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ABSTRACT

Estimation of the mean of a multivaraite normal distribution is considered. The
components of the mean vector, @, are assumed to be exchangeable; this is modeled in a
hierarchical fashion with independent Cauchy distributions as the first stage prior. The
resulting generalized Bayes estimator is calculated and shown to be robust with respect to
the presence of outlying means. Alternative estimators that have similar behavior but are
cheaper to compute are also derived.

RESUME

Dans cet article, nous étudierons ’estimation de la moyenne d’une loi normale multi-
variée. Nous assumerons que les composantes du vecteur moyenne, 8, sont échangeables.
Cette information a priori sera représenté par un modéle hiérarchique avec des lois Cauchy
indépendantes comme distribution a priori de premier niveau. L’estimateur de Bayes
généralisé correspondant a ce modéle sera calculé et nous montrerons quil est robuste par
rapport a la présence de valeurs abérrantes dans le vecteur observation. D’autres estima-
teurs possédant cette propriété mais plus économique & calculer sont aussi développés.
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1. INTRODUCTION
1.1 Background

Let ¥ = (11,...,Y;)" have a p-variate normal distribution with mean vector
6 = (61,...,8,) and covariance matrix o2I,, where 02 is assumed to be known. The
components of § are believed to be exchangeable, and hence “shrinkage” estimation of
them is desired. Most shrinkage estimators that have been developed are extremely sen-
sitive to outlying means, in the sense that they collapse back to Y itself when there are
outliers. In this paper, a hierarchical Bayes shrinkage estimator is developed which is
robust with respect to outlying means.

The assumption that the components of 8 are to be exchangeable can be modeled in
a hierarchical Bayesian fashion, with a two stage prior. We consider a first stage prior of
the form m,(6 | u, A) = [[%-; m1(6k | p, A), where the hyperparameters u and 4 represent
the location and scale parameters of ;. The prior distribution on the hyperparameters u
and A will be denoted by m2(u, A) = mp1(p | A)mwa2(A). If subjective information about
the location of the 8; is available, it can be modeled through 73 ;. If no prior location
information about 8 is available, 73 ; will be a noninformative prior. Note that one of the
main advantages of the hierarchical Bayesian approach to the problem is the possibility of
including subjective information in the exchangeable shrinkage estimator. Typically, 72
is chosen to be noninformative.

The familiar hierarchical Bayes estimator in this situation (cf. Lindley and Smith
(1972) or Berger (1985)) is derived from the choices

m1(8 | p, A) = Np(pl,, A%L),

71’2,1(#) = N(#o, "'2),

71’2,2(/1) = A or 7r2,2(A) = 1,
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where 1, = (1,1,...,1)*, N, stands for a multivariate normal distribution with the indi-
cated mean and covariance matrix, and po and 72 are assumed to be known (reflecting
subjective information about the location of ). Note that the given prior for A corresponds
to a uniform prior for the variance, A?, and the standard deviation, A, respectively. The

estimator corresponding to this model is, for j = 1,...,p,
gHN raaaly [__9°
— s e 2, —— ‘. e

(1)
— E72.2(Aly) [

] (7 — po)

pT? + 02 + A?
where, defining S% = Y %_ . (yx — 7)?,

exp{ % [07+A7 + fgic‘?‘i)A‘f]}
T=1(02? + A2)-D/2(pr2 + o2 + A2)1/2 m2,2(4).

m2,2(A | y) x

When subjective location information about 8 is not available, the common nonin-
formative prior for u used is 3 ;(u) = 1. The resulting estimator can be obtained from
equation (1) by letting 72 go to co. It is given (cf. Lindley (1971), Berger (1985)) for
7=1,...,p, by 2

GiIN = y; — Erax(Aly) [m] (vi — 9), (2)

where

5'2
7!'2,2(A I y) x (0'2 + A2)-(P—l)/2 exp{ m} 7r2,2(A).

An empirical Bayes approximation to 6HN was developed in Morris (1983a) and is given,

forj=1,...,p, by

9EBN _ , . (P—3) (p-—3)(72 &
9_,' =Yj Imn{(p_ 1), S;;/ }(yj ¥)- (3)

1.2 Robustness with Respect to Partial Misspecification of the Prior

The estimators 87 , 6EBN and §HN are usually called robust because they collapse

to 66(Y) = Y when the data is not compatible with the prior specification. For instance,
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if one of the 8; (and hence one of the Y;) is outlying (which is “incompatible” with the
prior specification of first stage normality), S2 will be large and gH~ , §EBN and GHv will
collapse to 6p(Y). Although this is “safe” behavior because of the conservative nature of
60(Y'), it is not appealing to use an estimator which ignores the prior information because
part of it is wrong. It is of considerable interest to develop estimators which discard only
the part of the prior information which is not supported by the observations. An estimator
with such behavior will be called robust with respect to partial misspecification of the prior.

Note that an estimator designed to accomodate the problem of robustness with respect
to outlying means was developed in Dey and Berger (1983) and in Berger and Dey (1985)
based on an idea of Stein (1981). It was created for the situation where each 6; is thought

to have known prior mean y, and is given by

e (1 _ (* = 2)0® min{1, 20y /|y; — pl}
J

+
— R , 4
S (ve— p)Z A 2(21_) ) (v; I‘).+ Iz (4)

for j = 1,...,p, where z(;.) is the (1*)** order statistic of (|y; — pl,-- ., |yp — #|) and I* is

the value of { which maximizes

(1-2)
b —upP Az

(5)

Later, we will consider a generalization of 87 to the case in which g is not known.

1.3 Summary of Results

A common way to achieve robustness with respect to outliers is to use flat tailed
priors (cf. Box and Tiao (1968, 1973), Dawid (1973), and O'Hagan (1979)). Therefore, for
the first stage prior on the 8; we will consider independent Cauchy priors with median p
and quartiles u + A, i.e. 7;(0; | p,A) =C(p, A) for j =1,...,p. The second stage prior,
ne(p, A), is left arbitrary. The generalized Bayes estimator, denoted by gHc , corresponding

to this prior will be developed and its behavior when there are outlying means will be
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investigated. In the development of §H¢ , & fast normal-Cauchy convolution formula will
be obtained. In section 3, alternative robust estimators will be developed. |

In the last section, some numerical examples will be considered. First, gHe will be
compared with the hierarchical normal estimator 5~ (ref. eq. 2), and with the alternative
robust estimators, when one component of the observation vector is an outlier. Another
way to measure the robustness of an estimator is to compute its Bayes risk with respect to
some plausible priors and compare it with the Bayes risk of estimators which are known
to be robust. We will compute the Bayes risks of §7¢ for C(0,[0.67574]A) and N(0, 4?)
priors (which have the same quartiles) and compare them to the Bayes risks of 87¥ and
the modification of 87.

Similar work has been done in Gaver (1985), and Gaver and O’Muircheartaigh (1987)

for Poisson event rates.
2. THE ROBUST HIERARCHICAL BAYES ESTIMATOR

2.1 The Posterior Mean

If n(6 | p,A) = [Thzy 1(6; | u, A) where, for j = 1,....p, (65 | p, A) is C(pe. A).

then the posterior mean of ; can be written as

9He — fooo ff;{@,-,”,A Hll:=1 m(yx | p, A)}ma(p, A)dpudA
’ I S ATy m(ye | g, A)}ma(p, A)dpdA

(6)

where

m(ye | p, A) = / £(uk | 8k)ma (B | 1, A)d6i
ejI#,A =[ 0_,-7r1(9j I ﬂ,A, yJ)doJ,

fyx 1 6x) =

1 1 \
Wexp *ﬁ(yk_ek) ’



SQyx | 0k)m1(6k | 1, A)
m(yk | l"A)
A

A%+ (0 — py7]

1!'1(0& I #, Av yk) =

Y

m1(6x | 1, 4) =

The advantage of using equation 6 to compute @Hc is that it is effectively only a
three dimensional numerical integral, even though the total number of parameters is p + 2.
However, the inner integral is a product of p+1 simple integrals. Consequently, an accurate
and inexpensive way to compute these normal-Cauchy convolutions will be needed if we

want 85¢ to be calculable in practice.
2.2 Normal-Cauchy Convolution

For the moment, assume that 4 and A are given.

Theorem 1 Suppose that Y; ~ N(0;,0%) independently for j = 1,...,p and that

6; ~ C(p, A) independently for j = 1,...,p where o2, p and A are known. Then

m(y; | ¢, A) = marginal of y; given y and A

V2

o

82¢m(ti)’ , (7)

~

8iu,a = posterior mean of 6; given p and A and Y;

S¢°(t5)
FTIRE ) (8)
Vi.jlu,a = posterior variance of 8; given yu and A and y,
Ao 1 Sg*(t ))2
= Sggas A |1+ (—’ ; 9
AT () { R (55) (9)

here R¢*(t;) and $¢*(t;) denote the real and imaginary parts of the complex function

$*(t;) = exp(t2) [@ - /0 ’ exP(_zz)dz] , (10)

g = AUy —p)
2 \/Tﬂ- )

where i = \/—1 and the integral in equation (10) is a contour integral.




Proof: Given in appendix A.

Note that the posterior covariance of 8; and 6y, given u and A, is equal to 0 for all
J # k since the y;’s are independent as are the 6; a'priori.

In the previous theorem, all the quantities of interest (m(y; | u, 4), ajln,Av Vijtp.a)
have been expressed as functions of the complex function ¢*(-). A fast method of evaluating

¢*(-) using complex continued fractions is given in appendix B.
2.3 The Hierchical Bayes Estimator

From equation (6), it is clear that 5;’0 is obtained by integrating ng#,A with respect

to the measure

{ITh=1 m(yx | B, A)}m2(p, A) .
fooo ffooo{HLl m(yx | p, A)}7e(u, A)dudA

ma(p, Al y) = (11)

If this technique is also applied to the other quantities of interest (marginal of y, posterior

variance), and Theorem 1 is utilized, the following is obtained.

Theorem 2 Let Y; ~ N(6;,0%) (o> known) and let 8; ~ C(u, A) (u, A unknown),

J=1,...,p. If my(u, A) is the prior density of (u,A) and if

[e°) oo p
o= A" { [T %6 )} ma(n A < oo

for all m > 0 and n > 0 such that m 4+ n < 2, then
2
() = (722

)p/2 /0~°° [: Lli[l 82¢*(tk)] mo(p, A)dpdA,

9;-1" = posterior mean of 6;

Sé*(t))
= Em(mAly) [ +A_;] , 12
FTORE) 42
ng-c = posterior variance of §;
Ac 1 Se*(t5) ~He) 2
= Em2(nAly) [_ +(u? - A+ 2 A—J] — (gHc



Vjﬁc = posterior covariance of §; and 8;
S¢°(t;) | S¢°(t)
= E*2(n,A)ly) [ 249 A( 1 4
HTHI\RE@) T R (1)
A2 (3¢‘(t1)9¢‘(tk))] _ gHeglic.

(Ro*(t;)Re*(tx)) 7
where p
] _ (2 \" [Ty Ré° ()] mal, 4)
2(/“"4 l y) - (7‘.20.2) m(y) :

Proof: Straightfoward.

Proposition 1 Let no(pu, A) = 1. If p > 5 then p* < co.

Proof: Given in the appendix A.
2.4 Calculation

To calculate the three dimensional numerical integrals in Theorem 2, several tech-
niques (IMSL subroutines, Gaussian quadrature, Monte-Carlo, etc.) can be applied. The
Monte-Carlo method with importance sampling function was chosen over the others be-
cause it seemed no more expensive and the précision of the result obtained by this method
is easier to control. Also, in section 4.2 the frequentist Bayes risk of gHc will be com-
puted, and to perform the additional integrations over the sample space Monte-Carlo is
now definitely cost effective.

To compute 8Hc for the noninformative prior m2(u, A) =1, one can use the following
scheme. If (u(P, AM), 1 =1,... n, areii.d. with density g(+,-) (the importance sampling

function), an estimate of the posterior expectation of h(8;) is

A(6;) = /0 / B(8;1u,4)m2(1, A | y)dudA
T B(B510,40) [Ty R6™ (0 )m2(u®, AD)] /9(u®, 40y (13)
T [Ba R ED)m(u®, 4®)] /9(u0, 40)




where o
h(8iutn,a0) = / h(8;)m1(6; | pV, AD y;)d8;,
-0
AW —i(y; — u)y
202 '

The importance sampling function, g(u, A), should be as similar to the posterior of (u, A),

o _
t,’ =

m2(p, A | y) (ref. eq. 11), as possible. Therefore, g(u, A) will be chosen such that its
location and scale parameters are approximatively equivalent to those of mo(u, 4 | y). Let
(71, 4;) and (;‘:‘A cz‘;::) be estimates of the location parameter and the covariance
matrix of w3(u, A | y); these will be defined shortly. If one wrote g(u, A) = g1( | A)g2(A4)
and assumed normality, the mean and variance of g; would be equal to fi; — %(4 - 31)
and v, — Eﬁt":—)z-, respectively, and those of g would be equal to A, and va. However,

since heavy tails are desired (large values for m2(u, A | y)/g(u, A) are to be avoided in

importance sampling), g(u, A) will be chosen to be

c

2N\ 1/2
9(n, A)=C (Tu - —'if(A — A;),[0.67574] (vu _ (ena) ) )

v V4

x C (Zl, [0.67574](0,,)1/2) Tjo o0)(A)-

(Note that the scale parameters have been multiplied by 0.67574 in order to match the
normal and Cauchy densities at their 1°* and 3™ quartiles.)

The estimates (i1, 4;) and ( Vn
Cp,A

‘The importance sampling function used in this prerun is go(yt, 4) = go,1(1)g0,2(4), where

C:;,A) are the result of a Monte-Carlo prerun.
A

go,1(u) = C(fo, 1), go2(A4) = C(XO,I)I[O,OO)(A), and where Jip and A, are the sample
1/2

2
median and (1 3ISQ148) — gt , respectively, for the data (y1,...,y,); here IQ is the

sample interquartile distance. Using the above scheme, the quantities in Theorem 2 can

be computed in 13 cpu seconds when p = 5 on a CDC65000 computer. For p = 10, the

same calculations take about 21 cpu seconds.
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2.5 Behavior of 87¢ in the Presence of Qutliers

To study the behavior of §H¢ in the presence of outliers, we will define the distance,

d;, of an observation, y;, from the rest of the observation vector

Y-0) = (Y1, Vi1, Yty - -5 Yp)!

as being
d; = mi -y}
v = min{|ye — uil}
Intuitively, y; will be an outlier (corresponding to an outlying mean) if d; is large. To

begin, we consider the behavior of the posterior density of 4 and A.

Lemma 1 Let m2(p, A | y) (ref. eq. 11) be the posterior of (u, A). Suppose that

LA S TIR6 ) s, A)duda < o0 (14)
—o° ksl

form2>—-1,n>0and m+n <1, then

Jim mo(u, A y) = 13(s, 4 | y), (15)

where

A{[T}oy R9"(t0)}ma(p, 4)

P
ky

I~ J2o ATy Re* (t)}ma(p, A)dpdA”

o (p Al y-y) =

Note: Asin the proof of Proposition 1, it can be shown that eq. 14 is satisfied if mp(y, 4) = 1
and p > 5.
Proof: Given in the appendix A.

Note interestingly, that 73(u, A | y(—p) is not the posterior that would have resulted
from consideration of the problem with the I** coordinate omitted; there is an additional

multiplicative factor of A.
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Theorem 3 Let Y; ~ N(8;,0%) (6? known) and let 6; ~ C(u, A), wherej = 1,....1-1,
l+1,...,p, and assume that eq. 14 holds form 2 -1, n >20andm+n < 2. Ifd, -

(i.e. y; is an outlier), then

ach -y, (16)

gtic — EriteAlven) [3, 4] (an

Proof: Similar to that of Lemma 1.

Thus, 8Hc behaves (for large d;i) as desired; the outlying y; does not eliminate the
possibility of Bayesian shrinkage of the other coordinates. Note that, as in the proof of
Proposition 1, it can be shown that the condition of Theorem 3 is satisfied by 7a(p, 4A) = 1
if p > 6.

3. ALTERNATIVE ESTIMATORS

This section will be concerned with the development of two alternative estimators
that have behavior similar to that of 5¢ in the presence of outliers, but require less
numerical calculation. The first will be obtained by taking a hierarchical version of a robust
estimator developed in Berger (1985). The second estimator is an ed hoc modification of

the truncated estimator already discussed in section 1.4.
3.1 Development of 6s

An alternative first stage prior for the 8;’s, which has flat tails and allows for closed
form convolution with a normal likelihood, was developed in Berger (1985) (similar to ones
developed in Strawderman (1971) and Berger (1980)). It can most easily be represented
hierarchically as 8; ~ N(g, B(}})), j = 1,...,p, where B(};) = 0.5)7'(c? + A?) — o?
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and A; has prior density §(};) = 0.5/\;1/2I(0.,)(/\j). We still view u and 4 as being
hyperpara.m‘eters with prior ma(u, A).

Given u and A, the posterior mean of 6; is given by

'o?GS 20'2 ( 1 1

ilwA=Yi— (o2 + A7) \ iy, ]2 - (el P = 1)) (y; — 1), (18)

the posterior variances by

yos 2 _ 20" 1 2lly;11 1
JJln, =0 - (02 + A2) (ellwll"' -1 {(1- e—||y,~||2) I ||yj||2 ’

and the marginal of y; by

(05 | 4) 1 1 1 — e~y lIi? (19)
m(y;, yA) = ’
il 2V7 Vo £ A2 | |ly;lf?

where ||y;l|> = (y; — 1)?/(0? + A?) (cf. Berger (1985)). As previoulsy mentioned, the
posterior covariance of 8; and 6, given p and A, is equal to 0 for all j # k. These

formulas lead to the hierarchical Bayes estimator

96‘5‘ E™2(s,Aly) [g o A} (20)
where
[[TE=1 m(yx | &, A)] ma(ps, A) .
A = 21
71’2(;1, Iy) m(y) ’ ( )
P11 — e=luell? |
)= |, | e 11 [ PR ]”2(“’A’d"d’"

The posterior variances and covariances are given by

J.ile,A

4
GS _ 4 pma(u,Aly) o 1 1 .
Vik =4E [(02+A2>2 (uy,-u2 (e"w"’—l))(y’ k)

1 1 N R
g (uykuz CTE 1>) (e = ")] = (v = 67°) (v = 67°).

VES = grinaly) [VGS ] + E™2(mAly) [(ﬁﬁf,,l)i’] - (§f5)2,
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Note that since 011 4 (ref. eq. 18) is given in closed form, 5,“ will be about 50% cheaper to
compute than 0;-"". Existence of these expectations for noninformative choices of 72(u, 4)

is guaranteed by the following proposition.

Proposition 2 If ny(u, A) = A withp > 5, or mo(u, A) = 1 with p > 4, and the y; are not
all equal, then m(y), the 5,65 and the V all exist and are finite.
Proof: Given in the appendix A.

To study the behavior of 855 in the presence of an outlier, it is first necessary to

consider the behavior of the marginal of y;, given u and A, as ||y;||? goes to infinity.

Theorem 4 Let m2(u, A | y) be given by eq. 21 and suppose that

o 2
/ / Wt o’ + 4] {Hm(ykI#,A)}Wz(l‘,-4)d#d-4<°°- (22)

Vol + A2
o + A ey
If dj — oo (i.e. y; is an outlier, using the notation in section 2.5), then

w2, A | y) = (1, A | y-p), (23)

2GS
91 —* Y,

oJc_;s —s BT Aly-n) [eﬁf,A] for 3 #£1,

where

(o2 + A2 [T (e | 1, A)] 72, 4)
fo°° ff°°°(02 + AZ)1/2 [Hk;'“m(y;c | p,A)] w2 (u, A)dudA

(Al y-p) =

Proof: Given in the appendix A.
Note: As in the proof of Proposition 2, it can be shown that the noninformative prior
m2(u, A) = A satisfies eq. 22 providing p > 7 and that there are at least 3 distinct y;; the
same can be said for 72(y, A) =1 when p > 6.

Thus §°5 also does not allow an outlier to prevent Bayesian shrinkage of the other

coordinates.
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3.2 The Truncated Estimator

If the 6;’s are thought to be independent realizations from a common symmetric prior
distribution having known median u, it was suggested in Dey and Berger (1983) (based
on an estimator from Stein(1981)) to estimate 8; by the truncated estimator defined in
equation 4. When the prior median, y, of § is unknown, one can use a robust estimator
to estimate u and modify ’9? to account for this estimation. A sensible robust estimator

for u is the a-trimmed mean

)
Yo = — Y(k)»
p 2g k=g+1

where 2a is the proportion of observations trimmed, g is the integer part of ap and y(,
is the k*® order statistic of (y,... +Yp)- The choice of a = a(l) = (p — I + 1)/(2p) seems
natural, since §, will then trim approximatively (p—1) observations, as is implicitely done

in equation 4. A natural modification of 5}‘ is then:

6 = (1 _ (" = 3)o? min{1, 2+ /Iy; — Fr |}

+
- Yi = Vas) + Vars (24)
k=1 (yx "ya°)2’\z(21-) ) (5 = %a *

where z(4) is the k** order statistic of (ly1 =TFasls-- s [Yp = Tael), @* = a(I*), and I* is the
value of [ (I > 4) which maximizes

(1-3)?
2k=1(k = TFaq)> A2

(We have replaced (! — 2) in equations 4 and 5 by (I — 3), because of the familiar “loss of
a dimension” when shrinking towards an estimated common mean.) As for the previous

alternative estimator, it can be shown that, as d; — o0, the outlier, y; , does not seriously

affect the shrinkage of 5{' for j # 1.



4. NUMERICAL COMPARISON OF ESTIMATORS

4.1 Behavior in the Presence of Qutliers

For illustrative purposes, the behavior of §7¢ in (12), gH~ in (2), g°5 in (20), and 87
in (24) will be compared in an example when the sample contains an outlier. Altough the
first stage prior for gHe , gHN and 965 differ, we selected the same noninformative prior
m2,2(A) = 1, at the second stage for each estimator. For the comparison, we generated
a sample of size 10 where each observation, Yj, is N(8;,1) and the 6;’s were generated
according to a N(0,1) distribution. Using this scheme, the sample turned out to be
(—0.068,0.969,1.329, —-0.512,0.071, 2.892,1.944, 0.671, —0.018,0.008). To study the effect
of an outlier on the estimators, we added an integer k to the last observation, y;0 = 0.008.
The value of k was varied from 0 to 12 by steps of 2.

In the first series of graphs (figures 1 and 2) we compare 84¢ (dotted square), 1~
(full diamond), gGs (square), T (diamond) and y (full square). Looking at these graphs,
we can see that all the estimators are nearly equal for small k (k = 0,2), and that gH~
collapses back to y when k gets large while the others stabilize away from y. The only
exception to this behavior is for y, = 0.969, where 3{' seems to collapse to y,, but it may

be caused by the fact that, for large k, a* = 1/p and §;,, = 0.973. We can also notice that

gHe , 9GS and 87 behave in a similar fashion except, possibly, for y,, ys and yg. For the

outlier 810 (y10 = k +0.008), one can see that all the estimators are essentially equivalent.

In figure 3 and 4, we compare the posterior variance for each of the components of
gHe (dotted square), gH~ (full diamond) and §%5 (square) under their respective priors.
(We did not compute the posterior variance of g7 , since this estimator is not based on a
specific prior. Note also that a smaller posterior variance does not necessarily mean that
the estimator is better, since the computations are for different priors; the goal is simply

to compare the measures of accuracy produced in each scenario.) Generally, the posterior
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variance is an increasing function of k. For §7¢ and 855 it seems to stabilize at a value
less than one, while for §H¥ it is steadily increasing towards one. We can also notice that,
when k is large, the posterior variances of 8Hc and §°S are usually almost equivalent. If
we look at the graph for the outlier, 819 (y10 = k + 0.008), we can see that, for sufficiently

large k, the posterior variances of the three estimators are essentially the same.
4.2 Bayes Risk Comparison

Also of interest is comparison of the overall performance of ch, 8HN and §T-, in
terms of frequentist Bayes risk with respect to the squared error loss. Here, also, the same
noninformative prior, 73 2(A) = 1, was used for 8H~ and §Hc at the second stage. We
did not include 95 in this study. Two cases are considered: in the first the true prior is
C(u,[0.67574]A), and in the second it is N(u, A?). These priors were chosen because they
have the same quartiles and correspond to the first stage of the hierarchical priors used
in the development of §Hc and §Hw~ , respectively. Without loss of generality, u will be
taken to be zero. However, A will be considered as a parameter and the frequentist Bayes
risk comparison will be done as a function of A. In order to compare results, it is helpful
to also consider the relative savings loss (RSL), introduced in Efron and Morris (1971),

defined as
r(w,8) — r(z,67)

RSL(m,6) = r(m,y) — r(w,a;)’

where 87 is the Bayes rule if 7 is the true prior and r(, 9) is the Bayes risk of 6 . The

RSL were computed by using the following proposition (whose proof is standard).

Proposition 3 Under squared error loss,

r(r,8) — r(x,6%) = / 16 — G |Pm(y)dy,

where ||§ — 67||2 = Y2 _, (6 — 87)>.
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The integrals involved were evaluated by Monte-Carlo analysis. (Note that we did
not need to use an importance sampling function here, since the 8;’s and the y;’s can'be
generated directly from their distribution.) The average accuracy in the calculation of the
RSL was about 0.05 for both priors when p = 5.

Figure 5 shows the difference in the actual Bayes risk between gHe (dotted square),
gH~ (full diamond), T (square) and the Bayes rule, as a function of the scale parameter
A, when the dimension of 8 is equal to 5. Figure 6 gives the RSL’s of gHc (dotted
square), gHx (full diamond) and g (square) as a function of A. Also graphed in figure
6 (diamond) is the maximum improvement in the Bayes risk that one can achieve over y
(namely [p — r(w,@?)] /p). Because of the cost and the complexity of the simulation, only
the case p = 5 has been studied.

From figure 5, it is clear that, for small A, 0~ does better than 81 under either
prior. However, in the Cauchy case, gHe performs better than 64~ for intermediate and
larger values of A. Under the normal prior, gHc outperforms gH~ only for larger values of
A. In both cases, 8Hc and 8H¥ do better than 87> when A is small; but for intermediate

Y

and larger values, 68°¢ performs better than §H¥ when the true prior is Cauchy.

Looking at figure 6, one can see that the maximum possible improvement in the Bayes
risk is almost negligible for large A. Consequently, the comparison of the RSL’s is of less
interest for large A. When the true prior is Cauchy, the RSL of gHc is the smallest except
for small values of A. In the normal case, 6H¥ has the smallest RSL, but for intermediate
values of A the RSL of §57¢ and §H¥ are quite similar. When the true prior is Cauchy,
g7

seems to be a good compromise between §Hc and @H~ in terms of RSL but it is not

so clear for the normal case.

4.3 Cost Comparisons

The calculations needed to compute §H¢ , g5~ and 86 were performed on a CDC6500
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computer at Purdue University. (Note that, to compute gT-, only a pocket calculator is
required.) When p = 10, it takes on average about 2.2 CPU seconds to compute one

component of §7¢ 0.4 CPU seconds for one of §¥¥ and 0.9 CPU seconds for one of S5
4.4 Conclusion

The previous figures indicate that §He is a better estimator to use than 84~  unless
one feels quite confident in a first stage normality assumption. Moreover, §Hc has a better
or similar Bayes risk and RSL than gH~ when the prior is normal or Cauchy. Recall.
however, that §Hc is more expensive to compute than the others.

Note that, despite its ad hoc nature, T+ seems to be reasonable; indeed, for large p

’7".

we founded to be quite satisfactory (unreported study). However, 8¢ is not very good

when the dimension is small. Moreover, as previously mentioned, it is difficult to provide
error estimates for 87+ at the component level, since it has no posterior variance.

In this article the variance, 02, of the observations was assumed known. If o2 is
unknown, one typically has available an estimate 62, independent of Y. One, then. has
only to add a level of integration (integration with respect to h(62 | o%)m3(0?), where
h(6? | 0?) is the likelihood of 02 and 73 is a prior on 0?) to all expressions in the article.
The approximation of simply replacing 0% by 42 in all expressions is probably satisfactory

when the number of degrees of freedom is large or for estimation purpose alone, but is less

satisfactory for calculation of the posterior variance.
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APPENDICES

A. Proofs of theorems and lemmas

Proof of Theorem 1
Let fy(-) denote the density of N(0,0?), n(-) the density of C(0,A), and ¢y and ¢, be
their characteristic functions.

Proof of equation 7:
m(y; | p, 4) = / fy(8; —yj)m(u ~ 6;)dé;

_ ,,_17; /_ _exp{=iz(u = y)foy ()p,(2)dz

1 [ %22 _
= exp {— 22 - Alz| + i(y; — p)z} dz

27 J_ o

1 [ 0222
= ;/0 cos((y; — p)z] exp {— 5~ Az} dz
V2

Eé}a(ﬁ*(t_j).

Proof of equation 8:

The posterior mean of 6;, 9\]—“‘,,4, is given by

o0
Oilu,a =/ 0i7(0; | p, A, y,)db;

— 00

1 co
 m(y; [ p,A) /_w 8 fr (65 — yj)m(p - 6;)d8;

m [/_w nfy(mn([p - y;] — n)dn

+ v [ Sl —vs) - n)dn}

1 o0
vi+ m(y; | g, A) /_oo nify(mm (e — y;] — n)dn. (A.1)

Using the same technique as in the proof of eq. 7, we have

/ nfy(mm([x — y;] — n)dny



=f2—a7r— 3 zexp{—-iz(;l—yj)}¢Y(z)¢u(2)dz
o222
= -—/ zsinf(y; — #)Z]CXP{ }dz
% tid™(t5)
/3

—[(# yi)R™(8;) + AT¢*(1;)].

Q

Using this in eq. A.1, we obtain

~

Oiinas =5+ g6 = 1)R"(85) + AS9°(1,)

L)

St AREG)

Proof of equation 9:

By definition, the posterior variance of 6; is given by
w -
Vijlwa = / (05 = 651,,4)°7(6; | p, A, y;)db;
— 00
= ! °°92f (85 — y;)m(p ~ 8;)d8; — (85, 4)°
—m_wji': Y;)m\p — 0j)av; jle,A) -
Using the same technique as before, one can show that the last integral is equal to
/ 6] fy (8; — yj)m(p — 8;)d8;
—oco
= / 0’ fr(mn((u - y;] - n)dn + 2yj/ nfy(mm (s = y;] — n)dn
—c0 —oo
+y; / Fr(mm([ = yj] = n)dn
V2 Ao
= 2 {5+t~ " - R0 (1) — 2400,y )}
#2050 = 1R (5) + 499°(,)) 4751

2 { Ao 2 . e
£ [ﬁ +(,u2 — A" )Ro™(t;) + 24uS¢ (tj)] .

o

Hence the posterior variance is given by

Vi = 5y | g + (8~ ADRE(6) + 24435, )



w2
aGer=)
_Ae 1 o], (S’
R [‘*(se‘wﬁ))]

Q.E.D.

Proof of Proposition 1

Note from eq. 7 that

0o poo P o
* _ m n 1 _0.2d9. i
P A /—ooA 1l {kI;Il 2\/7?[_00 [A2+(9k—#)2] exp( 202(3’" k)°) L} 1L

Part 1. The integral for 1 < 4 < co.

1 < (1+ |:7:|)2
1+(z 6?2~ (1+¢?)
Proof of the claim:

Claim:

This can be rewritten as

2+ Jel} €2 — 21 + [a)?€ + [Jzl(1 + Ja)? + 2 + |z[] 2 0
for z > 0 and

2+ [2[1€° +2(1 + |z)*€ + [|=](1 + |z])> +2 + [z]] > 0

for z < 0. It is easy to check that, as a polynomial in €, this has only imaginary roots,
from which the claim is immediate.

Continuing with part 1, note that (A.2) yields

1 1
AP+ (0 — p)® 42 (1 + [ - %]2)
(1+[6:]/4)°
A7 (14 [u/ap?)
< L+ 6]

- A2 +l12



[AV]
[§)

(using A 2 1 here). Furthermore

/ (1+1641)? exp(~ 515 (yk—ok)’)dok<2(1+a +42),

so that

T " T [ - (——1— —6:)1)dby b dpd A
[ /;oo s kl;]; 2ﬁ </—-°° [‘42 + (& —y)2] exp 202 (Y& k ko Gfpid.

4 Amtp|,n
< (2072 [H 1+ +yk)} / / A7 '"zl)pd dA.
k= ha

Now

(> ] m-+p n n+m-—p n
/ / i "‘2' d dA—Z/ / AT AL aa
oo (A% + p?)P (1+ /AP
oo 2
=2 A"+"'+1-PdA) ( —é——d!;’).
(./1 o (1+8%)
These integrals are finite if p > (n +1)/2 and p > n + m + 2, which will be true for p > 5.

Part 2. The integral for 0 < A < 1.

Note first that, by changing variables,

/_oo (4% + (2: — u)?] exp(—~ 2(yk 6:)?)dby
B /_oo [,4_2;4-3:_2,;] exP(—riz(# — lyx — z])?)dzs.

Thus

P oo A ] .
klz_Il /_oo [A% + (6 — p)F] exP(_ﬁ(yk — 0x)°)do;
o oo p P
L) {H mzA—n}e"p“fi—z D (k= ok =) - de
/ / {H [AZ+ 2] } exp(— 2(# [y - i])z)exp(—-z—(lﬁSz)da:, -+ dr,,(A.3)

where §? = 30 ([yx — z&] ~ [§ - z)).



Note next that,for 0 <n < 2,

[~ o]
| exp(= 5 (s~ (7 - 21)2)ds < b + g — 21"

o0

P
Sk3+k4zxi (A4)
k=1

(since § is just a constant).
Using A.3 and A .4 and freely interchanging integrals (since the integrand for p* is nonneg-

ative) yields
1 =~} . P oo
1 A
™t O ¢ djud.
/o /_ooA I {gzﬁ/_muwwk—m?]ex( 37 (%~ )d‘}d’ﬂ

1 oo oo 4 P
A 1 .,
< A™ L ks + k E T2 I I =55 ¢ exp(—=S")dx, ... dr,dA4.

Now
A
k;,/ / / {HW 2]}exp( 55%)dz; ... dz,dA
5k3/ A™ H/ —2dea:k d4
0 k=3 Y~ [A +zk]
.1
< ki / A™dA
0
< 0.
Finally

ks /01 /_: .‘../;:A"‘ (g:zi) {I:I[Az—iz—z]}exp(—%..‘:’?)dxl...d:vpd.-l
<k4Z// / 4m+1{1;1[A2+z2]}exp

and since f_oo exp(—35%)dr, < ks, an identical argument verifies that this integral also

leH

S5%)dzy . .. dr,d4.

is finite. This completes the proof. Q.E.D.
Proof of lemma 1

Claim 1:

T 2
YIRS (1) < 7‘% (A + lu ; ”) .



Proof of claim 1: Using eq. 7 and making a change of variables gives

4 2
2§R (¢ — EEZ [ AYy
viFto"(te) V2 AT+ (Z +yr—p)?
where Z is N(0,1). Maximization over y; yields
Ay} (z = u)? .
<A+4— Al
Lty —p)? A (4.9)
so that
Z — )2
< g2 (_/"_
iR (1) < TZE [4 - ]
from which the claim follows.
Claim 2:
oo [ P
tim of [ [ 3 TIR6°(t0) | malu, A)duda
lyll'—’oo 0 =00 | k=1
To (o o] o0
= — A §R¢* tk o K4, d/,td-l
=/ {LI ()} (. 4)
Proof of claim 2: Note that
To Ay?
hm ZRH* (1)) = E? [ ! ]
lyi|— v ¢(l) yl_’oo\/_ A2+(Z+y1_ )2 ('\6)
_ 7raA o
— 74

by the Dominated Convergence Theorem (using A.5).
Claim 1 and A.2 imply that the Dominated Convergence Theorem can also be applied to

the sequence {y7R¢*(¢1)}, so that

chllifoo,/ / {H Re* (t")} %ﬁé*(tl)] mo(p, A)dudA

k#1

- L. {Hg’*‘ZS (tk)}[ lim yiRg" (tz)] ma(, 4)dpd A

k#l

= % /ooo /_oo A {H?Rq&"(tk)} w2, A)dpdA.

k#l



Claim 3: Eq. 15 holds.

Proof of claim 3: This follows directly from A.6 and Claim 2, noting that |y| — o~ is

equivalent to d; — oo (by translation) and that

{[Tiz1 R8*(ti)} ma(p, 4)

’A = [o =} o0
T A = T T b ()] male, Ve
M ®e 0} iRe" 0] ma(u, 4)
e SR ATy R (1)} 7o, AdpudA”
This complete the proof of the lemma. Q.E.D.

Proof of Proposition 2
Let y(1),...,¥y(r) the distinct values of the order statistics for Y1,---,Yp. (Equality of the

vi is allowed, as long as r > 2.) Define
1 .
20 = —00, 2,=+400, z; = B(y(;) +yi4ny) fore=1,...,r - 1.

Clearly

1 — e—lluel?

(4m)” 2m(y) / (0% + A%~ % {Z/:.HH[ ol }dﬂ} o 2(A)dA.

It is easy to show that (1 —e~%)/z is a decreasing function of z, with a maximum value

of 1. Hence, in the interval (2i, zit1),

lz[ 1—e—loel?] 1 o=liymn?
<
llve||? fly*(1?

k=1

2 2
S{;Ai,
(y* —n)

where y* is any one of the Y(;) other than y(;y1). (It is here that we use the condition that

the y; are not all equal.) Since the interval (zi, zi4+1) does not contain y*, it follows that

Zigr Pty o~luell? ) 2y [T .,
2 k=1 v 2§

= ki(0? + 4%) (k; < c0).



Thus
(A7) Em(y) = /0 (0% + A'-’)“EAZ ki(a® + A%)m, 2(A)dA,

i=0
which is clearly finite if p > 5 for m22(A) = A, and if p > 4 for m2,2(A) = 1. This complete
the proof for m(y).
The proofs that the 5?5 and the Vﬁf are finite are identical, using the easy to prove facts
that, for all 4 and A

1655 — yj] < k(o? + A%)~%

and

ViSiua = a1 < k(o® + A7), QE.D.

Proof of Theorem 4

Partitioning the real line into (—oo, u — Vo2 + A?), [u— Vo + A2y + /o2 + 12] and
(1 + Vo2 4+ A% o), one can show that

[1 _ e-uwu’] y?
llyalf?

<2[p’+0%+47%.

Also,
[1 _ e—uy.u’] y?

lim
lyt]—o0 llvil|?

=0% + A%

Thus, for any y;, the function [y,2 [T, m(yx | p,A)] is bounded by

2 2 2
[;t +0°+ A ]
m(yx | p, A )
{E, (o | )} NN
which is integrable by eq. 22 in Theorem 4. Hence, the Dominated Convergence Theorem

yields eq. 23 in Theorem 4.

The limiting results involving the 67?5 are proved in the same way, using the fact that

1855, — ;] < k(o? + A%) 4, QE.D.
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B. Calculation of ¢*(t)

As defined in chapter 2, ¢*(t) is given by

¢*(t) = e [12_’1 -/o' e-=’dz] : (B.1)

where t = a — 2b.

Using Wall (1948) and Jones and Thron (1980), ¢*(t) can be evaluated using the

following expressions:

ey L[ 1 1 2 3 .
vO=7 [\/§t+ V2t V24 2t + ] (B2)
VT g t 2 3/ 22 B.3)
R [1_—'3/2+ 5/2— 7/2+ 9/2— ] (B
_ VT e 1 (it)? (i2)® (3/2)(t)* 2(it)* ,,
-9 ¢ "t[ﬁs/z— 5/2+ 7/2— 9/2+ ] (B.4)

Based on some empirical evidence, ¢*(t) was computed according to the following

scheme:

o if a > 1, use equation B.2;

e if a <1 and |b] < 1, use equation B.3;

e if a <1 and |b] > 1, use equation B.4.
Using this scheme, the average number of terms needed to reach a precision of 1 x 10"
in |¢*(t)| was 7.14 and it cost less than $0.02 of computer time for each value of o*(t).
Using IMSL subroutines to compute ¢*(t) to the same precision costs around $0.06 per

value computed. Since the function ¢*(t) is involved in their inner integrals of equation 6.

it pays to use the complex continued fractions.
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Comparison of the behavior of éjHC (dotted square), éjHN (full diamond),

éjGS (square), é.T* (diamond) and Y5 (full square) when the sample

J

contains an outlier (for j = 1, ..
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Figure 2 : Comparison of the behavior of éch (dotted square), éjHN (full diamond),
éjGS (square), éjT* (diamond) and Y; (full square’) when the sample

contains an outlier (for j = 7, ...10).
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Figure 3 : Comparison of the posterior variance of éHC (dotted square),

éHN (full diamond) and éGS (square) when the sample contains an

outlier (for j = 1, ...6).
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Figure 4 : Comparison of the posterior variance of éHC (dotted square),

éHN (full diamond) and éGS (square) when the sample contains an

outlier (for j = 7, ...10).
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