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Abstract

In the canonical normal problem where Y ~ N(8,%0) (£o known) and 6 has a prior
7 belonging to a suitable family of priors I', the important practical issue of choosing
one specific Bayes action from the collection of all Bayes actions corresponding to the
priors in I' is addressed. Several different methods are considered and the consequences
are evaluated. It turns out that the method of posterior I'-minimaxity gives a sound
answer if the priors that are not “compatible” with the observed data are eliminated
before evaluating the posterior minimax action. The results derived involve application of
the rich minimax theory due to Lehmann, Wald and others to a novel geometric game of
independent mathematical interest. The frequentist risks of the derived procedures are also
considered and it is found that sometimes the procedures derived are frequentist minimax,

and even when they are not, they mostly have very satisfactory risk behavior.



1. Introduction. Considerable attention has recently been given to the issue of sensitivity
of Bayesian analysis to the choice of the prior. Thus, given a likelihood function £, a loss
function L, and a prior 7 belonging to a suitable family of priors I', substantial research is
now being done by many workers on the amount of variation in various Bayesian measures
of interest (like the Bayes rule itself or the posterior risk etc.) due to variation in the prior.
Robustness is present if these measures of variations are small. For many specific results
and general exposition, see Berger and Sivaganesan (1986), Berger (1987), DasGupta and
Studden (1988a,b), DeRobertis and Hartigan (1981), Good and Crook (1987), Kadane and
Chuang (1978), Leamer (1982), Polasek (1985) etc. Virtually nothing, however, has been

done on a question of practical importance described in the following paragraph.

Considerable evidence has now accumulated that whenever the observed data are
“compatible” with the priors in the family T', robustness with respect to the choice of the
prior will usually obtain and otherwise robustness will usually not obtain. For example, if
Y ~ N(8,I) and the priors on @ have a fixed mean p, robustness will typically obtain if
the observed y is “near” u. The question of practical importance is what do we do when
y is not near y and robustness is absent. A number of workers in the area believe that in
such a case the observed data “rule out” some of the priors that were originally considered
plausible. For example, if a normal prior with mean 0 and a Cauchy prior with median 0
were considered a priori plausible in a one dimensional normal problem, then it is argued
that an observed y = 10 rules out the normal prior, but not the Cauchy prior. In general,
the collection of plausible priors will shrink on observing the data and therefore one might
hope that a repetition of the sensitivity analysis with the new smaller class of priors will

demonstrate robustness.

While sympathizing with the stand that the observed data may rule out some of
the priors originally considered plausible, we propose in this article a specific method of
selecting one Bayes action from the collection of the totality of possible Bayes actions
as the prior changes in the class I'. We do this within the conditional Bayes framework,
i.e., while selecting one specific action for actual use and referral to the user, we do not
integrate on the unobserved data (although, once an action is selected for each specific y,
we do look at the frequentist behavior of the strategy resulting from the actions combined

for different y). An important reason for providing a concrete method to select one action



is that there is no guarantee that if the “unlikely” priors are eliminated, then a repetition

of the sensitivity analysis will automatically give robustness.

In the following we briefly describe the set up considered and results obtained in this

article and also describe the organization of the paper.

Consider the canonical normal problem where Y 51 ~ N(8, o), where 0 is unknown

and X is a known p.d. matrix. We let 8 have a prior belonging to the class
P={m =nis N(g,X), pfixed, ;<X ¥o}. (1.1)

The reason for considering conjugate priors is that in many problems they provide a rich
enough class of priors for a conscientious sensitivity analysis and yet they are mathemati-
cally attractive. Families of nonconjugate priors are considered in DasGupta and Studden
(1988c). Note that u is kept fixed but not the prior variance-covariance matrix ¥ because
it will typically be easier to elicit the location of the prior than its higher moments. Priors
of the type (1.1) were first suggested by Leamer (1978, 1982), and Polasek (1984). In
addition, also see DasGupta and Studden (1988a) for an extensive discussion of the family
(1.1). Note that the canonical normal linear model where the error variance is known is
subsumed in our set up. Non normal priors as well as non normal models will be considered

elsewhere.

With the regression model in mind, we consider in this article estimation of § as well as
a linear combination ¢’d under squared-error loss. This will cover problems of estimating
the vector of regression coefficients and estimating the mean response (or predicting a
future value) for a fixed level of the regressor variables. In each of these problems, we
derive the conditional I'-minimax procedure, i.e., the procedure § that minimizes (for fixed

data y) sup ry(m,6) where ry(m,8) denotes the posterior expected loss of § corresponding
" wer

to the prior w. It is seen that there exists an estimate é for § such that ¢’ é is conditional
I'-minimax for ¢'d for every ¢ and for every y, but é may not be conditional I'-minimax
for @ for every y. It is shown that if ¥, X1, and X2 are each proportional to the identity
matrix then in fact é is conditional I'-minimax for § for every y. These results are derived

in section 2.
In this context, we have also considered the Bayes action for the Type-II maximum
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likelihood prior (the Type-II maximum likelihood ‘prior’ is defined as the 7 that maximizes,
for given y, the marginal likelihood of y; see Good (1965) and Berger and Berliner (1986)).
In the process, a new Bayesian interpretation of the Stein-estimate emerges. These results
are contained in section 3. The Type-II ML prior is connected with the idea of “ruling
out” some priors which are considered unlikely after observing the data. To put it in
another way, the Type-II ML prior is the most likely prior after observing the data. Con-
sequently, priors that are “far” from the ML prior are the priors that should be considered
unlikely after observing the data. Keeping this in mind as well as the need to be robust
with respect to other priors in T', we consider in section 4 the problems of deriving the
action that is conditional I'-minimax subject to being e-Bayes with respect to the Type-II
ML prior or conversely the action that is Bayes with respect to the ML prior subject to
being e-minimax. The second of these problems is related to the restricted-risk Bayes ap-
proach, first suggested by Hodges and Lehmann (1952). For more recent works see Berger
(1982), Kempthorne (1986), DasGupta and Berger (1986), DasGupta and Rubin (1987a),
DasGupta and Bose (1987b) etc. The first problem relates to restricted minimaxity, con-
sidered among others by Bickel (1980).

Even though from a conditional perspective it may be desirable to derive one’s decision
rule by conditioning on the given data y, it is important to consider its average performance
over repeated use. This is done by considering the usual risk functions of the different
procedures derived in this article. Using a result of Strawderman (1971), it is actually
proved that the Type-II ML Bayes procedure is frequentist minimax for p > 3. Some of
the other procedures, although not minimax, have remarkably good risk properties. This is

considered in section 5. Section 6 contains some concluding remarks and a brief discussion.

2. Estimation of an arbitrary linear combination ¢’d. Although the vector esti-
mation problem usually arises more naturally than estimation of a linear combination, we
consider the linear combihation problem first because our results are more general in this
case and more importantly, because the conditional I'-minimax procedure for this case
naturally suggests what the solution may be for the vector estimation case. We need the

following result from DasGupta and Studden (1988a).

Theorem 2.1. For the family of priors (1.1) and any arbitrary p-dimensional vector c, let



S(c) denote the set of two-dimensional vectors of posterior mean and posterior variance of
c'd, i.e.,

S(c) = {(E(c'0y), Var(c'fly))|r € I‘}. (2.1)
The set S(c) is an ellipse

{u: (v —uo)' D (u—uo) <1}, (2.2)

where uo = (¢’u + ¢'Av, ¢'Ac)’, and

Henceforth, the matrix D defined above will be denoted by

0'% poO102
D= ,
o3

where 02,02, p are defined in the obvious way. Before deriving the conditional I'-minimax
rule for estimation of ¢’6, we note that under any prior 7 and for any action 6, the posterior
expected loss of § is given by
ry(m,6) = E ((6 — ¢'0)*ly)
= (6 —u)? +v,
where u = E(c'f|y) and v = Var(c'dly). Since Theorem 2.1 gives that for I as in (1.1), the

(2.3)

points (u,v) form an ellipse S = S(c), the problem of deriving the conditional I'-minimax

action reduces to the geometric problem of finding a § that minimizes sup {(6—u)?+v}.
(u,v)eSs
This geometrical representation of the minimax problem later turns out to be very useful in

visualizing various aspects of the proofs. Note that easy arguments show that the minimax
action will have to belong to the projection of S onto the u-axis even if § is permitted to
belong to the entire real line. There will, therefore, be no loss of generality in assuming

that (6§ — wo1)? < 0%, where ug; = ¢'p + g'Xg.

Theorem 2.2. Let S be the ellipse (2.2). Then the § minimizing sup {(6 —u)%+ v} is

(u,v)ES
given by
202
6 = uo1 + poy if — <1
o2
] 202
= uop1 + poz if —L > 1.
20’1 09



Proof: It’s easily seen that uo; can be assumed to be zero. We will first consider the case

202
721- > 1.
First note that the supremum clearly occurs for (u,v) on the upper boundary of the

ellipse. We then have the representation

o u?
v = uos + p—u + 02\/(1 -p2)(1-—=), (2.4)
01 oy

for any point on the upper boundary of S. Consequently for the action § = pz—‘%, the

(posterior) risk at a point (u,v) on the upper boundary of S equals

2

r1(u) = uoz + (ﬁ—u) +&U+02\/(1—p2)(1—%), (2.5)

201 o1 o

where —0; < u < 0;.
The derivative of rq(u) equals

oxy1-p® (2.6)

2 u?
o3 — o

ri(u)=u|2—

from which it follows that r;(u) is monotone increasing for u near —o;, monotone de-

2(1_ 20q_ 2
creasing for u near oy, and rj(u) =0 at v = 0, :i:oull - 22%54_”2_)_ Note 321%’7”—1 <1
1 1

2
since 3}; > 1 and p? < 1. It is, therefore, clear that the maximum of r1(u) is attained

2(1_
at v = Tu™* where u* = +o14/1 — ﬁ%. It is easy to check that under the condition
1

202 . . . . . e e .
f; > 1, the action § = p32* lies between du*. In this situation p32- must minimize

sup {(6 —u)?+ v} since by moving away from the action pz—aazl- the risk at one of the two
(u,v)ES

2
points :u* increases. This completes the proof in the case 2&”—; > 1.

2
For the case 2702’- < 1, we will prove that the maximum (posterior) risk of the action
6 = po; is attained at the point (u,v) on the upper boundary of S corresponding to

u = poy. This will then directly imply that po; must be the minimax action in this case.

Thus we are required to show that the quantity (po1 — u)? + v, where v is given by

(2.4) has a maxmum at v = poj. The value at u = po; is readily seen to be ugz + 02, so
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it suffices to show

2

o u
(u — poy)? + p—u +02\/(1 -p?)(1- =) L o2.

However, this can be seen to be true, with a small amount of algebra, by substituting

u = oy cosf for 0 < 0 < 7 and using 20% < 03.
The proof of the theorem is now complete.

Corollary 2.3. For the problem of estimating ¢’§ under squared error loss and for the

family of priors as in (1.1), the conditional I'-minimax action is given by

bc(y) = c'(Aav + ) if v/(A2 — A1) <1

(2.7)
=c'(A*v + p) if v'(Az — A1)y > 1,

where A* = Az;"h + 20,‘(\1{;_1\1{1),0, and v, A;, A2 are as in Theorem 2.1.

Proof: Direct algebra using Theorem 2.2 and the definitions of 02, ¢2, and p in the

matrix D.

Notice that corollary 2.3 implies that there exists an estimate é of 4, independent of

¢, such that ¢'d is posterior I'-minimax for ¢’@ for every ¢. The estimate

Y
Il

if 'QI(AZ — Al)’g S 1

2
E

Azv +
Av+ if TZI(AZ — AI)’E >1

Il
v
R

serves this purpose. A natural guess for a posterior I'-minimax rule for estimating 8 is this
estimate é We will shortly give an example showing that this is not the case in general.
But before that we need a representation analogous to (2.3) for the (posterior) risk of an
action 6 in the vector estimation problem. Note that for an action ¢ and a generic prior 7

in (1.1), the posterior risk equals

ry(r,6) = E||0 — §||*|y

) (2.8)
= ||Q7r - §||2 + tr Dy(e)a

where QAW is the posterior mean of § under the prior 7 and Dy(0) denotes the posterior

variance-covariance matrix of § under 7. If 7 is the N (1, ) prior, then 0 = Av + p where
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A= (Z5'+27Y)1, and Dy(8) = A. Consequently, the risk (2.8), parametrized by ¥ (or
equivalently, by A), equals

r(8,8) = 18~ (v +@)[I* + tr A.

Clearly, 4 could be assumed zero without any loss of generality. We thus need to solve

the game where the payoff is
r(A,8) = |16 — Av|l? + tr A, (2.9)

where A; < A < A3 and §, without any loss, can be assumed to belong to the (convex) set
of all possible vectors Av for A; < A < A, (even if 6 is permitted to belong to the entire R?,
the minimax rule must belong to this smaller convex set. For the sake of completeness, we
note here that this convex set is a p-dimensional ellipsoid. See Theorem 2.1 in DasGupta

and Studden (1988a), and also Leamer (1982) and Polasek (1984)).

The following example shows that 0 suggested by Corollary 2.3 is not the posterior

minimax rule in general.

Example 1. Let p =2, A; = ((]; (1))’A2 - (-?1 _31)’

that for each unit vector g, the matrix A = Ay — (A2 — Al)l/zgg,' Ay — A1)1/2 satisfies

p = 0. It is easy to prove

~

A; < A < Ay. We choose two specific unit vectors a;, a2 defined as

_ cos 0 o — —cos
U= \sing)” 7\ sing )

where 0 < 6 < I is defined as cos?§ = 2%@ (0 ~ .3817). Also let v = (1,1), so that
v'(A2 — Ay) v = 2 > 1. The rule é = A*v is easily seen to be equal to (1.75, 1.75).
However, the action é* = (\/?_>, \/§) attains its maximum risk at A = Ag, A2, A3, where
Ao, A3 are matrices obtained by using the formula Ay — (A2 — Al)l/zgg'(Ag — A1)Y/? with
a = ay,az respectively (the proof involves relatively simple matrix algebra and calculus;
the details can be obtained from the authors). But the vector (v/3,/3) is inside the convex
hull of the points A;v, ¢ = 0,2,3; hence it must be the minimax action (by moving away
from the point (1/3,+/3), the risk at at least one of the three A’s defined above increases).

Interestingly, although A*v = (1.75, 1.75) is not minimax, the minimax action is extremely

close to it.



We comment without proof that whenever v/(A2 — A1)v is less than or equal to 1, é =
A2v+p is in fact the conditional I'-minimax action. It’s only in the case 13’ (A2 — Al)g >1
that é may fail to be minimax. Even in this case, é is minimax provided Ay — A; is a
multiple of the identity matrix. This is the assertion of the next theorem. We do not know
if the condition that As — A; be proportional to the identity matrix is necessary for the
theorem to be valid, but some crucial steps in the proof of the theorem are false without

this assumption.

Theorem 2.4. For the problem of estimating § under squared error loss, the rule

Ty
Il

if 'QI(AZ - Al)y S 1

e
R

Asv +
Ao+ if yl(Az — Al)'g >1

Il
Q@
R

is conditional I'-minimax if As — A; is a multiple of the identity matrix.

Proof: Let A = L3482 Then any A such that Ay < A < A satisfies -—AZE—AL <A-A<
AL;A—L. We will give the proof of the theorem in the case Az;—AL = I; the case of a general

multiple is exactly similar.

Under the assumption AZE—A’- = I, A satisfies A = A + C, where —] < C < I. Also
notice that y can be assumed to be zero without any loss of generality. For the case
v'(A2 — A1)y <1 (ie., v’y < %), we will prove that the action Av attains its maximum
risk at A = Aj, which will imply that A;v must be minimax. To do this, we will need to
show that for — I < C < I,

|A2v — (Av + Co)[| + tr A+ tr C < tr Ay

(2.10)
sll-CplP+ <y

But,
I=C)ll*+ &z C

"I-CYv+ trC

Il
'

IA

20'(I = C)v+ tr C(.- 0<I—-C <2I)
A

IA

max(I —C) + tr C
P
=1+ Z Ais) (where A3y <... < A(p) are the eigenvalues of C)
1=2

< p, as was required to be proved.
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For the case v'v > —;-, we will prove that the action A*v attains its maximum risk at
!

VU
A} and Ap where A} = Ay +2(1 — ;T"v) and that A*v is a convex combination of Ajv and
A2v, which will imply that A*v musf be minimax (incidentally A} defined above maximizes

trA among A satisfying Av = Ayv).

First we will prove that the risk of A*v at any A never exceeds its risk at A;. Thus,

we need to show that for -1 < C < I,

1" — (Ay + Co)|* + tr A+ tr C < |[A%y — Agv||* + tr Ay

v 2 v 2
¢>”2"3"’3 - CQ” + trC < HZQ'Q —’3” +p (2'11)
'c
#v'sz—L’—g—!— tr C<v'v+p—1.
TR Ny vy
. 12 ' v'Cu . .
Using the facts that v'C%v < v'v and o > Amin(C), (2.11) follows immediately. To

show that A*v also attains its maximum risk at A}, we need to show that equality holds
~ !

v
in (2.11) for C = I — —==—; this can be seen very easily. That A*v is a convex combination
v'y ~

of Ajv and Apv follows on using v'v > 1.

It thus follows that for the game described in (2.9), nature’s least favorable prior
concentrates on only Az for v/(Az — A1)y < 1 and randomizes between Aj and Aj for
v/(A2 — Ay)v > 1. Tt is informative that A; is not in the support of the least favorable
prior, but the matrix maximizing trA (i.e., the overall posterior risk) among A making
Av = Ayv (i.e., A for which the Bayes rule is the same as that for A,) is in the support
of the least favorable prior. Also, easy calculation gives that if ¥y = I, ¥; = al, and
Y2 = ool (i.e., X varies in the range ¥ > al), then the conditional I'-minimax rule é takes

the form (for p = 0)

b=y ifyy<e+1
—y———[1— if y'y > a + 1.
4 2(a+1)[ 7'y ly ifyy>et

* %

While a connection to the James-Stein estimate is immediate from (2.12), the exact form
seems to be different from various estimators known in the literature. The strikiﬁg resem-
blance of é to the restricted-risk Bayesian estimates in Berger (1982) and DasGupta and
Rubin (1987a) is interesting.
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3. Type-II Maximum likelihood. In this section, we derive the Type-II ML prior and
the corresponding Bayes actions. Since we have a parametric family of priors, the Type-II
ML approach is simply the usual parametric empirical Bayes approach where unknown
hyperparameters of a prior are estimated from the data using the maximum likelihood
method (although other methods such as unbiasedness and the method of moments have
also been used). There is an enormous literature on empirical Bayesian methodology. See
Maritz (1970) and Morris (1983) for discussion and other references. Note that we are not
suggesting that the prior ought to or can (in a philosophical sense) depend on the data;
we are simply suggesting use of the type-II ML prior as a usually effective operational
technique for weeding out the ‘unlikely’ priors. Indeed, our main goal is to carry out a
conditional minimax analysis after such unlikely priors have been eliminated. The reason
for such an elimination is that a straight minimax rule sometimes tries to protect against
priors that are simply unlikely in the light of the obtained data. The type-II ML analysis
in this section should be viewed as simply a step towards that goal. However, the results
of this section are of some independent interest as well; for example, one by-product is a
formally new Bayesian interpretation of the Stein-type estimates. For a lucid discussion

of the type-II ML methods, see sections 1 and 6 in Berger and Berliner (1986).

The following theorem is the main result required for the derivation of the type-II ML

Bayes rule.

Theorem 3.1. Let Y ~ N(0,X), where for some constants A > 0, 1 < k < oo, (kA)-1I <
¥ < A71I. Then the maximum likelihood estimate of ¥ equals

| k-1 , , 1

—_— — —_— > —

s (AL L
1 1 1 1

= —I+ (kX — —)yy' f—<qyly< = 3.1
et -] iy syy sy (3-1)
I y 1

= — < —,
PURLLE Y

Proof: Let P be an orthogonal matrix such that Py = (00 ...0 ||y||)’. Note that denoting
R = R1'1 u
U Tpp

to minimizing cry, — log |R| where AI < R < kAI. Since |R| = |R11|(rpp — v R lu , and
PP pp — U iy U

= PE~1P' and ¢ = y'y, the problem of finding the mle of ¥ reduces

11



since for every R such that Al < R < kAI, the matrix

* Rll Q
E _( 0 "PP)

also satisfies AI < R* < kAI, it follows that for fixed Ry; and rpp, crpp—log | R| is minimized
by R = R*. Next, for fixed rpp, |R11| is maximized by R11 = kAlo, where Iy is the identity

matrix of order p — 1. Thus the minimum of ¢rp, — log |R| is attained at

s (kMo O
ae (0 2). 02

~

where r¢o minimizes ¢z — log z in the interval A < z < kA. Note that

ro = A H%SA
=1 ia<lcnm (3.3)
[ [
kA L >k
[

Now (3.2) gives

Rzk”‘(o k,\—ro>
0 -1
. , 0
®E_<MI.P<OkA_m>P> (3.4)
-1
1 , 0
kA(I P(O 1—“>P> '

Using the definition of P and the well-known matrix identity (I + uv')~! =1 —

the result now follows using (3.3) and (3.4).

In our set up we have Y ~ N(0,Xo) and § ~ N(u,X) where £; < X < Xj. Thus the
marginal distribution of Y —p is N (0,%0 + ¥). If now %o, X, X2 are each proportional
to the identity matrix, then using Theorem 3.1, the mle of ¥ may be derived. This in turn
gives the mle of A = (X5 1y ¥~1)~1, which produces an expression for the corresponding
Bayes action Av + pu. That, of course, is the type-Il ML Bayes rule. Thus the following

theorem is straightforward. We omit the proof.

Theorem 3.2. Let Y ~ N(0,I) and § ~ N(0,X), where n;I < ¥ < nyl for some
ng > ny > 0. Then the mle of A = (I + £71)~! based on the marginal distribution of Y

12



is given by

ni

Ap = I if y'y < 1
m= 1 if yy <n1+
+1 !
ny (1 - g )yy : ,
— I f 1< < 1 3.5
n1+1( + n1y'y ) tmtlsyysng+ (35)
ny (ne — n1)yy’ e
= I = if >ng +1;

the corresponding Bayes action (i.e., the type-II ML rule) is

A~ n
Qm:AmQ:Aly:nl_]*-_]_g 1fy'y$n1+l
1
:(1—E)y 1fn1—|—1Sg'y§n2+1 (3.6)
2
:Azy:n2+1y 1fy'yZn2+1

If the prior mean y for @ is not zero, (3.6) is valid with y replaced by y — p.

Remark. First note that the conditional minimax rule of Theorem 2.4 and the type-II
ML rule described above differ fundamentally in their forms in that the minimax rule uses
the action A2y for y near 0 while the ML rule uses the action Aoy for large y and the action
A,y for y near 0. To put it in another way, the ML rule shrinks more towards the prior
mean when the data is near the prior mean. This may be actually desirable if we believe
that data near the prior mean indicates a sharper tail of the prior. Otherwise, the extra
shrinkage may be regarded as unnecessarily risky, in which case we would like to move up
towards Aay. It actually turns out, as we shall see in the next section, that if we want to
be near Bayes for the ML prior but still want to guard against priors with heavier tails,
then the appropriate action is in fact to move up somewhat towards Azy (for y near 0).
Secondly, again note the clear connection of the ML rule to the Stein estimate. Of course,
it is known that if the coordinates of § are considered iid normal, then the ML rule is a
Stein estimate. The new finding is that even if the coordinate means are not iid, the ML
rule coincides with a Stein rule for moderate (or large, if nz = 00) y'y. That the ML rule
of (3.6) has good frequentist risk properties whenever sufficiently flat priors are included

in T is an attractive feature of the ML rule. We have the following simple theorem.

Theorem 3.3. Let Y ~ N(0,I) and § ~ N(0,X), where ¥ > nyI. Then the type-II ML

rule is frequentist minimax for every p > 3.
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'
Proof: The ML rule 8,,, can be written in the form 9,,, = (1 — r_(g%_gz/_)_> y where
v 4 yy ) *
!
! Yy y . 1
r === if <ni+1
W'y) =57 yys<m 57)

=1 ify'y>n1+1.
It now follows from standard minimaxity results (see, for example, Strawderman (1971))
that the ML rule is minimax for p > 3. More will be said about the risk properties of the
ML rule in section 5. Meanwhile, we now focus attention on the construction of restricted

ML Bayes or restricted conditional minimax rules.

4. Applications of the Lehmann-Wald theory: restricted Bayes and restricted
minimax rules. As mentioned in the preceding section, minimax rules often try to protect
against priors that are deemed unlikely after observing the data. A more rational approach
to selecting one Bayes action might be the restricted minimax principle where we minimize

sup ry(m,8) where T'o is a subclass of the likely priors. For example, each prior 7 in the
WEFO ~

original class ' gives one value for the marginal likelihood my(y) = [ €y(f)dr(8) of y

where £y(6) is the usual likelihood function for §. A natural choice for I'o may be
To= {7 €T: d(mg,ms) <€}, (4.1)

for some metric d, where # is the type-II ML prior and € > 0 is a suitable (usually small)
fixed number. Now, even though derivation of the ML prior in our setup is relatively easy
as long as ¥; and X, are multiples of the identity matrix, it seems rather hard to identify
all priors 7 (or equivalently, all matrices ¥ in the range (kA)™'I < £ < A~1I) satisfying
the inequality in (4.1) for any metric d. An alternative but related formulation, that is
mathematically tractable, is to try to strike a balance between the minimax and the ML
Bayes rule by minimizing sup ry('ir,é) subject to rg(fr,é) < 1+ s)rg(fr,g), where # is
the ML prior and § the ML 1]r3a.yes rule. The (1 + €)-constraint automatically forces good
Bayesian behavior with respect to the ML prior, and the minimax component attempts to
guard against other priors. This, of course, is the restricted minimax problem. See Bickel

(1980) for some results in a frequentist setup.

Formally, an “equivalent” formulation of this restricted minimax problem is to min-

imize ry(#,6) subject to supry(m,8) < (1+ €)V, where V is the minimax risk. This is
g 2
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usually known as the restricted-Bayes problem. The restricted minimax and the restricted
Bayes problems are both equivalent to minimizing z\ry (#,6)+ (1 — A) sup ry (7, 6) for some
0 < A <1 (see Hodges and Lehmann (1952)). However, depending1r on emphasis (i.e.,
whether e-Bayes for small € > 0 or e-minimaxity for small € > 0 is considered more im-
portant), it may be advantageous to derive the two rules separately. Part of the reason
that this is more advantageous is that if one starts with an € in either of the two problems,

then identification of the corresponding A is not immediate.

The mathematics involved in the derivation of the restricted-Bayes and the restricted
minimax rules are similar. So we will derive only the restricted-Bayes rule. The results
in Hodges and Lehmann (1952) are useful for this purpose. However, before we go into
explicit derivation of the restricted-Bayes rule, we like to state and prove a trichotomy
theorem that would be useful later. It shows that for certain 6, supr(A,§) is achieved at
one of three values of A. The prior mean y is assumed to be zero, if it is not, the results

are valid with y replaced by y — p.

Theorem 4.1. Let Y ~ N(4,I), § ~ N(0,X), and let n;I < ¥ < nol, where ny,ny
are known. Let A"v denote the Bayes action corresponding to the prior ¥ = nl, where

ny < n < ng. Here, A" = (I+3Z7)~1 = 251

(a) If v'(A2 — A1)v < 1, then for any n, supr(A,A"v) (defined in (2.9)) is attained at
4 v " 4
A=A,

(b) If v'(Az — A1)v > 1, then supr(A,A"v) is attained at A = A whenever A™ < A* (A*
is defined in (2.7)), at A = A} whenever A® > A* (A} maximizes tr A among A satisfying
Av = Ayv), and at A = A and Aj if A" = A*. Moreover, for every n, the trichotomy
A™ < A* or A™ > A* or A™ = A* holds.

The variance-covariance matrix of ¥ could be taken as a multiple of the identity
matrix without ruining the above trichotomy result about the maximum risk. Before we
give a proof of the theorem, we like to give a visual geometric description of the above
result. Under the set up of the above theorem, the set of all Bayes actions Av (where
A; < A < Ap) form a p-dimensional sphere (see Theorem 2.1 in DasGupta and Studden
(1988a)). For ease in visualizing, let us consider the case p = 2. Then the above sphere is

just a circle; moreover, it is centered at KQ and the center is obviously on the line through
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the origin joining Ajv and Azv, both of which are on the boundary of this circle. The
conditional minimax action is A*g if 13’ (A2 — Al)g > 1. This is also on the line joining
Ajv and Azv. The trichotomy result says that for any action on this line (and inside the
circle), the maximum risk is attained at A = As if the action is closer to the origin than
A*v, at A = Aj if the action is further from the origin than A*v, and at A; and A] if the
action coincides with A*v. The minimax action A*v thus acts as a ‘splitting point’ in this

situation.

Proof of Theorem 4.1: Since A™ and A* are both proportional to the identity matrix,
it is clear that the trichotomy A™ < A* or A™ > A* or A™ = A* holds.

For simplicity of notation, we will give the proof in the case ny = 1; also notation will
be simplified by denoting ns as m. First observe that for every n(1 < n < m), A"v can be

written as

A"y = r‘;{ +(1-7r) v, (4.2)

m
m-+1

for some 0 < r < 1. Also, routine algebra using the definition of A* gives

and thus, A® =r{ + (1 —r) 25T < A*

m+1
1 m+1
r>—- - 4.4
) (m —1)v'v (4.4)
We thus have to show that if (4.4) holds, then
llrg +(1-7) L Av||? + trA
2 m+1~ ~ 45
<||rz+(1—r) = v — Agv||® + trA (43
= 9 m+ 1~ 2¢ 2,
for A1 S A S A2.
Since A; = %I and A; = %%I , using the representation A = A+ C, where ——4(’"T_+115I
<C< 4(’:1—:_11)I , one can rewrite A in the more convenient form
m m—1
A= I-— B, (4.6)

m+1  4(m+1)
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where 0 < B < 2]. (4.5) then reduces to showing

- g2 _
(m —1)v'B* — r(m —1) v'Bv— trB <0. (4.7
a(m +1) m+1 - -

'B
Using the facts that v'B%y < 2v'Bv, % < trB and (4.4), (4.7) follows. This proves

that as long as we take an action closer fo the origin than the action A*v, then irrespective
of the value of v'(A2 — A1)v, the maximum risk of that action is always attained at A = A,.

The proof for the cases r < 7 — (7?%’ V(A2 —Aj)v < landr < 7 — (m_rfii_)}v_'v’

v'(Az — A1)v > 1 are very similar and are omitted. The case r = % — TWTI—-{—)LQ'—Q (i.e.,

A™ = A*) has already been treated in Theorem 2.4.

We are now in a position to describe the restricted-ML Bayes rule, i.e., the rule that
minimizes the risk for the type-II ML prior subject to being e-minimax over all priors in
I'. We will do this only for the case when g, 31 ¥, are multiples of the identity matrix.
This is because the trichotomy result of Theorem 4.1 is crucial for this purpose and we do
not have an analog of Theorem 4.1 in more general cases. The following theorem is stated

for the case ¥o = I, and p = 0.

Theorem 4.2. Let Y ~ N(8,1), 8 ~ N(0,X), where n1I < ¥ < nzI for known constants
ni,nz. The action that minimizes ||[§ — Ayv]|? + trA., subject to sup{||6 — Av||* + trA} <
(1+ €)V, where V is the minimax risk and A,, is the type-II mlerf A (and is defined in
(3.5)), and € > 0 is a fixed real number, is either the action A,,v itself or is the action on
the line segment joining A;v and Asv that is closest to A,,v in Lz norm among all actions

on this line that satisfy the (1 + €)-constraint.

Proof: We will give a descriptive proof of this theorem because of ease in understanding.
First note that if £ > 0 is sufficiently large, then the type-II ML action would itself satisfy
the (1 + €)-constraint and would therefore be the restricted Bayes solution too. Now
consider the case when A,,v does not satisfy the (1 + €)-constraint. Recall that the ML
Bayes action A, v is on the same line through the origin as the minimax action (it is helpful
to consider the case p = 2 and think geometrically at this stage). Now, if A,v is closer to
the origin than the minimax action, then we can move along the line joining A;v and A3v,
starting at the minimax action and move towards the ML Bayes action, and stop as soon

as equality is attained in the (1 + €)-constraint. In fact, because the trichotomy theorem
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implies that all actions on the line which are closer to the origin than the minimax action
have their maximum risk attained at A = A5, we immediately have that movement should
be stopped as soon as we reach the action rA;v + (1 — r)A2v = tv (say) such that

[ty — Azv||? + trAs = (14 ¢€)V (4.8)

This action v, by construction, is the action on the line closest to the ML action A,,v
subject to the (1+ €)-constraint being satisfied. The reason it is the restricted Bayes action
is that it can be written as a convex combination of A,,v and A,v, and is thus Bayes with

respect to a prior of the form (or equivalently, a A of the form)
A=(1-X)An+ A,

for a suitable A(0 < A < 1). Since the trichotomy theorem again implies that the maximum
risk of tv is attained at Az, standard theorems imply that tv is the restricted-Bayes action

(see Hodges and Lehmann (1952)).

The argument for the case when A,,v is farther from the origin than the minimax
action is practically the same, except now we have to move away from the origin, starting
at the minimax action, and stop as soon as equality is attained in the (1 + €)-constraint.
The other difference is that the maximum risk of the restricted-Bayes action is now attained
at Aj instead of A;. However, the restricted-Bayes action still is a-.convex combination of

1v and Apv (recall Ajv = A11~)) and the Hodges-Lehmann theorem again applies.

Theorem 4.2 gives a very convenient recipe for identifying the restricted-Bayes action.
We now work out an example giving an exact expression for the restricted-Bayes action in

a special case.

Example 2. Let o= I, 4 =0, n; =1, nz = oo (i.e., ¥ > I; this should be considered as
an assumption that prior information is at least as uncertain as sample information). Then

the ML Bayes and the minimax actions are respectively of the form (here v is actually the

same as y)
Apy = ‘12{ if v'v < 2
=(1- —L)v if v'v > 2 ()
vy’ e



and

(4.10)

Let also p = 5 and € = .1. Then for v'v <2, Apyv = % satisfies the (1 + €)-constraint

sup{||[Amv — Av||> + trA} < (1 + &)V (4.11)
A
v 2 _ P
PR < _—
@l -up < &
Therefore, for v'v < 2, the restricted Bayes action coincides with g = % Next,

for 2 < v'v < 6, the ML Bayes action A,v = (1 — ﬁ)y is closer to the origin than the
minimax action @ = (% + ﬁ)g Thus for 2 < 'g'g < 6, Apyv has its maximum risk at
A = A2 = I. Using this, it is routine to show that for 2 < v'v <6, (4.11) is again satisfied

and thus the restricted Bayes action again coincides with A,v = (1 — 51=)v. Notice in this
case,

— 1 1
V = — )2 4 p. 4.12
(Ggg ~ 7" +7 (4.12)

For v'v > 6, A,v is farther from the origin than 8. Thus for v'v > 6, A,,v has its maximum
vy y1sla 4 vy 4

risk at A} =T — —22—2,— Using this, it follows that for 6 < v'v < 9.0765 (approximately),
v'y ~ -
Amv satisfies (4.11]. "For v'v > 9.0765, (4.11) does not hold and therefore the restricted

Bayes action is such that equality holds in (4.11). It follows that the action equals

1 2 1
- 06875(— —1)2 + —) - v. 4.13
G+ yomsrsir — 2+ ) (419
We therefore have that for Xo = I, ¥ > Xo, 4 =0, € = .1, and p = 5, the restricted Bayes
action is given by
@Rzg if v'y < 2
1 .
=(1- m)g if 2 < v'v < 9.0765 (4.14)
1 2 0 1 o
= (5 + .06875(% — 1) + ';)""5) ‘v if v > 9.0765.

~ ~

Note that as v'v — oo , @ r converges to the regular Bayes estimate with respect to the
N(o, %?:\/EI ). Therefore, @ r cannot be frequentist minimax. However, it can obviously

be again written in the usual form

rp(v'v)
= (1- ey,

T
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In fact,

rr(s) = ifs<2

s
2
1 if 2 < 5 £9.0765 (4.15)

1
s(-;- — \[06875(2 —1)2 + ;) if s > 9.0765.

rr(s) is easily seen to be nondecreasing in s; however, it is clearly not bounded above by
2(p — 2) = 6 (in fact, r5(s) is unbounded). However, it in fact is bounded above by 6 for
s < 30.64. This indicates that while @ g cannot be frequentist minimax, it may have good
risk properties for even moderately large values of ||8||. More will be said about this in

section 5.

Before closing this example, we will like to work out how much improvement in risk
at A,, the restricted Bayes action provides (in comparison to the minimax action d) vy
sacrificing 100e% in maximum risk (again in comparison to the minimax action). Towards

this end, we will consider the quantity

r(Am’@) - T(Am,éR) .
r(Ama @) - T(Am, Am'g) ’

(4.16)

thus I(v'v) represents the relative improvement in deficiency by using @ g instead of é as
an alternative to A,,v, the best action for A = A,,. I(v'v) is conceptually related to the
Relative Savings Loss (RSL), a quantity proposed in Efron and Morris (1971). However,
unlike the RSL, large values of I(v'v) would be preferred.

Straightforward computation using the definitions of A,,v, @, and @ r (see (4.9), (4.10),
and (4.14)) gives

I(v'v) =1 if v'v < 9.0765

(g + /0887535 — 1)? + 515 — 3)° (417)
=1-——== B Ere— if v'v > 9.0765.
(o5 — 1)

Thus, for g'g < 9.0765, there is a 100% improvement in deficiency in exchange for a
10% increase in maximum risk. The improvement in deficiency decreases monotonically
as v'v increases and converges to .0952 (i.e., 9.52%) as v'v — oo. Thus the asymptotic

improvement is slightly smaller than the increase in maximum risk. But, the improvement



is significantly larger than 10% for quite large values of v'v. A plot of I(v'v) is given in

Figure 5. Here are some values of I(v'v) for a few selected values of v'v:

Table 1: Relative improvement in risk at A,,

v'y 9.5 12.05 16.75 21 30 49

I(v'v) .99 .80 57 AT 35 25.

We now turn to derivation of the restricted minimax rule. A theorem analogous to The-
orem 4.2 is again valid; this and the trichotomy theorem again aid in writing down exact
expressions for the restricted minimax rule. The analysis is very similar to that for the

restricted Bayes rule. Therefore, all details will be omitted.

Theorem 4.3. Let Y ~ N(0,1), 8§ ~ N(0,%), where n1] < ¥ < nyI for known constants
n1, ng. The action that minimizes sup{||6 — Av||>+ trA} subject to ||6— Amv||?+ trA, <
A

(1 + €) trA,y, is either the unrestricted minimax action @ itself or is the action on the line
segment joining A;v and Asv that is closest to the minimax action among all actions on

this line that satisfy the (1 + ¢)-constraint.

Proof: It is easily seen that the restricted minimax action must lie on the line joining A;v
and Asv. Once this simplification is reached, the rest of the proof is virtually a repetition

of the argument given in Theorem 4.2. The details are omitted.

Example 3. Again we will give an exact expression for the restricted minimax rule in a
specific example. The set up considered is ¥o = I, g = 0, n; = 1, ny = oo, p = 10, and
€ = .1 (the reason for taking a larger p in this example is to give an idea of what happens
in relatively high dimensional problems). We are thus sacrificing 10% in terms of risk at
the ML prior. Direct calculations similar to those in Example 2 yield that the restricted

minimax action @,z is given as

@sz ify'ySZ
= § 1 f2 'v < 18.8
=7+ 29,9)9 if 2<vy< (4.18)
1 1 1 .
= (1 — W — m(5.5 — m)) v if 13”13 > 18.8.

Thus the restricted minimax action coincides with the minimax action for small and mod-

erate values of v'v and converges to the ML-Bayes estimate as v'v — co. As usual, 0

21



can be written in the form

5 rv(v'v)
v = (1- o'y ) v
with
ra(v'v) =0 if v'v <
!
1
:-'{—;i—5 if 2 < v'v < 18.8 (4.19)

=1+ +/-1(5.50v'v — 1) if v'v > 18.8.

Again r,,(v'v) is nondecreasing in v'v, but is not bounded above by 2(p—2) = 16. However,
raz(+) is bounded above by 16 for v'v < 409.27 (approximately), indicating that for quite
large values of ||Q||, @ M may have good risk properties. We postpone such risk assessments

till section 5.

We close this section with an evaluation of gains in maximum risk provided by @ M
in comparison to the ML-Bayes rule A,,v in exchange for a 10% increase in Bayes risk at

Ap,. In analogy with (4.16), we define

supr(A, Amv) — supr(A,far)

J(v'v) = 2 A —— (4.20)
i supr(A, Apmv) — supr(A,6)
A A

Just like I(v'v) , J(v'v) measures the relative improvement in deficiency by using @M

instead of A,v as an alternative to @

Since dar = 9 for v'v < 18.8, one has that J(v'v) = 1 for'v'v < 18.8. Also, for
v'v > 18.8, both Amv and 0M are farther from the origin than §; therefore, by Theorem

4.1, Apv, 0M, and also 8 all have their maximum risks attained at A = =1~ 2vv
~ - ~ v'y
Then direct computation gives for v'v > 18.8,
-1 1 \y2
(- 59~ G — o5 — V5555 - %))
J('Q,Q) _ 2 Vv 2 vv V'Y v’y (4.21)

Thus, for v’y < 18.8 there is 100% improvement in deficiency in maximum risk for a 10%
increase in Bayes risk; the improvement again decreases monotonically as v'v increases and
converges to 0 as v'v — co. However, the convergence to zero seems to be rather slow; for
example, even at v'v = 100, J(v'v) is more than .38! A few selected values of J(v'v) are

given below. The function is plotted in Figurze 6.



Table 2: Relative improvement in maximum risk

'g"g 18.8 21 28 33.8 38 42 48.5 150 400

L

(v'v) 1 92 7 .68 .64 .60 .56 31 .19

The numbers indicate that in high dimensional problems a lot can be gained in terms
of the maximum posterior risk in exchange for a small sacrifice in posterior risk for the
ML prior. Similar results were found (though not for posterior risks) in Berger (1982),
DasGupta and Rubin (1987a), DasGupta and Bose (1987b) etc.

5. Frequentist behavior and risk functions. As mentioned before, we believe that
even if a procedure is constructed on the basis of conditional considerations, it must be
judged in regard to its performance over repeated use. In other words, before a procedure
can be seriously recommended for actual use, we must look into its risk behavior. Under an
ordinary squared error loss, the risk of a procedure is just its mean squared error (MSE).
In Figures 1 through 4, we show the MSE of 5 procedures; the following notation has been
used: 6; = @ (see (4.10)), 85 = the positive-part Stein estimator, 6 = Amv (see (4.9)),
0y = Og (see (4.14); this is considered only for p = 5), and s = (see (4.18)); again
recall that this corresponds to p = 10). Of these, f, and 03 are known to be frequentist

minimax (see Theorem (3.3)).

All four figures show that the risk function of §; increases at a rather high rate, but
has satisfactory risks for small or even moderate values of [|6]| (||4]] has been labeled R
in the figures). For example, if p = 10 and one takes a N(0,5I) prior for §, then 68 is
smaller than 46 with a probability of approximately .9. At ||6]| = /46 = 6.78, §; has a
risk of about 8, 20% less than that of the usual estimate Y. The figures also show that
quite soon the risks of the positive-part Stein estimator (92) and the type-II ML Bayes
rule (53) become virtually identical. The risk behavior of 5 (see Figure 4) is especially
encouraging. Up to [|0]| = 20, it has a risk smaller than that of ¥ and for 20 > ||6]| > 7,
has a risk function virtually identical to that of the positive-part Stein rule. Actually, it
is possible that the restricted conditional minimax estimators for small ¢ are frequentist
minimax, but we have not checked the risks for other values of p and ¢ (55 corresponds to

p=10and € = -1). 04 has similar risks than @1, which may be anticipated because 6, was
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constructed in a way that forces it to be close to b;.

Finally, plots 5 and 6 show the improvement in deficiency (as discussed in section
4; see (4.17) and (4.21)) by using the estimators 04 and 05. Both plots indicate that a
substantial amount can be gained in terms of one criterion by giving up a relatively small

amount in terms of the other criterion. Figure 6 is especially encouraging.

Summarizing, 65 and 65 have very good risk properties; f5 has very good conditional
properties too (it is nearly ML-Bayes and also significantly improves the deficiency of the
ML-Bayes rule in terms of maximum posterior risk). The indication, we believe, is that a
conditional I'g-minimax procedure where I'g contains the sub-collection of “likely” priors
in the original family T is likely to have good conditional as well as frequentist properties.
The conditional I'-minimax procedure as well as the restricted ML-Bayes procedure can

be risky if somehow large § are considered plausible.

6. Concluding remarks. In this article we have presented several concrete ways to
select one Bayesian procedure for actual use in a conditional framework when we have a
family of priors instead of a single prior. In particular, the heuristic concept of picking
up the “likely” priors has been given a concrete and workable shape by consideration of
‘neighborhoods’ of the type-II ML prior. Considerable evidence has been presented that
the I'-minimax method may indeed work well if the unlikely priors are somehow eliminated.
Undoubtedly, there are other ways of selecting the likely priors. We consider this article as
a concrete first practical step towards the selection of a Bayesian ruie. Selecting among the
frequentist minimax rules in a normal location problem was considered in Berger (1982).
The selection problems arise very naturally in the Bayes as well as the minimax set up
because of a relatively large choice the practitioner is faced with. Our results stem from

this practical issue.
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FIG.2: P=8 ESTIMATOR(1,2,3)
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§3= The type-2 ML Bayes rule



FIG.3: P=5 ESTIMATOR(1,2,3,4)
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1 The r-minimax rule

The positive part James-Stein rule
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The type-2 ML Bayes rule

The restricted Bayes rule (defined in (4.14))



P=10 ESTIMATOR(1,2,3,5)
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51 = The r-minimax rule
52 = The positive part James-Stein rule
53 = The type-2 ML Bayes rule

The restricted minimax rule (defined in (4.18))
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FIG.6
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