haff. For a
detailed description of Haff’s algorithm, see Haff (1988). We denote the
solution of the above equations by e7¥, ¢f¥ 1 < ¢ < p and write

VR (F) = ZeHFz(F),

k>4

$EF(F) = Y FF(P).

k>t

It is clear that the natural ordering of the $¥’s and ¢;HF ’s is satisfied in
this case. That is

0 < offF <... < pfF,
¢HF > ... > ¢HF > 0.
We now define
SPF = B 1HF(I- F,ny,n0)B' Y,
SHF = B 1oHF(F,ng,ny)B' Y,
where ®HF = diag(¢{{F,...,¢fF), PHE — dia.g(«,bf{F,...,;be), B(S1 +

S3)B' = I, BS;B' = F = diag(f1,...,fp) with f1 > -+ > f,. This com-
pletes our construction of the Haff-type estimator for (X1, X2).
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8 Monte Carlo Study

From the rather complicated nature of the Stein-type and Haff-type esti-
mators, it appears that an analytical treatment of the risk performances of
these estimators is not possible at this point. Using Monte Carlo simula-
tions, we shall study the risk performances of the alternative estimators for
(21, X2) that we have developed in previous sections.

For the simulations, we take p = 10, ny = 12, 25 and ny = 12, 25.
Independent standard normal variates are generated by the IMSL subrou-
tine DRNNOA and the eigenvalue decomposition uses the IMSL subroutine
DEVCSF. In Tables 1 to 4, the average loss and its estimated standard de-
viation of each estimator for (21,X2) are computed over 500 independent
replications. For brevity, we write (3FU,587) = BU, (£4V,$47) = AU,
etc.

As it is, the estimator (3P, $3D5) is not well-defined. In this study we
take

6(p— 2)/[5(ma +p - 1)7),
6(p— 2)/[5(nz +p - 1)7),
5.8(p - 2)*/(n1+p—1)7,
= 5.8(p—2)%/(ns+p-1)%

& O o R
I

These values are chosen with the aim of doing well when the eigenvalues of
2221 are close together.

In Tables 5 to 8, under Stein’s loss, the average losses and their estimated
standard deviations based on 500 independent replications are calculated for
the following estimators of X;: EMM EST and EHF

The results of this numerical study indicate that:

1. For the estimation of (¥;,X3y), the risk of the alternative estimators
compare very favorably with the minimax risk. Maximum savings in
risk are achieved when the eigenvalues of 2221_1 are all equal to one.

2. Among the estimators, (£57, $5T) and (SHF, $HF) perform best
when the eigenvalues of EgEfl are close together. Furthermore it is
worth noting that in no instance in this simulation did the average
losses of (£§T,5:5T) and (ZHF,£:HF) exceed that of (SMM, $;MM)
Also it appears that (S8F, $:HF) hag slightly smaller risk than (£57
$i57).
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3. It has been proved that (£P%, £D5) dominates (347, $47). However
this Monte Carlo study reveals that the difference in risk between these
two estimators is rather small at best.

4. For the estimation of ¥; under Stein’s loss, the study indicates that
29T and E,HF are close to being minimax.

We also wish to remark that in our simulation, for a fixed set of eigenvalues of
222;1, the estimators are computed from the same set of 500 independently
generated samples. This suggests that there is a high correlation among
the average losses of these estimators. Since we are more interested in the
relative risk ordering of these estimators, we conclude that the estimated
standard deviation (as given in Tables 1 to 8) is probably a conservative
indicator of the variability of the relative magnitude of the average losses.
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TABLE 1
n = 12 No = 12
Average losses of estimators for the estimation of (X1,X2)
(Estimated standard errors are in parenthesis)

31

Eigenvalues of

237! BU MM AU DS ST HF
(1,1,1,1,1, 1471 1162 889 884 7.85 17.63
1,1,1,1,1) (0.09) (0.08) (0.08) (0.08) (0.08) (0.08)

(10,10,10,10,10, 1471 1162 954 951 9.07 9.00
1,1,1,1,1) (0.09) (0.08) (0.07) (0.07) (0.07) - (0.07)
(25,25,25,25,25, 1471 11.62 9,57 956 9.72  9.69
25,25,25,1,1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(30,30,30,1,1, 1471 1162 9.74 972 927  9.20
1,1,1,1,1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(50,1,1,1,1, 1471 1162 944 941 883  8.72
1,1,1,1,1) (0.09) (0.08) (0.07) (0.08) (0.08) (0.08)
(20,20,20,5,5, 1471 11.62 9.58 9.56  9.27  9.24
5,5,1,1,1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(512,256,128,64,32, 14.71 1162 10.17 10.16 10.42 10.43
16,8,4,2,1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(0.50,0.45,0.40,0.35,0.30, | 14.71 11.62 9.19 9.16 8.80 8.71
0.25,0.20,0.15,0.10,0.05) | (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(10,0.1,0.1,0.1,0.1, 1471 1162 948 947 955  9.49
0.1,0.1,0.1,0.1,0.1) (0.09) (0.08) (0.08) (0.08) (0.07) (0.07)
(10,5,1,0.1,0.1, 1471 1162 985 9.84 972 9.70
0.1,0.1,0.1,0.1,0.1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(10,10,10,0.1,0.1, 1471 1162 987 985 965 9.61
0.1,0.1,0.1,0.1,0.1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(10,10,10,10,1, 14.71 11.62 10.07 10.06 9.88  9.88
1,1,0.1,0.1,0.1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(10,10,5,5,1, 1471 1162 995 993 973 9.73
1,0.4,0.4,0.1,0.1) (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(20,6,8/3,14/9,1, 1471 1162 994 992 975 9.77
2/3,4/9,2/7,1/6,2/27) | (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(81,27,9,3,1, 14.71 11.62 1043 10.42 10.44 10.48
1/2,1/4,1/8,1/16,1/32) | (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
(10%,102,25,5,2, 14.71 1162 11.02 11.02 11.23 11.25
1/2,1/5,1/20,10-2,103) | (0.09) (0.08) (0.07) (0.07) (0.07) (0.07)
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TABLE 2
ny = 25 ng — 25
Average losses of estimators for the estimation of (X4,X5)
(Estimated standard errors are in parenthesis)

Eigenvalues of

2,5t BU MM AU DS ST HF
(1,1,1,1,1, 5.18 462 347 339 282 280
1,1,1,1,1) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02)
(10,10,10,10,10, 5.18 462 398 3.96 380 3.80
1,1,1,1,1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(25,25,25,25,25, 518 462 3.8 3.85 391 391
25,25,25,1,1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(30,30,30,1,1, 518 462 399 398 369 3.68
1,1,1,1,1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(50,1,1,1,1, 518 462 371 368 3.21  3.19
1,1,1,1,1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(20,20,20,5,5, 518 462 403 401 3.96 3.96
5,5,1,1,1) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
(512,256,128,64,32, 518 462 431 430 440 4.40
16,8,4,2,1) (0.03) (0.03) (0.03) (0.08) (0.03) (0.03)
(0.50,0.45,0.40,0.35,0.30, | 5.18 462 3.75 3.73 355 355
0.25,0.20,0.15,0.10,0.05) | (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
(10,0.1,0.1,0.1,0.1, 518 4.62 371 3.70 368 3.67
0.1,0.1,0.1,0.1,0.1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(10,5,1,0.1,0.1, 5.18 4.62 4.03 4.02 397 3.97
0.1,0.1,0.1,0.1,0.1) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03)
(10,10,10,0.1,0.1, 518 4.62 4.02 401 390 3.90
0.1,0.1,0.1,0.1,0.1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(10,10,10,10,1, 518 4.62 423 4.22 417 417
1,1,0.1,0.1,0.1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(10,10,5,5,1, 518 4.62 421 420 420 4.21
1,0.4,0.4,0.1,0.1) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(20,6,8/3,14/9,1, 518 4.62 419 418 421 4.21
2/3,4/9,2/7,1/6,2/27) | (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(81,27,9,3,1, 518 462 439 439 446 447
1/2,1/4,1/8,1/16,1/32) | (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
(10%,10%,25,5,2, 5.18 4.62 454 454 460 4.60
1/2,1/5,1/20,1072,10~3) | (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)




TABLE 3
ng = 12 ne = 25
Average losses of estimators for the estimation of (31,X2)
(Estimated standard errors are in parenthesis)
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Eigenvalues of

2,7t BU MM AU DS ST  HF
(1,1,1,1,1, 988 809 591 587 4.89 4.72
1,1,1,1,1) (0.07) (0.06) (0.06) (0.06) (0.068) (0.06)
(10,10,10,10,10, 988 809 6.59 657 6.19 6.19
1,1,1,1,1) (0.07) (0.06) (0.06) (0.06) (0.06) (0.06)
(25,25,25,25,25, 988 809 640 640 598 592
25,25,25,1,1) (0.07) (0.06) (0.06) (0.06) (0.08) (0.06)
(30,30,30,1,1, 9.88 809 6.85 6.83 657 6.58
1,1,1,1,1) (0.07) (0.08) (0.068) (0.06) (0.06) (0.06)
(50,1,1,1,1, 9.88 8.09 6.56 654 6.13  6.09
1,1,1,1,1) (0.07) (0.06) (0.06) (0.08) (0.06) (0.07)
(20,20,20,5,5, 9.88 809 662 661 637 6.38
5,5,1,1,1) (0.07) (0.06) (0.06) (0.05) (0.05) (0.05)
(512,256,128,64,32, 988 809 715 715 7.26 7.29
16,8,4,2,1) (0.07) (0.08) (0.05) (0.05) (0.05) (0.05)
(0.50,0.45,0.40,0.35,0.30, | 9.88 809 6.22 6.18 568 5.56
0.25,0.20,0.15,0.10,0.05) | (0.07) (0.06) (0.06) (0.06) (0.06) (0.05)
(10,0.1,0.1,0.1,0.1, 988 809 661 659 6.77 6.73
0.1,0.1,0.1,0.1,0.1) (0.07) (0.08) (0.06) (0.06) (0.06) (0.086)
(10,5,1,0.1,0.1, 9.88 809 699 697 7.03 7.5
0.1,0.1,0.1,0.1,0.1) (0.07) (0.08) (0.05) (0.05) (0.05) (0.05)
(10,10,10,0.1,0.1, 9.88 8.09 697 695 6.85 6.86
0.1,0.1,0.1,0.1,0.1) (0.07) (0.06) (0.08) (0.06) (0.06) (0.06)
(10,10,10,10,1, 988 809 702 700 6.85 6.86
1,1,0.1,0.1,0.1) (0.07) (0.06) (0.05) (0.05) (0.06) (0.06)
(10,10,5,5,1, 988 809 694 693 6.79 6.80
1,0.4,0.4,0.1,0.1) (0.07) (0.06) (0.05) (0.05) (0.05) (0.05)
(20,6,8/3,14/9,1, 988 809 7.00 7.00 695 6.97
2/3,4/9,2/7,1/6,2/27) | (0.07) (0.06) (0.05) (0.05) (0.05) (0.05)
(81,27,9,3,1, 988 8.09 742 741 150 7.53
1/2,1/4,1/8,1/16,1/32) | (0.07) (0.06) (0.05) (0.05) (0.05) (0.05)
(10%,10%,25,5,2, 988 809 7.78 7.78 793 7.94
1/2,1/5,1/20,10-2,10~%) | (0.07) (0.06) (0.05) (0.05) (0.06) (0.06)
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TABLE 4
n = 25 nNe = 12
Average losses of estimators for the estimation of (£1,3;)
(Estimated standard errors are in parenthesis)

Eigenvalues of

T2t BU MM AU DS ST HF
(1,1,1,1,1, 9.88 8.06 593 5.8 492 4.76
1,1,1,1,1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(10,10,10,10,10, 9.88 806 6.60 657 618 6.11
1,1,1,1,1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(25,25,25,25,25, 988 806 6.67 6.65 699 6.98
25,25,25,1,1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(30,30,30,1,1, 9.88 806 661 659 605 595
1,1,1,1,1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(50,1,1,1,1, 9.88 806 6.22 619 537 5.23
1,1,1,1,1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(20,20,20,5,5, 9.88 8.06 6.64 6.61 632 6.27
5,5,1,1,1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(512,256,128,64,32, 9.88 8.06 714 713 717 715
16,8,4,2,1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(0.50,0.45,0.40,0.35,0.30, | 9.88 8.06 6.27 6.25 584  5.82
0.25,0.20,0.15,0.10,0.05) | (0.08) (0.08) (0.05) (0.05) (0.05) (0.05)
(10,0.1,0.1,0.1,0.1, 9.88 806 6.22 621 573 566
0.1,0.1,0.1,0.1,0.1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(10,5,1,0.1,0.1, 988 806 6.63 6.62 621 6.15
0.1,0.1,0.1,0.1,0.1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(10,10,10,0.1,0.1, 9.88 806 6.66 6.65 6.20 6.14
0.1,0.1,0.1,0.1,0.1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(10,10,10,10,1, 9.88 806 7.08 7.07 696 6.96
1,1,0.1,0.1,0.1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(10,10,5,5,1, 988 8.06 6.97 6.95 6.84 6.84
1,0.4,0.4,0.1,0.1) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(20,6,8/3,14/9,1, 9.88 8.06 6.89 6.88 6.74 6.75
2/3,4/9,2/7,1/6,2/27) | (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)
(81,27,9,3,1, 9.88 806 7.27 7.26 7.26 7.27
1/2,1/4,1/8,1/16,1/32) | (0.08) (0.08) (0.05) (0.05) (0.05) (0.05)
(10%,10%,25,5,2, 988 806 7.74 773 7.86 17.87
1/2,1/5,1/20,10-%,10~%) | (0.06) (0.06) (0.05) (0.05) (0.05) (0.05)




TABLE 5
ny = 12 N9 = 12
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Average losses of estimators for the estimation of 3;, i=1, 2
(Estimated standard errors are in parenthesis)

Eigenvalues of

Estimating 34

Estimating 2o

2,5t MM ST SHF | MM ST SHF
(25,25,25,25,25, 5.83 4.27 4.26 | 579 545 5.44
25,25,25,1,1) (0.05) (0.05) (0.05) { (0.05) (0.05) (0.05)
(100,90,80,70,60, 5.83 4.23 423 | 579 6.31 6.28
50,40,30,20,10) (0.05) (0.05) (0.05) | (0.05) (0.05) (0.05)
(512,256,128,64,32, 583 508 512 | 579 534 532
16,8,4,2,1) (0.05) (0.05) (0.05) | (0.05) (0.05) (0.05)
(10,10,10,5,1, 5.83 499 498 | 579 479 4.76
0.1,0.1,0.1,0.1,0.1) (0.05) (0.05) (0.05) | (0.05) (0.05) (0.05)
(10,10,10,10,1, 583 4.85 485 | 579 503 5.03
1,1,0.1,0.1,0.1) (0.05) (0.05) (0.05) | (0.05) (0.05) (0.05)
(10,10,5,5,1, 5.83 4.83 483 | 579 490 4.89
1,0.4,0.4,0.1,0.1) (0.05) (0.05) (0.05) | (0.05) (0.05) (0.05)
(20,6,8/3,14/9,1, 583 498 5.00 | 5.79 477  4.77
2/3,4/9,2/7,1/6,2/27) | (0.05) (0.05) (0.05) | (0.05) (0.05) (0.05)
(81,27,9,3,1, 583 534 536 | 579 511 5.12
1/2,1/4,1/8,1/16,1/32) | (0.05) (0.05) (0.05) | (0.05) (0.05) (0.05)
(103,10%,25,5,2, 583 562 563 | 579 561 5.62
1/2,1/5,1/20,10-2,10~%) | (0.05) (0.05) (0.05) | (0.05) (0.05) ' (0.05)
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TABLE 6
n; = 25 ng = 25

TABLES

Average losses of estimators for the estimation of X;, i=1, 2
(Estimated standard errors are in parenthesis)

Eigenvalues of

Estimating X

Estimating X9

5,57t SMM  §ST - QEF | §MM  $ST  HEF
(25,25,25,25,25, 2.30 1.68 1.67 | 2.32 224 2.24
25,25,25,1,1) (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)
(100,90,80,70,60, 230 171 171 | 232 241 240
50,40,30,20,10) (0.02) (0.01) (0.01) | (0.02) .(0.02) (0.02)
(512,256,128,64,32, 230 220 220 | 232 220 220
16,8,4,2,1) (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)
(10,10,10,5,1, 230 210 210 | 232 201 201
0.1,0.1,01,010.1) | (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)
(10,10,10,10,1, 230 205 205 | 232 212 212
1,1,0.1,0.1,0.1) (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)
(10,10,5,5,1, 230 208 208 | 2.32 213 213
1,0.4,0.4,0.1,0.1) (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)
(20,6,8/3,14/9,1, 2.30 211 211 | 232 210 210
2/3,4/9,2/1,1/6,2/27) | (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)
(81,27,9,3,1, 230 224 225 | 232 222 222
1/2,1/4,1/8,1/16,1/32) | (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)
(10%,10%,25,5,2, 2.30 229 229 | 232 231 231
1/2,1/5,1/20,1072,10-%) | (0.02) (0.02) (0.02) | (0.02) (0.02) (0.02)




TABLE 7
ny — 12 nNg — 25
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Average losses of estimators for the estimation of 3;, i=1, 2
(Estimated standard errors are in parenthesis)

Eigenvalues of

Estimating 34

Estimating 2o

I SMM - $ST  QHF | §MM $8T  $HF
(25,25,25,25,25, 579 3.68 3.62 | 2.30 2.30 2.30
25,25,25,1,1) (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
(100,90,80,70,60, 579 363 359 | 230 248 248
50,40,30,20,10) (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
(512,256,128,64,32, 579 499 502 | 230 227 227
16,8,4,2,1) (0.06) (0.05) (0.05) | (0.05) (0.02) (0.02)
(10,10,10,5,1, 579 478 478 | 230 212 212
0.1,0.1,0.1,0.1,0.1) (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
(10,10,10,10,1, 579 468 469 | 230 218 218
1,1,0.1,0.1,0.1) (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
(10,10,5,5,1, 579 464 465 | 230 216 2.16
1,0.4,0.4,0.1,0.1) (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
(20,6,8/3,14/9,1, 579 482 485 | 230 213 213
2/8,4/9,2/7,1/6,2/27) | (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
(81,27,9,3,1, 579 529 531 | 230 221 222
1/2,1/4,1/8,1/16,1/32) | (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
(10%,102,25,5,2, 579 565 566 | 230 228 228
1/2,1/5,1/20,10-2,10-%) | (0.06) (0.05) (0.05) | (0.02) (0.02) (0.02)
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TABLE 8
ny = 25 ng = 12

TABLES

Average losses of estimators for the estimation of 3;, i=1, 2
(Estimated standard errors are in parenthesis)

Eigenvalues of

Estimating X

Estimating Xs

It MM ST GHF | MM $8T  GHF
(25,25,25,25,25, 232 198 198 | 574 5.02 5.00
25,25,25,1,1) (0.02) (0.02) (0.02) { (0.05) (0.04) (0.04)
(100,90,80,70,60, 232 198 198 | 574 5.58 5.52
50,40,30,20,10) (0.02) (0.02) (0.02) | (0.05) (0.04) (0.04)
(512,256,128,64,32, 2.32 225 225 | 574 492 4.89
16,8,4,2,1) (0.02) (0.02) (0.02) { (0.05) (0.05) (0.05)
(10,10,10,5,1, 232 221 221 | 574 445 4.41
0.1,0.1,0.1,0.1,0.1) (0.02) (0.02) (0.02) | (0.05) (0.05) (0.05)
(10,10,10,10,1, 2.32 217 217 | 574 479  4.79
1,1,0.1,0.1,0.1) (0.02) (0.02) (0.02) | (0.05) (0.05) (0.05)
(10,10,5,5,1, 232 216 216 | 574 467 4.68
1,0.4,0.4,0.1,0.1) (0.02) (0.02) (0.02) | (0.05) (0.05) (0.05)
(20,6,8/3,14/9,1, 232 219 219 | 574 455 4.56
2/3,4/9,2/7,1/6,2/27) | (0.02) (0.02) (0.02) | (0.05) (0.05) (0.05)
(81,27,9,3,1, 232 228 228 | 5.74 497 4.99
1/2,1/4,1/8,1/16,1/32) | (0.02) (0.02) (0.02) | (0.05) (0.05) (0.05)
(10%,10%,25,5,2, 232 232 232 | 574 " 554 555
1/2,1/5,1/20,10-2,10~3) | (0.02) (0.02) (0.02) | (0.05) (0.05) (0.05)
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