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Abstract

In a novel approach to experimental design, we address the problem of finding a design
that minimizes the Bayes risk with respect to a fixed elicited prior subject to being robust
with respect to misspecification of the prior. Uncertainty in the prior is formulated in terms
of having a family of priors instead of one single prior. Two different classes of priors are
considered: a family of conjugate priors, and a second family of priors induced by a metric
on the space of nonnegative measures. Family 1 has earlier been suggested by Leamer
(1978, 1982) and Polasek (1984}, while family 2 was considered in DeRobertis and Hartigan
(1981), and Berger (1987). The setup assumed is that of a canonical normal linear model
with independent homoscedastic errors. Optimal designs are worked out for the problem
of estimating the vector of regression coefficients or a linear combination of the regression
coefficients and also for testing and set estimation problems. Some new convexity results
are established and concrete examples are given for polynomial and weighted polynomial
regressions and a completely randomized design. A very surprising finding is that for
family 2, the same design is optimal vfor a variety of different problems with different
loss structures. In general, the results for family 2 are significantly more substantive.
Our results are applicable to group decision making and reconciliation of opinions among

experts with different priors.



1. Introduction. A major problem in the general domain of statistics is the derivation of
an experimental design optimal with respect to some criterion consistent with the goal of
the study. Typically, the optimality criteria considered by workers in this general area have
focused on long run (frequentist) performance of a design, such as the mean squared error
over repeated sampling: the well known criteria of A, D and E optimality are examples
-of this kind. It is not unusual though for the experimenter to have nonnegligible prior
information about the parameters in the system, information that is sufficiently significant
to be of some use but not quite so sharp and precise as to be quantified in terms of a single
“prior distribution.” The purpose of this article is to address the question of which design
should the statistician recommend in the scenario of a collection of plausible, Bayesian
prior distributions. This article thus focuses on some experimental design problems from
a “robust Bayesian” viewpoint. The subject of robust Bayes methods has, by itself, been
a major research area in the recent past; for general exposition and specific results, we
refer the reader to Berger (1984, 1987), Berger and Berliner (1984), Leamer (1978, 1982),
Polasek (1984), DeRobertis and Hartigan (1981), Kadane and Chuang (1987), Good and
Crook (1987), Lindley and Smith (1972), Dempster (1975), West (1979), Duncan and
Lambert (1981), and DasGupta and Studden (1988a, 1988b, 1988c, 1988d) etc.

There now exists a vast body of statistical literature on optimal experimental designs
(with primarily long run performance criteria); the pioneering work is due to Jack Kiefer.
For a variety of results and general exposition, see Kiefer (1959, 1961, 1974), Kiefer and
Wolfowitz (1959), Sacks and Ylvisaker (1968), Brooks (1972, 1974), Chernoff (1972), Dun-
can and DeGroot (1976), Elfving (1952), Fedorov (1972), Hoel (1966), Lindley (1968),
Pukelsheim and Titterington (1983), Silvey (1980), Whittle (1973), Cheng (1987), Wynn
(1972), Karlin and Studden (1966), etc.

The study of experimental designs in a Bayesian framework has been comparatively
limited; some of the important references include Pilz (1979, 1981), Verdinelli (1982),
Bandemer (1977), Chaloner (1984) etc. In this article, optimal experimental designs are
derived for the problems of estimation, prediction, or testing a null hypothesis in the

canonical normal linear model set up when the prior distribution for the parameters belongs



to a family of distributions (measures) T'.

Consider the usual linear regression problem where Ynx1 ~ N(X9, 6%1), where X, « P
is the design matrix of nonstochastic constants; for ease in exposition, assume o2 > 0 to

2 comes out as a proportionality factor in all risk expressions relevant to this

be known; o
paper and consequently will be ignored in all risk formulas. The case of the unknown
error variance will be mentioned in the concluding section. The design aspects of the
problem enter through the experimenter’s choice of the rows of the design matrix X from
an available set X. The vector of regression coefficients 0px1 is assumed to have a prior
distribution 7(f) belonging to a suitable class I'. For example, if T' is the class of all
multivariate normal distributions with a fixed mean u and a variance—covariance matrix
0%%, where ©; <X < %, (in the sense that ¥ — £; and X — T are nonnegative definite)
for two fixed matrices I; and ¥, then a relevant experimental design problem would be
to choose a design matrix X such that the variations in Bayesian measures of interest
(such as the Bayes risk or the Bayes estimate itself) due to the uncertainty in the prior is
minimized among all possible designs X. If such a design can be worked out, then we can
legitimately describe it as the “most robust” design. A moment’s reflection shows, however,
that designing simply to obtain the most robust results can arguably result in a collection
of statistical estimators which are similar in magnitude, but are mostly wrong or have
other undesirable properties. It seems natural, therefore, to use robustness as a secondary
criterion at the design stage, the primary goal being near Bayesness with respect to a fixed
elicited prior. Here is a simple example. In the situation described above, the Bayes risk
under ordinary squared error loss L(f, a) = ||#—al|? when the va.riance—cova.ﬁance matrix of
0 equals 02X is equal to tr(X'X+X71)71. The range of the possible Bayes risks is therefore
tr(X'X+3571) 71— ¢r(X'X 4+ £7") L. A sensible formulation of the design problem would
then be to minimize ¢r(X'X + £;1) = — tr(X’X + £7)~! subject to the restriction that
tr(X’X—l—Eal)—1 < (1-l—z-:)tr(X(’)Xo—I—Z]al)—:l where X is a fixed matrix (X; < X < Tj),
X is the Bayes design with respect to X, and € > 0 is a fixed (usually small) real number.
It is also quite natural to try to minimize the variation in the Bayes estimate of 0 itself.

To be more precise, if one wants to estimate the vector 0 (or predict k£ future values of the



response variable y) under a squared error loss, then the collection of all possible Bayes
estimates (or Bayes predictors) as the prior 7 for f varies in the class I' will usually form
a nice convex set S in an euclidean space. We could define a metric d on the set S and

minimize the (expected) diameter E(D) of S for the metric d (note D = sup d(u,v)),
U,Ves

again subject to suitable restrictions like tr(X'X 4+ X5") ! < (1 + s)tr(Xéf(J—{— »y )L
The expected value of D in this calculation could be taken under the marginal distribution
of the response variable induced by the N(u,Xo) prior (the reason we have to take an
expected value of D is that D itself will be a function of the specific data obtained, but we
do not see such data at the design stage). Design problems of these types will be addressed

in this article.

For ease of exposition we shall consider, what is now commonly called, the approximate
design theory. All the design aspects enter through the “information matrix” X’X which
can be written as X'X = nEp,-z,-a::- where :z::- are the rows of X and np; = n; are integers.
The approximate theory allows the p; > 0 to be arbitrary, subject to Xp; = 1, and in
fact, for further convenience, permits X’X = n [ zz'du where u is an arbitrary probability

measure on X.

Two different classes of priors will be considered; the first of them is
Ty ={n(0):0 ~ N(u,0°%), p fixed,X; < T < X} (1.1)

the idea here is that conjugate priors are mathematically attractive and also often provide
a rich enough class of priors for an honest Bayesian analysis of the data; the mean of
the prior is kept fixed but not the variance-covariance structure because the location of
the unknown parameters is usually much easier to elicit subjectively than it is to elicit
the higher moments and the strengths of the correlations. Also, as we shall later see, the
design problems are reasonably tractable with a family of priors such as (1.1). The family
of priors (1.1) was first suggested and used by Leamer (1978, 1982), and Polasek (1984).

For an extensive discussion, see DasGupta and Studden (1988a).

Normal priors, by definition, are symmetric and unimodal. Moreover, in (1.1) the

mean p was kept fixed (although we could vary the prior mean as well; see DasGupta
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and Studden (1988a)). An alternative family of priors that also enjoys mathematical
tractability, and yet at the same time automatically changes the mean along with the
variances and the covariances and in addition includes asymmetric and multimodal priors

is the family of priors

Iy = {x(9): L(¢) < (¢) < U(®)}, (L2)

where L and U are two fixed nonnegative functions, not necessarily probability densities
(i.e., L and U may not integrate to 1). Roughly speaking, the class of priors (1.2) places
the prior within a fixed band, much as one constructs confidence bands for the response
curve in regression problems. In applications, if one takes the lower band L as the density -
function of a fixed distribution and U as kL where k > 1 is a fixed number, then the family
(1.2) is a metric neighborhood of the prior L; again, see DasGupta and Studden (1988a).
The family (1.2) has many other highly attractive features and is thoroughly discussed in
sections 1 and 6 in DasGupta and Studden (1988a). The first works with this family of
priors are DeRobertis (1978) and DeRobertis and Hartigan (1981).

Section 2 contains the optimal design results for the family of priors (1.1). A general
result on the extremities of a convex functional is also proved in this section. This result,
although quite simple, may be of independent interest. In section 3, we derive the optimal
designs for the family of priors (1.2). It is seen that the design which is Bayes with respect
to the prior L has many robustness properties. For example, the following result is proved:
if L is a Np(p, 02%) density and U = kL for some k > 1, the regular Bayes design against
the prior L minimizes the (expected) Euclidean diameter of the set of Bayes estimates of 6.
A variety of other optimal design results are proved in both sections 2 and 3. The analysis is
substantially more elegant for I';. However, the family I'; needed to be considered because
of its conventional nature. Mathematically, our article contains new convexity results and
counterexamples to demonstrate that some functionals of the information matrix X’X that
one would expect to be convex are in fact not necessarily convex. All through the article,
the results from DasGupta and Studden (1988a) are heavily borrowed. We hope that our
results wiﬂ be useful in the context of group decision making and reconciliation of opinions

in the face of imprecise but significant prior information.
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2. Normal priors with a fixed mean. In this section, we consider several optimal design

problems when we have the family of priors (1.1). We are interested in minimizing various
functionals, for example, ®; (M) = tr(M+X; ')~ !—tr(M+X7 ')~ subject to the condition
that ®o(M) = tr(M +X7')"! is near its minimum. Thus, if M, minimizes ®¢, we require
the minimum of ®;(M) subject to (M) < (1 + €)®o(Mo) for some specified € > 0.
Here ®,(M) is proportional to the Bayes risk with prior corresponding to X and ®; is
proportional to the range of the Bayes risks for 7 in (1.1). The main difficulty in obtaining
useful results to aid in obtaining solutions to such problems is that the matrix difference
itself, (M + £3')~! — (M 4 X7')~! is, in general, neither decreasing nor convex in M.
Each of the terms (M + 2;1)_1 is, of course, decreasing and convex in M, so that ®o(M)
is decreasing and convex. Counter examples in this regard will be given after example 2
below. Whenever ®; is convex and decreasing one can then appeal to the usual Lagrangian
theory for such constrained problems. In these cases the minimum will generally satisfy
the equality ®o(M) = (1 + €)®o(Mp) provided the global minimum of ®; is not already

in the constraining set.

If @, itself is not convex (or not decreasing, or both), it is still very useful to know
that the minimum for the constrained problem will occur when equality is present. This
usually provides some reduction in the dimensionality of the problem. We state and prove

a general theorem in this regard.

Theorem 2.1. Let Z be a locally convex compact topological vector space and f; be
a continuous convex function on Z, and f; a continuous function on Z, not neceséarily
convex. Let S = {zeZ: fo(2) < k} where k is such that iIzlf fo(z2) <K < sup fo(2). Suppose
there exists a unique z1eZ such that f1(z1) = irgf f1(2). Then either z;€S or the infimum

of fi on § is attained at a 2* such that fo(z*) = k.

Remark 1. Note that since f; is continuous and Z compact, z; always exists; moreover 2;

is unique if f; is strictly convex.

Proof of Theorem 2.1: Suppose z; ¢ S. Note S is closed and hence compact since Z

is compact. Therefore, there exists 2*eS such that fi(z*) < fi(2) for all zeS. Suppose
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fo(2*) # k. Then z*eU = {z: fo(2) < k} and clearly U is open. Since Z is locally convex,

it follows that there exists an a > 0 such that (1 — &)z* + az;eU C S. Since f is convex,
fi((1—a)z" + az1) < (1 — @) f1(2*) + afi(z1) < (1 — &) f1(2*) + efi(z*) = f1(z*)
which is a contradiction to the definition of z*.

We will now prove the first useful convexity result of this article. We consider the
family of priors (1.1) and let £; and X2 be multiples of the identity matrix. This extra
condition will not be very restrictive because if it was thought that ¥; < ¥ < ¥, where
Y; and ¥ are not necessarily multiples of the identity, we could always augment the set
of variance—covariance matrices by using the obvious fact that any nonnegative definite
matrix is bounded below and above (in the sense we have been talking about) by multiples
of the identity matrix. Such an augmentation would not be very conservative unless in the
subjective elicitation process we end up with X; and X2 with very spread out eigenvalues.
It seems that such a thing is unlikely because the general tendency would be to keep the
subjective elicitation simple and therefore one would probably use diagonal bounds on &
anyway, adjusting the diagonal elements until it is thought that sufficiently high nonzero
correlations have been allowed by using these bounds (e.g., if the bounds I < ¥ < 57 are
used in 2 dimension, then the correlation is between :i:g—) So eventually it will come down
to replacing the diagonal elements by their minimum and maximum respectively. This
may be bad if the opinions on some of the regression coefficients are much more precise
than those on the other coefficients. Even then, we are only suggesting augmenting the
family of priors and therefore a more cautious analysis. The condition that ¥; and X, are

multiples of the identity seems crucial for the convexity result to hold.

Theorem 2.2. Let ¥ ynx1 ~ N(X0,0%I), where § € RP is unknown and 02 > 0 is known.
Let § have the family of priors I' as in (1.1) with 21_1 = kI and 22_1 =4I, k>£¢>0.

Suppose it is desired to estimate §,%x; under the loss
L(0,a) = 18 - al*. (2.1)

Let r(X,6x) denote the Bayes risk of 6x(y) = (X'X + X~1)~1(X"y + ©~!u) with respect
to the N(u,X) prior (note 8y is the Bayes rule for this prior when the design matrix X
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is used). Then sup r(%,6x) — inf r(X,0x) is a decreasing and convex
-1 —1
k-1I<D<e-1] k-1I<B<e-1]

functional (on the space of nonnegative definite matrices).

The proof of Theorem 2.2 needs the following lemma.

Lemma 2.3. Let R,S,T be symmetric nonnegative definite matrices such that ST = T'S.
Then ¢r(RST) > 0.

Proof: See appendix.

Proof of Theorem 2.2: Let X'X = M. Assume without loss 62 = £ = 1. Since r(Z, 6z) =
tr(M + X71)71, it follows that the range of the Bayes risks equals ¢tr(M + I)~! — tr(M +

kI)~!. In order to prove that the functional
(M) =tr(M+1)"" —tr(M + kI)™? (2.2)

is convex in M, familiar arguments imply that it is enough to prove that for a fixed nnd
matrix M and a fixed symmetric matrix P such that M + aP is nnd, the real valued

function

gle) =tr(M +aP+I)"' —tr(M + oP + kI)? (2.3)

is convex in the real variable o for 0 < a < 1. Define Q = M+ aP + I. Direct computation

yields

¢"(2) =2[trQ'PQTIPQT! ~tr(Q + (k — 1)) ' P(Q + (k — 1)) ' P(Q + (k — 1)I) 7]

Let Q~'=4 (24
@+ (k-1)1)* =B,
PR~ P=cC,

and P(Q + (k—~1)I)"'P = D.
Then, using (2.4), it suffices to show that trAC’A >trBDB.

Now, trACA — trBDB = tr(A — B)C(A + B) + tr(BCA — ACB) + trB(C — D)B

= trC(A + B)(A — B) + tr(BCA — ACB) + tr(C — D)BB.
(2.5)



Now note that A, B,C,D are symmetric nnd, A > B, C > D, and AB = BA. Hence,
(A+ B) and (A — B) commute and tr(BC A) = tr(ACB), implying by virtue of Lemma
2.3 that ¢"(a) > 0.

To show that ®(M) is decreasing it is enough to show that g’(a) < 0 whenever P is

nnd. However

¢'(a) = —trAPA + trBPB

and from Lemma 2.3 (or the previous argument with C = D = P) we have ¢'(a) < 0.

This proves the theorem.

Suppose now we seek a design that minimizes the range of the Bayes risks subject to
the restriction of being €-Bayes with respect to a fixed N(u, Xo) prior; this later restriction
will be of the form tr(X’'X + £5')~! < K. Since ®; (M), the range of the Bayes risks, is
convex, and tr(X’X +X~1)~! is continuous (and convex), Theorem 2.1 will apply provided
the set of possible information matrices is compact and typically the optimal design will be
an M = M* for which tr(M*+X;')~! = K. There usually also will be the very convenient
reduction in that the functional ®;(M) is decreasing in M (in the familiar sense) so that
we will often need to consider only the information matrices “on the boundary.” The
problem will then simplify to finding an information matrix M* on the boundary with the
property tr(M* + Xy 1)“1 = K. This will, in simple cases, reduce to a problem in just a
few real variables. We will explicitly demonstrate the optimal design for linear regression
in the case when the independent variable = takes values in [—1,1]. We will also give a

numerical example involving the estimation of p treatment means.

Example 1. Consider the simple linear regression model EY = 0y+60,z, where -1 < z < 1.
Suppose § = (#o,0,)’ has a N(u,0?X) distribution and suppose £ < ¥~ < kT for some
£and k(0 < £< k). Let 251 =R = < 7;1 :2> be any fixed matrix (usually in the above
range). We want to find the design minimizing ®;(M) = tr(M + €I)~! — tr(M + kI)7?
subject to ®o(M) = tr(M + E51) " < (1 + €)tr(Mo + £5')~! where My is the Bayes
design under X, ie. M, minimizes ®o(M). Here n obéervations will be taken on the

response y and € > 0 is a fixed number.



Since ®o and @, are both decreasing we can, by familiar arguments, restrict attention

to two point designs that sample only at £ = +1. The matrices M under consideration

M=n<i ;) (2.6)

where |¢| < 1. Tt is easy to check that the design Mo (i.e. the Bayes design under o) is
given by ¢ = —r/n provided |r| < n. If £I < R < kI, this will be the case if n > (k — £)/2.

are thus of the form

Also, the Bayes risk under Xy equals

2n+ri+r

®o(Mo) = tr(Mo+ R)™! = mrr)m i)’ (2.7)
Then ®o(M) = (1 + €)®(My) iff
(ne+r)% = IE?(n +r1)(n + r2). (2.8)

Obviously (2.8) has two solutions in ¢. Since ®;(M) is convex in ¢ and symmetric about
zero its minimum is at ¢; = 0. Consequently our required minimum c* is the root of (2.8)

that is closer to zero, provided ¢ = 0 does not already satisfy the constraint. Therefore

1 €
*=_ . - . >
¢ n( r+\/1+€(n+r1)(n+r2)) ifr>0

(2.9)
= (— —\/——(n-i—rl (n+r2)) ifr<o
One can check that ¢ = 0 already satisfies the constraint if
r2
€> €0 = (2.10)

(n+ri)(n+ry) —r2
Thus if € > €o the solution is ¢* = 0; otherwise ¢* is given by (2.9).

Before discussing example 2 we give a brief discussion of some Lagrangian theory
which is intimately related to the Kiefer~Wolfowitz equivalence theory. Since Po(M) =
tr(M + X7')7! is convex in M, the information matrix My minimizes &o(M) iff go(a) =
®o(aMp + (1 — o) M) satisfies g5(0) > 0 for all M. Since

96(0) = —tr(Mo + £71) " (Mo — M)(M, + 2717}
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and all M are of the form M = nXp;z;z}, we find that My minimizes ®,(M) iff
z' (Mo + 2_1)—2:5 <Coforallze X, (2.11)

where nCo = tr(Mp + 2‘1)_2Mo. Moreover equality must hold for z; used in My. In
minimizing ®; (M) = tr(M+£I)™! —tr(M +kI)~! subject to ®o(M) < (1+¢€)®o(Mp) it is
fairly easy to show that M* is the minimum iff there is a u > 0 such that g4 (0) +ug$(0) >0
for all M (where g;(a) = ®;((1 — a)M* + aM)) and u(Po(M*) — (1 + €)®o(Mp)) = O.
If v = 0 the global minimum of ®; results and the constraint on ®¢ is inactive. For the

functional ®; at hand, we find that M* is the constrained minimum if for some v > 0
g (M + ) e — o' (M + kD) 2 +ug (M + 7Y e < C (2-12)
where
nC* = tr(M* + eI)>M* — tr(M* + kI) 2M* +u tr(M* + 1) "2 M*, (2.13)

and

Qo(M*) = (1 + €)Do(Mp). (2.14)
Again equality must occur in (2.12) for any z} in M* = Zp}(z})(z})’ for which p} > 0.

The above results are called “equivalence” theorems since, for example, the mini-
mization of ®o(M) is equivalent to (2.11). An elaborate literature on such theorems is
available. See, for example, Pukelsheim and Titterington (1983), and Gaffke (1985). A
short discussion of the equivalence theory for constrained problems is given in Lee (1988).
For historical record we should remark here that a form of the original Kiefer—Wolfowitz
theorem is given in Schoenberg (1959) in the original context of D—optimality, i.e. finding

the design which maximizes the determinant of X’'X.

Example 2. Consider a completely randomized design with p treatments and suppose the
treatment means p1, p2,..., #p have a prior as in (1.1) and again suppose £ < ™1 < kI.
The information matrix M is now a diagonal matrix with diagonal elements n; = number of

measurements on u;. For the case p =2 a complete solution is easily given as in Example
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r1 T

1 for general 251 = ( -
2

>. We omit these details. For arbitrary p, assume that
P3P ! — Ry is diagonal with diagonal elements r; and assume without loss of generality that
0<ry <ry <...<rp. Measurements on u; correspond to z; = ¢; = (0,...,0,1,0,...,0)’
with the “one” in the i** component. From (2.11) it follows that My minimizes ®o (M)
iff (n? + r;)72 = Co whenever nd > 0and r; 2<Coif n? = 0. It is easy to see that if

n > prp — Xr;i, then nQ + r? =X = L::"- for all 7. Note n9 > ... > ng. Intuitively, one

makes the posterior precisions n; + r; as equal as possible (starting with the smallest ;).

Since the functional ®; is convex and invariant under permutations of the treatments
it follows that the minimum of ®; occurs for n; = n/p. The minimum of ®; subject to
®0(M) < (1 + €)®o(Mop) amounts to moving the n; from nf in the “direction” of n/p.
Equation (2.12) shows that n},¢ = 1,2,...,p is the required solution if (2.14) holds and
for some u > 0

(v} + 872 = (nf + £) 7 +ulnf +r) P =C (2.15)

where C* is given by (2.13). The condition on C* in (2.13) will force ¥n} = n. In solving

these equations we actually solve (2.15), (2.14) and Xn} = n for »,C* and nj,... s Tp-

Two examples are illustrated in Figures 2.1 and 2.2. Fig. 2.1 corresponds to £ = 1
and k = 5 and n = 15 while Fig. 2.2 has £=1 and k = 9 and n = 25. In Fig. 2.1 and Fig.
2.2, the other parameters are given by the following table; quantities in parentheses apply

to Fig. 2.2.
p=2 p=3 p=5
rn 1(1) 1) 1(1)
ra 5(9) 3(5) 2(3)

r3 5(9) 3(5)
T4 4(7)
rs 5(9)

The value plotted in the two figures is
n(e) = (27 — 87)/®]

where ®? is the value of ®; at the minimum for &, and ®7 is the value at the constrained

minimum. Thus 1007 (€) is the percent gain in robustness for a sacrifice of 100 ¢ % in
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subjective Bayes risk. We remark, and it is not very hard to show, that for ¢ near zero,

the value of n(€) is approximately

n(e) ~ (n+ Eri)sa\/g

~ 0
Ql

where s2 = p~1 Zp:(a,- — @)%, @ = Za;/p, and a; = —(n? + £)~2 + (n? + k)~2. Thus,
the percentage ga:.i=n1 is considerable for small €. As an example for n = 25, (see fig. 2.2)
p=2,r1 =£=1,r2 = k = 9,€e = .02 corresponds to n(€) = .14, which represents a 14%
gain in robustness for a 2% sacrifice in risk. At this point n; and ns have moved from
ng = 16.5 and ng = 8.5 (where n + r; = n3 + r = 17.5) to n} = 14 and n3 = 11. For
fixed n, the constant multiplying /€ appears (as in the figures) to be increasing in p. This
provides further confirmation, that there is generally more gain in robustness for fixed e,

for larger values of p, i.e. more parameters in the model. For n = 15 the constants are

approximately 1.3, 1.7 and 2.6 for p = 2, 3 and 5 respectively.

Before continuing with our general discussion we consider some counterexamples which

illustrate that the matrix functional
p(M)=(M+Ry)™* —(M+Ry)! (2.16)

is neither decreasing nor convex in M. Here Ry = P 1,R1 = Zl_l,Rl > R2 > 0 so that
(2.16) is nnd. In general (M + R;)~! is decreasing and convex in M. Let 4; = (M + R;)™1
for + = 1,2. By considering the differential of (2.6) in « for M + aP we see that the
difference (2.16) is decreasing in M iff

—AsPAs + A1 PA; <0 (2.17)
for all P > 0. Moreover the difference will be convex iff
AsPAs PA; — AjPA{PA; >0 (2.18)

for arbitrary symmetric P.
The two inequalities (2.17) and (2.18) can be violated as the following examples show.
20 O 10 3 1 0
Let Ay = (0 2>,A1—<3 1) and P = <0 1). Then P > 0 and 0 < 41 < As.
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' 400 © 100 33 -
However A3 PA; = ( 0 4 and A, PA; = 33 10, 5° that (2.17) is violated.
. . . . . 2 0 1 0 01
Similarly (2.18) is violated if A, = <0 1> ,Ap = (0 1) and P = <1 d) and d > 2.

Since M = nX;p; X; X! is essentially arbitrary it is easy to see that one can construct
linear models for which p(M) is neither increasing nor convex. These examples indicate

that each functional of p(M) must be handled separately.

Sometimes, it may be more desirable to keep the estimates themselves as close as
possible rather than keeping the range of the Bayes risks small. As mentioned in the
introduction, the collection of Bayes estimates as the prior varies in a class I' usually form
a nice convex set. We can then seek a design that keeps the diameter (in some metric)
of this set small; for instance, we could seek a design that keeps the Euclidean diameter
(i.e., the diameter under L, norm) of this set small. The following result is taken from

DasGupta and Studden (1988a). See also Leamer (1978,1982) and Polasek (1984).

Theorem 2.4. Under the setup of Theorem 2.2, the Euclidean diameter of the set S of all

Bayes estimates is equal to

D = \/v'(A2 — A1)V - Amax (2.19)

where v = X'(y— Xp), Ay = (X' X+kI)", A2 = (X'X +£I)7!, and Apay is the maximum

eigenvalue of A — A;.

For an expression of D when Xy, X, are arbitrary nnd matrices, see DasGupta and
Studden (1988a). The problems in working with the Euclidean diameter D are that D
depends on y and consequently an expected value has to be taken to address a design
problem. It turns out that E(D?) is usually easier to calculate and handle than E(D). If
we take an expected value of D? under the marginal distribution of y induced by a N(u, &)
prior, then only in very special cases it can be proved to be convex. However, in Theorem
2.1 we noted that for our restricted optimal design problems we can sometimes bypass the
question of convexity by letting the nonconvex functional as fo and another appropriate
functional that we know is convex as f1. For example, the Bayes risk under a N(u,X) prior

equals the functional tr(M + X£~1)~! and this is known to be decreasing and convex. In
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such a case, we can reformulate our design problem as minimizing tr(M + X~1)~! subject
to keeping E(D?) small. Of course, we will still need to establish that E (D?) is decreasing
in M; this is crucial in order to do all the minimizations “on the boundary” of the space
of information matrices. As we shall later see, E(D?) is often decreasing in the important
special cases of polynomial regression. First, we give below a result that says that E(D?)

is convex in some cases.

Theorem 2.5. Suppose £ = 0 in Theorem 2.4 (i.e., & varies in the range %I < ¥). Then
the expected value of D? under the marginal distribution of y induced by the N(y, +1)

prior is decreasing and convex.

Proof: Direct computation gives that the expected value of D? is proportional to

$(M) = Amax{M™' — (M + kI)™}
k
As(k + A5)’

where A, is the smallest eigenvalue of M. It’s self-evident that ¢ is decreasing. To show

that it is convex, as usual it will suffice to show that

1
9(e) = h(a)[k + h(c)]

is convex in the real variable a(0 < o < 1) where
h(c) = As(M + oP)
= the smallest eigenvalue of M + aP,

where P is a symmetric matrix such that M + oP is p.d. Since g(a) > 0, to prove
that g is convex it will suffice to prove that g is log convex (i.e., logg is convex). Now,
log g = —[logh + log(k + h)], and k, h > 0. Consequently, it will be enough to prove that

h(e) is concave (h > 0, h concave = logh concave). But now recall that
h(a) = As(M + aP),

and h is concave in o if and only if A;(M) is concave in M, which is known to be true;

this proves the theorem.
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Here is an application of this result.

Example 3. In the simple linear regressioﬁ model, let § ~ N(g,X), X > %I . Then the
design that minimizes the expected squared diameter of the set of Bayes estimates subject
to the restriction tr(M + £5') "1 < (1 + €)tr(Mo + £5') ! where 5o is any fixed matrix
and M, the corresponding Bayes design is again given by the root of (2.8) that is closer
to zero. This is because the gloBal optimum of E(D)? is attained at ¢ = 0. Observe the

similarity in the optimal design in examples 1 and 3.

Example 4. Again, consider the completely randomized design for estimating p means
K1,..., 1y discussed in example 2. The case p = 2 can again be handled quite generally.
Here we would like to minimize the functional ®3(M) = Apmax(M~1(M + kI)71), again
subject to ®o(M) < (1 + €)Po(Mo) where I ! = R is diagonal as in example 2. We

assume that r; < ry < ... <rp sothat n > ... > n9. Thus ®3(Mo) = For

illustrative purposes we assume r,_; < rp and n is large enough so 0 < n) < n9_,. For
¢ sufficiently small we can apply (2.12) to show (or show directly) that the constrained
solution n; satisfies ny, +rp = Af and n} +r; = A, ¢ = 2,...,p where A} and A are
determined by ¥n} = n and the constraint ®o(M*) = (1+¢€)®o(Ms). The general solution
is to set

ni +r; = A for ¢ < 4o and A for i > i
for some 7o depending on €. We omit the details.

In the context of polynomial regression, special interest lies in estimating the co-
efficient of the highest order term; this is a parametric function of the form c¢'6 where
¢=(00...01)". The Bayes risk under an arbitrary N(u,X) prior for this problem (as-
suming squared error loss) is ¢/(M + X~1)~!¢, which is convex (actually, for any c). We
prove below that the range of the Bayes risks is decreasing and consequently, Theorem 2.1
again applies and it is possible to identify the design that minimizes the Bayes risk with
respect to an arbitrary X subject to the range of the Bayes risks beiﬁg sufficiently small.
A nice feature of our next result is that for arbitrary nnd matrices ¥; and X, in (1.1), the

range of the Bayes risks can be proved to be decreasing in M.
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P .

Theorem 2.6. Consider the polynomial regression model y; = 6o + 0z + &;, where ¢;
j=1

are itd N(0,02). Consider the problem of estimating 0, under squared error loss. Suppose

0 has a prior as in (1.1). Then the Bayes risk under any specific ¥ is decreasing and convex

and the range of the Bayes risks is decreasing.

Proof: The Bayes risk under a specific £ is ¢'(M + X~ !)~!¢ where ¢ = (0 0...0 1)’ and
this is known to be decreasing and convex (Chaloner (1984)). On the other hand, the

range of the Bayes risks equals
®(M) =¢'(M+5;") e —e(M+I7") e
= The diagonal element in the bottom corner of

M+ —(M+27h) N

w-1_(B1 W1
1 ’ ’
i o

and22_1=(€,22 :{;)

Let now

Since we have a polynomial regression model, it is well known that in order to prove that

®(M) is decreasing in M, we have to only show that if M is partitioned as

M=(A, ‘~‘),
Ll T

then for fixed v and A, ®(M) is decreasing in the real variable z for z > 0. Standard

matrix identities give that

1
®(M) =
M) =2 + a2 — (u+v2) (A + Bz) 1 (u + vs)
R ~ = (2.19)
S otar—(e+u)(A+B) et o)
Now recall that ;' < 7!
-1 -1
A u — A u -
sa=((F §)rm) ma=((F 5) o)
=> The diagonal element in the bottom corner of Cy — C; is positive (2.20)

= a2 — (2 +92) (A + B2) 7 (u +v2) <an — (+91)(A+ B1) 7 (u+ v1)
(note Cy,C; are both p.d.);
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(2.19) and (2.20) now imply that ®(M) is decreasing in z. This proves the Theorem. An

example follows.
Example 5. Consider again the simple linear model E(y) = 0y + 61z and suppose —1 <
z < 1. In this case, letting £; ! = £ and 21_1 = kI, (2.19) reduces to

B k—¢ 1+ afc?
M) = T U= e’

(2.21)
where a = nL_i_e,ﬂ = ﬁ, and

(n ncl>=M; notice —1<¢; <1.
ney n

1+aﬂcf
(1—a2c?)(1—p2c2)

and hence convex for —1 < ¢; <1 (that 1 > a@ > 8 > 0 is needed to check this). The

It is straightforward to check that the function islog convexfor1 >¢; > 0

Bayes risk of an arbitrary M = <n7: nzl with respect to an arbitrary X, where
1
-1 __ r r . .
Y7l = ( , r2>’ is given by
n+r

r(X) =

(n + 7'1)(n + T2) — (ncl 4+ r)2 ’ (2.22)

1
ntro
(and decreasingness) of (2.19) and (2.22), the design minimizing (2.19) subject to () <

14¢
n-treo

and the global minimum value of r(X) over M equals . Combining now the convexity

, is the root of the equation

n+r 1+¢
= 2.23
(n+ri)(n+ry) —(ne1+7)2 n+ry ( )

closer to ¢; = 0 (which is the global minima of (2.21)).

Remark 3. For higher order models, it is hard to show that the range of the Bayes risks
¢(M+323")"te—c'(M + X71) " lc is convex. In these cases, Theorems 2.1 and 2.6 still
enable us to restrict attention to matrices M on the appropriate boundaries which make
¢'(M + Z71)~1¢ exactly equal to the imposed upper bound. A search can then be made

to locate the design minimizing the range among these restricted designs. For example,
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for quadratic regression our Theorems 2.1 and 2.5 enable us to reduce the optimal design

problem to a two variable minimization problem by considering designs of the form

1 C1 Co
M=n C2 C3 )
C4

where ¢; = (p2 — p1) + psa,
¢2 = p2 + p1 + paa?,

ez = (p2 —p1) + psa’
and ¢4 = p2 + p1 + paa?,

where —1 < a < 1, and p; +p2+ps = 1 (ordinarily, this is a three dimensional minimization;

but Theorem 2.1 reduces the dimension by one more).

Remark 4. Again, sometimes it may be more desirable to control the diameter (length) of
the interval of Bayes estimates of ¢’d instead of controlling the range of the Bayes risks.
From corollary 2.2(b) in DasGupta and Studden (1988a), it follows that if & > %I in
(1.1), then the expected squared length (under the marginal distribution of y induced by
the N (g, %I) prior) of the interval of Bayes estimates of ¢'f is, upto a proportionality
constant, ¢'M~1¢ — ¢/(M + kI)~lc; this is decreasing by Theorem 2.6 (and convex for the

simple linear regression case) so that the usual argument laid out in the above will again

apply.

3. Priors inside a density band. In this section, we consider construction of optimum

designs when we have the family of priors (1.2) with L a N(y,0?X) density and U = kL
where k£ > 1. As k gets larger, the family of priors (1.2) also gets larger. As we will like
to concentrate on the experimental design issues in this article, we refrain from giving an
extensive discussion of this family of priors and instead refer the reader to DeRobertis
(1978), DeRobertis and Hartigan (1981), Berger (1987), and sections 1 and 6 in DasGupta
and Studden (1988a). However, we remind the reader that in contrast to the family of
priors (1.1), the mean and the variance—covariance structure all change simultaneously as

the prior changes in the family (1.2). To give the reader a flavor of how different the prior
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means can be, we consider the model ¥ ~ N(X#8,0%I) when o* = 1 and L is N(y,I). The
prior mean of each 0; is in the range u; + y(k), where (k) for various values of k is given

below:
k 2 3 4 5 6 8 10

"y(k) .276 .436 .549 .636 .707 .817 .901
Thus, for example, if #; has mean zero and variance 1 under L, then the prior mean varies
between +.549 for k = 4. The nice feature of our results in this section is that the design
which is Bayes with respect to L will be seen to have a number of robustness properties

as well. The following Theorem is taken from DasGupta and Studden (1988a).

Theorem 3.1. Consider the normal linear model ¥ %1 ~ N (XQ,O’ZI ), where Opx1 is un-
known and o2 > 0 is known. Let 0 have a prior belonging to the family (1.2) with L as a
N(p,02%) density and U = kL, k > 1. Then the Euclidean diameter of the set of Bayes

estimates of § for squared error loss is free of y and equals

DL =27y Apax(M + X-1)-1 | (3.1)

- where v is an absolute constant depending on k.

The very attractive feature of the above theorem is that Dy, is independent of y and
therefore unlike in section 2, we do not need to take an expected value of Dy, (or its square).
The idea here is that if at the design stage we somehow knew what the y data would be,
then a Bayesian design should be geared towards optimum performance for this fixed data.

A value of D independent of y enables us to do exactly that.

Recall now that the family of priors in Theorem (3.1) is a metric neighborhood of the
prior L. Consequently, L is a natural choice for the specific prior with respect to which one
would like to be nearly Bayes. Since L is a N(u, 02X) prior, the Bayes risk with respect
to L is, upto a proportionality factor, simply tr(M + £!)~1. Our restricted optimization
problem would then be to minimize tr(M + £~1)~! subject to keeping D; small, or
equivalently Amax(M + X71)~! small (or vice versa). Since both of these functionals are
decreasing and convex, we have a relatively neat scenario in this case. In general, the

family of priors (1.2) does give such neat results.
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Example 6. Consider the simple linear model again and suppose that the information on 0
is vague; so we will take L =1 and U = k > 1 (formally, this amounts to taking % = co”
in Theorem 3.1). Thus the Bayes risk under L equals trM~! and D% (but for a constant)
equals ApaxM ™1, Assume —1 < z < 1; then the global minimum of trM~1 is ;2{ and is

attained by the design M = nl. On the other hand, the global minimum of Ay M1 is

1
n

trM~1 < (1+¢)- % for every € > 0. Interestingly, thus, the standard A (and E)-optimal

and is also attained at M = nI. Therefore, M = nI minimizes Ay M1 subject to

design is noninformative Bayes and also is the solution to the robust design problem.

Before we proceed to give the next example, we would like to point out that in fact
tr(M +X71)71 and Apax(M + Y71~ are both minimized by the same M in the simple
linear model for every ¥.

Example 7. Consider a completely randomized design with p treatments considered in
example 2. Let L again be N(u,0%%) where &1 = diag(ry,...,7p). The problem here
is to minimize Amax(M + Z71)7! subject to ®o(M) = tr(M + X~1)~! being near its
minimum. In this example the minimum of both functionals is attained for the same set
of nd,ny,..., ng. These values are such that nf + r; = Ao and are described in example

2. Thus the Bayes risk under the prior L for estimating the vector of treatments and the

squared diameter of the set of Bayes estimates are minimized simultaneously.

Example 8. For a quadratic regression model and vague information (i.e;, L =1 and
U = k), suppose we want to minimize D2 subject to a small Bayes risk under L. Usual
arguments imply that we can restrict attention to designs of the form

M=n (3.2)

o O+
o6 O
o oo

where |¢| < 1if |z| < 1.

1

The global minimum of ¢rM~1 (which is the Bayes risk under L) is attained at ¢ = 2

and the minimum value is 8. On the other hand, the global minimum of Ay M1 (which

is proportional to D%) is 5 and is attained at ¢ = .4. For & < %, the value of ¢ minimizing
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-3

D% subject to trM~! < 8(1 + ¢) is the lower root of Z(i%—_c) = 1‘?, which is 1 — y/ 1=,

For ¢ > 21—4, ¢ = .4 satisfies trM~! < 8(1 + €) and hence is the optimum value of c.

As in section 1, we now turn our attention to the estimation of ¢’d. For the family

of priors of this section, we can handle any arbitrary vector ¢; this enables us to work out

the optimal designs for estimation of specific regression coefficients or the mean response
at fixed levels of the regressor variables and also for the highly important extrapolation
problem in polynomial regression. The following result proved in DasGupta and Studden

(1988a) is the central reason that we can handle an arbitrary vector c.

Theorem 3.2. Consider the setup of Theorem 3.1. For any vector ¢, let p. and o, denote

the posterior mean and the posterior standard deviation of ¢’ under a fixed prior 7, where

L <7 < kL. Define
Se¢ = {(#c,0e): L <7 < kL}. (3.3)

Then there exists a fixed set Sp, independent of M and y, such that

S¢ = V¢'(M +5-1)~1c Sp + (¢'(M +E71)7,0),

where vy = X'(y — Xy) and for a real number A and a fixed vector 4, AA4 + 7 denotes the
set of all points Az + 4 for zeA.

Remark 5. It is actually proved in DasGupta and Studden (1988a) that the fixed set Sy
is simply the set

Sv={(E(2),VE@) - B%(2)): 2~ f, $ < f <k$}, (3.4)

where ¢ denotes the standard normal density. In (3.4), E(Z*) is to be interpreted as
f zF f(2)d=

i f(z)dz °
Remark 6. Theorem 3.2 implies that the range of the Bayes estimates of ¢'f as well as the

range of the posterior risks for estimating ¢’ can be simultaneously minimized by simply

minimizing ¢’(M + £7!)~ ¢ over M. Thus the following theorem is immediate.
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Theorem 3.3. Under the setup of Theorem 3.2, the Bayes design with respect to the prior
L, i.e., the design minimizing ¢’(M + L~!)~'¢, also minimizes the range of the Bayes
estimates as well as the range of the posterior risks, both of which are independent of the

data on the response variable.

Remark 7. An immediate consequence of Theorem 3.3 is that the design minimizing the
range of the Bayes estimates (or the range of the posterior risks) subject to an upper bound
on the Bayes risk with respect to L is simply the Bayes design under L. Also, this happens
for every vector ¢ and every problem that can be formulated as a normal linear model

problem. Several examples follow.

Example 9. The Bayes design minimizing ¢’(M + £~!)~!c is a rather specialized design
specifically built to estimate a specified ¢’d. The limiting case L = 1, U = kL results in the
classical designs obtained from minimizing ¢/M~l¢. This case has the elegant geometric
“Elfving Theorem” associated with it. The result says that if the optimal design has the
matrix M = nXp;z;z) then

Epieizi = PBe (3.5)

where ¢; = +1 and fc is on the boundary of the convex hull of the set of points {xz;zeX }.
The polynomial case where — f(z) =(1,=z,...,zP)" for ze[—1,1] is of particular interest.
It is known that if ¢; = (1,a,...,a?)' for a > 1 or ¢ = (0,0,...,0,1)’ then the optimal
design is supported on the “Chebyshev points” z,, = cos ”T"', v=20,1,...,p. These are the
zeros of (1 — zz)T}', (z) where T, (z) = cosmb,z = cos ¥, is the m** Chebyshev polynomial
of the first kind. The weights are found by solving (3.5) with ¢; = (—1)*. Further details in
this case can be found in Hoel and Levine (1964), Studden (1968) and Kiefer and Wolfowitz

(1965).

In the Bayes context, Chaloner (1984) has observed that for large n the Bayes designs
for arbitrary X, in the highest coefficient and extrapolation cases, are still supported on

the same Chebyshev points. The weights in these cases are found by making

Bni(—1)* f(z:) + Rd = Ac | (3.6)
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for some constant A. Here d is the coefficient vector of the polynomial Tp(z) and R = £-1.
Chaloner’s observation actually holds in more general cases. It is not very hard to show
that if ¢’8, in any classical situation, has a design supported by a full set T = T'(¢) of
points (i.e. equal in number to the dimension of 0), then for large n the Bayes design for
arbitrary ¥ is supported on the same set. Theorem 3.3 therefore implies that the design
minimizing the range of the Bayes estimates subject to an upper bound on the Bayes risk
under L is supported on the set T'. For large n, it is to be expected that the Bayes design
will “converge weakly” to the classical design. The surprising observation is that it is

supported precisely on the same set for large n.

Example 10. In this example consider weighted polynomial regression on [—1,1|. Here
we take z = f(z) = vw(z)(1,2,...,2P) for ze[—1,1]. The scenario is equivalent to
ordinary polynomial regression with variance o2A(z) where A(z) = 1/w(z). For example,
if w(z) = 1 — z, then observations have larger variance for z near £ = +1. Numerous
examples for the extrapolation and highest coefficient problems are given in Lau (1983).
We quote here one specific result. Thus if w(z) = 1—z then the optimal classical design for
extrapolation or highest coefficient is supported on the zeros of (1+z) P, 3=%) (z) = 0. Here
pleP) (z) is the m*® Jacobi polynomial orthogonal with weight function (1 — z)*(1+ z)P.
A brief description for the linear case p = 1 is given below. Our regression functions are
v/1—z(1,z). The support of the design is on z = —1 and z = 21,- The optimal weights

can be found from (3.5) and are L and % respectively. As remarked previously for n large

3
r1

, it can be shown
r 9

the Bayes design is support on x = —1 and % IfS"1=R=
using (3.6) that the corresponding weights are

st =(3+7)
and
2 — (B +1).

The actual condition on 7 is that these two quantities lie in [0,1].

We conclude this section by showing that the Bayes design with respect to L has other

remarkable Bayesian robustness properties. The next two results are related to hypothesis
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testing and set estimation as opposed to point estimation which was stressed thus far.

Theorem 3.4. Consider the setup of Theorem 3.1.

(a) For any vector ¢, and a fixed design M, let I be the set of smallest Lebesgue measure
such that L<i;1£kLP(g’ 0clIly) > 1 — o, where 1 > o > O is a fixed number. Then the
design minimizing the Lebesgue measure of I is the Bayes design with respect to L for
the point estimation problem with squared error loss, i.e., the design that minimizes

d(M+E71) e

(b) For a fixed design M, let S be the set of smallest Lebesgue measure such that L<in£ L
_1r_

P(6eSly) > 1 — o, where 1 > o > 0 is a fixed number. Then the design minimizing

the Lebesgue measure of S is the design that is Bayes D—optimal with respect to L,

i.e., the design that minimizes |M + Z~1|~L

Remark 8. The important points of the above theorem are that it shows one more ro-

bustness property of the design that is Bayes with respect to L, and more importantly,

it relates the point estimation and the set estimation problems and demonstrates that a
design which is optimal in one problem will be optimal in the other problem too. This is

reassuring.

Remark 9. The problem of finding the smallest volume confidence set with a minimum
posterior probability of 1 — « for a family of plausible priors has received attention from

several statisticians, including LeCam (1986).

Proof of Theorem 3.4. The proofs of parts (a) and (b) are similar; so we will sketch the

proof of only part (b).

It is proved in DasGupta and Studden (1988b) that (the) set S exists and is simply a
Bayes confidence set for the prior L, i.e., for a suitable v < «, S satisfies Pr(0eS|y) = 1—~.
Since the posterior distribution of # under the prior L is N(M+X~1)"1X'(y~Xp), (M+
x~1)~1), it follows that S is the p dimensional ellipsoid

S = {Q (- ’f)lA—l(Q —y) < Xf—'y(p)} ’ (3.7)
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where A = (M + 71)71, v = AX'(y — Xpu), and Xf_,,/(p) is the 100(1 — ~)th percentile
of the X2 distribution with p degrees of freedom. Since the Lebesgue measure of S is

proportional to |M + E'1|‘§, the result follows.

Example 11. Consider the quadratic regression model E(y) = 8o +8;z+ 8,22, and suppose
—1 <z <1, also let L be the N (/,!"‘722) prior where g is arbitrary but fixed and £~! =
diag(A1,A2,A3). Then standard monotonicity and convexity arguments and calculus give

that the optimum design of part (b) is of the form

" M=n

O O -
coa o
S O

M4 14y (a2 4 1) 4 (14 ) (e s
: .

Of course this amounts to sampling at 0 and +1, where the proportion of observations at

where ¢ =

each of £1 is £. For example, if the prior variances of 8y,0;,02 under L are 3, 5, and 1,
and if n = 9, then ¢ is approximately .72. Notice that the optimal design converges to the

classical D—optimal design as n — co.

We will now state and prove the final result of this article. The purpose of this result
will be to show that very surprisingly, testing and point estimation problems lead to the
same optimum robust design and that design is precisely the Bayes design with respect to

the prior L. A precise statement of this result is given below.

Theorem 3.5. Consider the setup of Theorem 3.1. Suppose we want to test the hypothesis
that for a fixed vector ¢, ¢’f is smaller than or equal to its prior expected value, i.e.,
Ho:c'0 < ¢'u. Consider this as a decision problem with a zero—one loss L(H;,a;) =
i, 1, 3 = 0,1, where a; denotes the action “accept H;” and 6;; =1if{# jand 0if 7 = j.
Then the designs that minimize (a) the Bayes risk (of the Bayes test) with respect to L, (b)
the range of the posterior probabilities of Ho,i.e., sup P(Holy)

L<n<kL L
(c) the Bayes risk with respect to L for the problem of estimating ¢’0 under an ordinary

Sl;lekL P(Holy), and

squared error loss, are identical; hence the optimum design for all three problems is the

design that minimizes ¢/(M + X~1)"1ec.
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Remark 10. The strength of this result is in the fact that in order to get the smallest
possible range of the posterior probabilities of Hy, one merely needs to construct the design
that is Bayes with respect to L for the testing problem. However, what we consider to be
extremely surprising is that the optimum designs for the testing and the point estimation
problems coincide. Thus, an experimenter who is simultaneously interested in conducting

a variety of statistical analyses can go ahead and use the same design, a very reassuring

situation. The proof of Theorem 3.5 needs the following Lemma.

Lemma 3.6. Let Z ~ N(0,72) and let g(®(Z)) be a symmetric unimodal function of Z
with mode at 0. Then E[g(®(Z))] is decreasing in 7.

Proof. See appendix.

Proof of Theorem 3.5: Assume without loss of generality that 4 = 0. Since the loss is

zero-one, for a fixed design M, the Bayes test under L takes action ao if and only if
Pr(Holy) > Pr(H:ly). Consequently, the posterior risk equals g;(p) = min(p, (1 — p))
where p = Pr(Holy) (note p will depend on the design M). Notice g;(p) is symmetric
about p = % and also unimodal with mode at % Now, since the posterior distribution of
¢'d under L is N(c'v,¢'Ac) where v and A are as in the proof of Theorem 3.4 (with u = 0),

it follows that p = ®(— \/%'-/R)

*. the Bayes risk of the Bayes test underL

= B, (y)[91(p)]

(where My (y) denotes the marginal distribution of y under the prior L)

= B (9)[91(2(-1))]; (3-9)

where t = \/%% and ML (t) denotes the marginal distribution of ¢ under the prior L.

Trivially, My, (t) is the N(0,72) distribution,

where 7% = ¢EM(M +3) e
S+ T )T

¢'Ee
¢(M+35-1)"1g

(3.10)

1.
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Now notice that g;(®) is symmetric and unimodal in ¢ and therefore by Lemma 3.6 and
(3.10), (3.9) is increasing in ¢/(M + £~')~!c. Consequently, the optimum design for part
(a) of Theorem 3.5 is the design that minimizes ¢'(M + X 1)~ !c.

To derive the optimum design for part (b) of the theorem, let A denote the set

A={0:d9<0} (3.11)
sup P(Holy)
L<r<kL
J, dn(0ly) (3-12)

= su
e Jew @7(8]y)

where 7(f|y) denotes the posterior distribution of 0 given y resulting from a generic prior

7w, where L < 7 < kL.

It is easy to see that the ratio [ dn(6|y)/ [ dr(8/y) is maximized by the prior
A RP

n(8) = kL(0) if 0cA
(3.13)
= L(0) if 0 £A

(see DasGupta and Studden (1988a) and DeRobertis (1978)).
sup P(Holy)
L<n<kL
___kp
T kptl-p
—__kp
T 1+ (k-1)p

(3.14)

Similarly, inf P(Holy)
R
T p+k(1-p) (5.15)

_ P
Ck—(k-1)p

(P(Holy) is minimized by using the prior
x(0) = L(0) if geA
(3.16)
= kL(0) if 0cA°.)
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s P(Holy) - , inf  P(Holy)
_ (k% — 1)p(1 — p) (3.17)
1+ (k-1)p)(k — (k- 1)p)

= g2(p)(say)-

g2(p) is easily seen to be symmetric about p = % and unimodal with mode at p = % Thus
the expected range of the posterior probability of Hy (under the marginal distribution of
y induced by the prior L) is increasing in ¢/(M + £~!) "¢ by a repetition of the argument

used to prove part (a) of the Theorem. The theorem is now proved.

4. Concluding remarks, other models, generalizations. In the present article we have taken

a novel approach of designing an experiment when we want to use the available prior
information but also want to guard as much as possible against possible misspecification
of prior information. Owur results include several new convexity results and especially
encouraging are the findings in section 3 that the user who wants to estimate and test at

the same time can use the same optimum design.

Much more has to be done. Other ways to model prior information have to be con-
sidered; Huber (1973), Berger and Berliner (1986), O’Hagan and Berger (1988) discuss
useful ways to model prior information. The case of an unknown error variance was not
considered in this article to keep the setup simple. However, most results of this paper are

? is unknown and an appropriate inverse gamma prior

also valid when the error variance o
is used for o2. The practically useful cases of heteroscedastic and /or correlated errors will

be considered elsewhere.

5. Appendix

Proof of Lemma 2.3: Let R = I''D;T where I is orthogonal and D; is diagonal. Then,
trRST = trDy 81Ty where S; =T'ST! and Ty, = I'TT'. Note S;T1 = T1.5; and both S;, T}

are symmetric. Therefore, there exists an orthogonal matrix L and diagonal matrices D,

and D3 such that S; = LD;L' and Ty = LD3L'. Note, Dy, D5, D3z are nnd because
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R,S:,T; are
c.trRST

=trD1 5Ty
= tTLIDlLDzDs
2> 0,

since L' D1 L and Dy D3 are nnd.

Proof of Lemma 3.6: Since g(®(Z)) is symmetric,

Elg(®(2))]
oo e—;’_—zz (5.1)
= 2/0 g(2(2)) Tocr dz.

2
Note that for z > 0, g(®(z)) is decreasing in z; since %—2—"51{,90} is MLR in z, the result

follows immediately.
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