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1. INTRODUCTION

Problems of statistical inference that are now commonly known as ranking and
selection problems gained the attention of statistical researchers in the early 1950’s.
Early work in this area by Bahadur [1], Bahadur and Robbins [2], Bechhofer [4],
and Gupta [21] related to single-stage pfoéedufes. Interest in sequential selection
procedures arose in the early days and has steadily continued ever since. However, it
was a decade befqre a substantial amount of original research on sequential rnethods
for ranking and selection problems was published in the form of a monograph by
Bechhofer, Kiefer and Sobel [12] which still serves well as a constant source of results

and ideas.

Two-stage and multi-stage procedures can be viewed as sequential procedures
with the number of stages to make the terminal decision bounded above. Such
procedures arise not only in the context of efficiency compared to single—’-stage pro-
cedures but also out of necessity. For example, nuisance parameters lead to two
or multi-stage selection procedures for the normal means selection problem when
the variances are common unknown or completely unknown. More importantly, the
“measure of distance” used may require multi-stage or open sequential procedures.
In particular, this is the situation when the “odds ratio” is used as the measure

of distance for ranking Bernoulli populations (see Bechhofer, Kiefer and Sobel [12],
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Section 6.7.1).

Selection procedures have been studied under various goals such as selecting
the best among k (> 2) populations, selecting the ¢ best (1 < ¢ < k), and selecting
the populations better than a standard or control. In all these cases, the procedure

is devised to select a subset of the k given populations which is of either a fixed

size or a random size. The fixed-size subset selection in the classical formulation

is known as the indifference-zone (IZ) approach and the other type is called the
subset selection (SS) approach. More will be said about these in the next section.

Besides the monograph of Béchhofer,} Kiefer and Sobel [12]. (ievoted entirely to- |
sequential procedures, a few other books on ranking and selection are: Biiringer,
Martin and Schriever [15]), Gupta and Huang [24], and Gupta and Panchapakesan
[27]. The last book [27] mentioned provides a comprehensive survey of developments
in this field up to 1978 with an extensive bibliography. Dudewicz and Koo [17] have
given a categorized bibliography. Recently, Gupta and Panchapakesan [28] have
surveyed developments in the subset selection theory over a period of more than
thirty years with emphasis on historical perspectives. A nice review of developments

in the multi-stage selection theory since 1979 is given by Miescke [39].

In the present paper, we do not attempt to give a complete account of se-
quential methods in ranking and selection. Qur purpose here is to provide a basic
background, give highlights of some of the early developments and their impact on

some current developments.

Section 2 gives a general background for sequential selection procedures, ex-

plaining the basic aspects of the indifference-zone and subset approaches. The
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specific procedures discussed here center around selecting the normal population
having the largest mean, and selecting the Bernoulli population having the largest
success probability. These are discussed respectively in Sections 3 and 4 for the
indifference-zone approach, and in Secfions 5 and 6 for the subset selection ap-
proach. Section 7 deals with subset selection from exponential family distributions
and a decision-theoretic approach to the problem.
2. SOME GENERAL ASPECTS OF SEQUENTIAL SELECTION PROCEDURES
Let my,..., 7 be k given populations. From each 7;, a sequence of independent
observations X,-l,X,-g e . is available to the experimentér. Let X;; have a deﬁsity
fo, with respect to (w.r.t.) a o-finite measure on R, which is the Lebesgue measure
of a counting measure. The parameters 6;,i = 1,...,k, are assumed to be unknown.
Let 6} < ... < 63 denote the ordered 6;. No prior knowledge is assumed regarding
the true pairing of the ordered and unordered ;. Our goal is to select the population
m; which has the largest associated 6; and is called the best population. In case
of a tie, we consider one such population is tagged as the best. Let 2 = {§: 6 =
(61,...,6k), 6; € ©, i =1,...,k} denote the parameter space, where © is taken
to be some interval (finite or infinite) on the real line. Let D(6;,6;) > 0 be an
appropriately defined distance measure between the populations #; and =;. For

6* > 0, define

Q(8°) = {81D(6(e—11, O) 2 6°). )

In the case of location parameters 6;, for example, a natural choice is D(f[x—1], 6jx})
= by — Ope—1)-
Under the IZ approach of Bechhofer [4], a valid procedure R selects one of the
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k populations as the best with a guarantee that
Py(CS|R) > P* whenever § € Q(6*) (2)

where Pg(C S|R) denotes the probability of a correct selection (PCS) using the rule
R under the parametric configuration §. Here a correct selection (CS) occurs if
the population selected is indeed the best one. The minimum probability level
P*(3+ < P* < 1) and é* are specified in advance by the experimenter. The comple-
ment of ©(6*) in (1) w.r.t. Q is called the indifference-zone since we have no PCS
requirement for Q.in this part. The part §2(6*) is known as the preference-zone.

In the subset selection (SS) approach of Gupta .[21, 22], a valid procedure R

selects a random-sized subset of the given populations with a guarantee that
Po(CS|R) > P* for all § € Q 3)

where a correct selection (CS) occurs if the best population is included in the
selected subset. We note that there is no indifference-zone in the S§ approach. -
The probability requirements (2) and (3) are usually referred to as the }M
probability requirements or P*-requirements or P*-conditions of the respective for-
mulations. In either of these classical approaches, one proposes a “reasonable”
procedure which involves some quantities to be defined so that the P*-requirement
is met. This involves the all-important first step of finding the least favorable config-
uration (LFC) of § (in (6*) or 2, depending on the approach) for which the infi-

mum of P(CS|R) over the appropriate space takes place. The necessary quantities

involved in the rule R are then determined such that this infimum is at least P*.
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One would then study its properties, evaluate its performance according to suit-
able criteria, and compare the performance with that of any known alternative

procedures.

Although we have discussed here only the goal of selecting the one best popu-
lation, the IZ and SS approaches are by no means restricted to only this goal. More

generalized goals have been considered in the literature using both approaches.

A selection procedure, though not always explicitly so stated, typically consists
of three parts: (1) a sampling rulg, (2) a stopping rule, and (3) a terminal decision
m_lé. Procedures are usually categorized according to the types of rules employed
in the above three parts. The terminal decision identifies a procedure as a fixed size
or a random size subset selection procedure. A sequential procedure is said to be

closed or open according as the number of observations that can be drawn from

each population is a bounded or an unbounded random variable. Any given se-
quential procedure (open or closed) can yield a truncated version by a modifica- _
tion of the stopping rule so as to achieve an earlier termination. A sequential
procedure with elimination may eliminate one or more populations (which appear
to be inferior) before reaching the final stage at which the terminal decision is made.
Typically, further sampling from eliminated populations is discontinued although

this is not the case with some procedures studied in the literature.

Sampling may be done one-at-a-time or vector-at-a-time. The former is an

adaptive sampling in which the population to be sampled from next depends on

the data accumulated until then. Play-the-winner sampling rule of Robbins [44]

in the case of Bernoulli populations is an instance of the adaptive case. In the
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vector-at-a-time sampling, a vector of observations (one from each) is taken from
the non-eliminated populations.

3. SELECTION FROM NORMAL POPULATIONS: IZ APPROACH

Let 71,...,7 be k normal populations with unknown means 0,... , 05, Te-
spectively, and a common variance o2. For defining the preference-zone in (1), we

take D(0[k_1],0[k]) =0k — Ok —1); thus
0(6*) = {Qlolkl —Ok—1) 2 §* > 0}.

Our goal is to select the population associated with 8|} and any valid rule should

2 case first.

satisfy the P*-requirement (2). We will discuss the known o
3.1 Case A: Known o?. Let X;;, § =1,2,... be a sequence of independent obser-
vations from #;, ¢ = 1,...,k. Unless stated otherwise, the observations are taken
vector-at-a-time. Let Y;, = jgl Xij, 1 =1,...,k, and let Y[3jm < ... < Yjxim
denote the ordered Y;,.

Stein’s Procedure, Ryrz:s. Stein [49], using a slightly more general model than
ours, proposed an open sequential procedure with elimination which is a straight-

forward application of a lemma of Wald. For every population #; sampled from at

stage m(m = 1,2,...), let
Aim = _EI[Xij - X; — 6*(t; — 1)/¢3],
J=

where 7(-_,' is the average of the observations at stage j, and t; is the number of pop-
ulations sampled from at this stage. Stein’s procedure (for our model) is described

below:



Procedﬁre Ryiz:s: At stagem (m=1,2,.. .), eliminate all populations =; for
which Aim < (02/6%)¢n(1— P*) and proceed to stage (m + 1) to take an additional
observation from each remaining population. Stop the experiment at any stage m,
if there is at most one ¢ for which A;m > (02/6*)én(1— P*). If there is exactly one
such i at termination, then select that ; as the best; otherwise (i.e. no such Aim),

select 7; corresponding to the largest A;m at termination.

The performance characteristics of the above procedure Ry1z:s have not been

studied.

DI IO T A e e =

Bechhofer-Kiefer-Sobel Procedure, Rn1z:Bxs- In their monograph, Bechhofer,
Kiefer and Sobel [12] considered selection from populations belonging to an expo-

nential family. Their procedure is an open sequential one with no elimination. This

procedure is specialized by them (12, pp- 264-265] to the normal case at hand. For
eachm (m =1,2,...), let Wy, = fgll exp{—6*(Y{xjm — Yiijm)/0?}-

Procedure Ry1z:BKs: Stop sampling when_ m = N, the first positive integer
for which W,,, < (1 — P*)/P*; select the population corresponding to the largest
Yin.

A virtue of the above procedure is that it can react rapidly to favorable con-
figurations of the population means. For example, if ) — Ox—1) >> 0, then with
high probability the procedure will stop at the first stage. However, if Opx) — 04)
is small, then N (the stopping time) can be large with a considerable probability.
Further, the variance of N can be large. To overcome these undesirable effects,
Bechhofer and Goldsman [7] proposed a truncated version (described below) of the

above procedure.



Bechhofer-Goldsman Procedure, Rnrz:pe. This procedure modifies the stop-
ping rule of Ry;z.pxs as follows: Stop sampling when, for the first time, either
Wm < (1 — P*)/P* or m = no, whichever occurs first. Here ng = no(k,6*, P*) is
predetermined as the smallest positive integer which guarantees the P*-requirement
(2). The terminal decision rule is: Select the population corresponding to the largest
Y;n, where N is now the bounded stopping time.

Bechhofer and Goldsman (7] have tabulated the ng values for k = 2(1)5, 6* =
0.2(0.2) 0.8, and P* = 0.75,0.90,0.95,0.99. Additional no values are contained in
Bechhofer and Goldsman [11] for §* = 0.3(0.2)0.7 and the same selected values of
k and P* as previously stated.

Another well-known procedure in the literature is that of Paulson [40], who
was the first to consider a closed procedure with elimination, a feature to be char-
acterized by some later authors as Paulson-type. Paulson, in fact, considered a
class of procedures indexed by A € (0,6*), using triangular stopping regions. Let
ax = {0%/(6* — A\)}en{(k — 1)/(1 — P*)} and let W, denote the largest integer less
than ay/A.

Paulson Procedure, Rnyrz:p: At the beginning of stage m (m =1,...,W)),
take one observa.f.ion from each population not eliminated thus far. Now eliminate

all populations n; for which
Yim < maxY,,, —a) + m)
r

where the maximum is over all populations «, that remain at the beginning of
stage m. If all but one population are eliminated, then stop sampling and select

this one remaining population; otherwise, proceed to stage (m +1). If two or more
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populations remain after stage W, then take an additional observation from each ' -

one of them and select the population 7; corresponding to the largest Yiwi+1)-

Although Rynjz.p guarantees the P*-requirement, the optimum value of ) in
(0,6*) was not settled by Paulson. However, based on his calculations, he rec-
ommended the choice of A = §*/4. Bechhofer and Goldsman [10] point out that
A = 6*/2 minimizes W + 1, the maximum possible total number of stages to ter-

mination, for any given set of k, §*, and P*.

Improvements in Paulson’s Procedure. Fabian [20] improved Paulson’s pro-
cedure by obtaining better lower bound on the PCS. Considering the choices of
A = 6*/2 and A = §*/4, Fabian’s improvement is achieved by replacing ¢ =
(k —1)/(1 — P*) by ¢/2 for X\ = 6*/2 and by 1/g for A = 6*/4, where ¢ satis-
fies (g — %q“/ 3)c = 1. Recently, Hartmann [30] improved upon Fabian’s results by

replacing the reciprocal of ¢ by 1 — (P*)1/(k-1),

Some Comparison Results. Bechhofer and Goldsman [10] have performed
Monte Carlo studies to compare the performances of Ryiz.pxs,RNIz:BG,
Rnr1z.pu (i.e. Ry1z:p with Hartmann modification), the two-stage procedﬁré of
Tamhane and Bechhofer [52, 53] and the single-stage procedure of Bechhofer [4].
We refer to the last two procedures as Ryrz.r75 and Ry1z.B, respectively. The
performances of these procedufes were studied by Bechhofer and Goldsman [10]
in terms of achieved PCS, E(N), and E(T), where N and T are the total num-
ber of stages needed to terminate and the total number of observations taken up
to termination. Their results indicate that Ryyz.pc does well in terms of E(N)

except when the 8; are all very close to each other and P* is high, in which case

9



BN1z.pa With A = §*/2 is recommended. When k > 5, they recommend Ryr1z.px
with A = 6*/2 for the equal means (EM) configuration and A = §*/4 otherwise.
For reasonably high P* with E(T) as the criterion, Ry1z.px seems preferable with

choices of A as indicated above.

Kao-Lai Procedure, Rn1z:kL. A class of truncated procedures with elimina-
tion was proposed by Kao and Lai [35] employing confidence sequences for the (k—1)
differences 0|z — 0; (¥ # |k]). Taking E(T) as a measure of efficiency, it has been
shown by Kao and Lai [35] that asymptotically (P* — 1) their procedure is more
efficient than R;v 12:BKS; BNI1Z:p, and RN1z.p except when § is in the least favor-
able (slippage) configuration or in the EM-conﬁguration; in these configurations,

their procedure is at least as efficient as the others.

A Generalized Goal. Fabian [19] considered a generalized goal for ranking pop-
ulations. For our problem of selecting the best population, this corresponds to
6*-correct selection (6 *—CS) which means selecting any 7; for which 8; > 0} — 6*.
Such a 7; is called a good population. For § € 1(6*) in the IZ approach, the
best population is the only good population. Fabian [19] has shown that, for the
single-stage procedure of Bechhofer [4], a stronger claim can be made, namely, that
P(6*—CS|R) > P* for all § € Q.

Kao and Lai [35] have given a sequential procedure (by slightly modifying
the elimination rule of Ry7z.x1) which guarantees a minimum probability P* of a
6*—CS. As pointed out by Edwards [18], this is done at the expense of considerably
slower elimination of inferior populations. Edwards [18] gave a slightly different but

more general procedure, which he called an extended-Paulson sampling plan. His
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procedure guarantees a minimum probability of a 6*—C S while keeping asymptotic
(P* — 1) sample size properties same as those of the IZ procedures Ry1z:BKs,

BNi1z:p, and RNyz:B.

Other Developments. Hoel [31] has discussed a method of constructing
Paulson-type procedures based on log-likelihood ratios, which can be applied to
the normal means problem. For appropriate choices of the index defining a family

of procedures, Hoel’s procedure is precisely BRnrz:p-

Recently, Bechhofer and Goldsman {8] have considered selection of normal pop-
ulation with the largest mean when the underlying model is a two—f#ctor experiment
with no interaction. Their procedure is a natﬁra.l adaptation of Ryrz.Bxs. In a
later paper [9], they studied a truncated version of this adapted procedure and
carried out Monte Carlo studies of performances of these procedures and the single-

stage procedure of Bechhofer [4].

3.2 Case B: Unknown o2. When o? is unknown, there does not exist a single-stage

procedure that can guarantee the P*-requirement under the IZ formulation. This
is because the necessary sample size cannot be determined without the knowledge
of 02. Bechhofer, Dunnett and Sobel [5] proposed a two-stage procedure where the
first stage samples are used to provide an estimate of 02; the additional second-stage
sample size, if necessary, is determined based on the first stage data. Paulson [40],
and Kao and Lai [35] have given procedures by modifying their earlier procedures
for the case of known o2. These involve first taking m (> 2) observations from each
population and then proceeding sequentially by taking one observation from each

noneliminated population. Robbins, Sobel and Starr [45] proposed a procedure for
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which the P*-requirement is asymptotically (6* — 0) satisfied. Details of these
procedures will not be discussed here. These procedures, except that of Kao and
Lai [35], have been discussed in Gupta and Panchapakesan [27, Chapter 6).

4. SELECTION FROM BERNOULLI POPULATIONS: 1Z APPROACH

Let m,..., 7 be k Bernoulli populations with associated success probabilities
P1,..., Pk, respectively. Consider the preference-zone Q15+ = {p : p = (p1,..., Pk),
Plk] = Plk-1] = 6*}, where P[1) £ ... < pjx) are the ordered p;, and 0 < 6* < 1
is specified in advance. For selecting the population associated with Plk] (the best
ipopula.tion), Sobel and Huyett [48] studied a single-stage procedure based on a
sample of size n from each populatién. This procedure is Rgrz.sy: Select the
population corresponding to the largest number of observed successes, breaking ties

by randomization.

For this problem, Paulson [41, 42| proposed truncated sequential procedures
with elimination. There are also a number of other procedures studied by several
authors; these procedures differ in their sampling and/or stopping rules. A detailed
discussion of some of these procedures is given in Gupta and Panchapakesan [27,

Chapter 4]. An excellent bibliography of these procedures is contained in Bechhofer
and Kulkarni [13].

In our above discussion, the only distance function considered is pi) — P (e >
7). However, another equally important function is the odds ratio P (1 — pps1) /Pp)
(1 — p)), ¢ < J, which is very important in medical applications. This has been
considered in Bechhofer-Kiefer-Sobel [12]. Also of interest is pi)/pi)> ¢ > J, which

has been used by Taheri and Young [51].
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Recently, Bechhofer and Kulkarni [13] proposed a closed sequential procedure.
This procedure is, however, not an indifference-zone procedure. The LFC of the P
values (which is central to designing the experiment using the 1Z approach) is of no
concern here. The focus is on the PCS for a given n for the particular goal considered
and on achieving it with minimum cost. Their sampling rule involves taking at each
stage one observation from a population to be determined by the accumulated data
up to that stage; in other words, it is a one-at-a-time adaptive sampling. Also,
a maximum n is set for the number of observations that can be drawn from any
population.

Let niy, and Z;,, denote, respectively, the total number of observations taken
from 7; and the number of successes among them through stage m,t=1,...,k
and m = 0,1,...,kn. Stage O (i.e. no observation is yet taken) is introduced for
convenience in describing the procedure Rp.px of Bechhofer and Kulkarni [13],
which is as follows:

a. At stage m (0 < m < kn — 1), take the next observation from the population
which has the smallest number of failures among all 7; for which n;,, < n. In
case of a tie among such ;’s, take the next observation from the one which
has the largest number of successes. In case of a further tie, select one of this
further tied set at random and draw the next observation from that population.

b. Stop sampling at the first stage m at which there exists at least one ; satisfying
Zim 2 Zjm +n —njpy, for all j #14. (4)

c. Select as the best one at random from those ;’s which satisfy (4) at termina-

tion.
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Bechhofer and Kulkarni [13] have shown that the PCS for Rp.px equals that
of Rprz.sg uniformly in p for k > 2. Several optimal properties of Rp.px have
been established by Kulkarni and Jennison [37], and further stronger properties are
contained in Jennison [33]. Exact numerical results are given by Bechhofer and
Kulkarni [14] for performance characteristics such as the distributions of Ny, the
number of observations taken at truncation from =; associated with P[i]> and of the
total number N = iEle N(;) at truncation. Because of the nature of time-consuming
recursive formulae, their numerical results are limited to the cases of (k,n) = (2,20)
and (3,7) for the distributions of N(;) and N, and are limited to (k = 2, n < 100)
and (k = 3, n < 40) for E{N(;)} and E{N}. The scope of these studies is extended
to £ = 4 and 5 by Bechhofer and Frisardi [6] employing Monte Carlo simulation.
Exact analytical results for various performance characteristics of the Bechhofer—

Kulkarni procedure when k = 2 have been given by Percus and Percus [43].

The sampling rule of the Bechhofer-Kulkarni procedure is not a play-the-winner
rule (see Bechhofer and Kulkarni [14]); it is referred to as the least failures rule by

Kelly [36] who proposed it for a Bernoulli multi-armed bandit problem.

The idea behind the stopping rule of the Bechhofer-Kulkarni procedure is that
the sampling can be curtailed as soon as there exists one or more populations which
have at least as many successes as the maximum possible number of successes from
any of the other populations even if all the n observations were taken from them.
This criterion as given in (4) is referred to as strong curtailment by Jennison [32]
who also considered weak curtailment given by (4) with > replaced by >. With

either curtailment, the Bechhofer-Kulkarni procedure achieves the same PCS as
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does the Sobel-Huyett single-stage procedure uniformly in p = (p1,...,px). As
noted by Jennison [32], strong curtailment is preferable to weak curtailment since
the former yields a sample size no larger than that yielded by the latter.

Jennison and Kulkarni [34] have considered similar procedures for the goal of
selecting the s (1 < s < k — 1) best of k Bernoulli populations. Recently, David
and Andrews [16] have proposed procedures with strong and weak curtailments for
selecting the best of k objects in a Round Robin-type paired comparison experiment.
They have shown that the probabilities of selecting a particular object are the same
under both curtailments for the Bradley-Terry model, but are not so, in general.

5. SELECTION FROM NORMAL POPULATIONS: SS APPROACH
Let my,...,7x be k normal populations where 7; has mean 6; and variance
2

(0

¢y ¢t = 1,...,k. Before discussing sequential procedures for different goals, we

state the single-stage procedure of Gupta [21] when o? = ... = 62 = 0% (known).
His procedure is based on Xj, ¢ = 1,...,n, the means of random samples of size n

from the k populations and is given below.

Gupta’s Single-stage Procedure, Ryss.q: Select 7; if and only if

X:> max X; - 22 (5)

1<5<k vn

where the constant D = D(k, P*) is the smallest positive number for which the

P*-requirement (3) is satisfied. This constant D is given by

/ &*~1(z + D) d®(z) = P* (6)

—00
where & denotes the standard normal distribution function.
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Let p; denote the probability of selecting the population associated with 0, ¢ =

1,...,k. Then it is known that p; < p; < ... < pi (i.e. the procedure is monotone),

where
°r k
p= [ f 8{e+D+ 0~ 05)VE o} d(a). 1)
Soo I

5.1 Barron-Gupta Procedure, Rnss:pg. This procedure is devised for selecting a

subset containing the best (i.e. one having the largest ;) assuming that 62 = ... =

of = 0% (known) and that the successive differences of the ordered 8; are known

(this implies that the p; in (7) are known). Their procedure employs vector-at-a-
time sampling. As before, let X;1, X;2,... be a sequence of observations from ;.
At stage j, we have the observations Xj;, 1 =1,...,k. Define

1 if Y;; > max Y,; — Do
r

Yy = i=1,...,k,
0 otherwise

where D is given by (6). In other words, Y;; = 1 if ; is selected by Gupta’s rule in
(5) based on stage j observations (n = 1) and Y;; = 0, otherwise.

Now, for any stage m, define S;,, = jgl Y;; so that S;,, has a binomial dis-
tribution B(m,p;) with parameters m and p; (given by (7)). This fact is used by
Barron and Gupta [3] in constructing their procedure. As we will see, this procedure
cbntinues sampling from all populations until the terminal decision is made with
regard to all the populations.

Barron and Gupta [3], in fact, defined a class of procedures based on a pair

of sequences of real numbers, ({b,n},{cm}), satisfying for m > 1 the following

conditions: (i) b;m < bmi1, ¢m < emt1, (ii) b < €m, (iii) lim b, = oo, and
m— 00
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(iv) Pr {m?il[bm < Sim < cm]} =0 for all ¢t = 1,...,k. For each such pair, the
Barron-Gupta rule is as follows.

Procedure Ryss:pa: At stagem (m = 1,2,...), tag each untagged population
m; for which Sim & (bm,cm); tag it “rejected” if S;,, < b,, and “accepted” if
Sim > ¢m. Stop sampling when all the populations are tagged. At termination,
select all those populations that were tagged “accepted.”

It should be noted that once a population 7; is tagged, it remains so irrespective
of later changes in S;,,. Barron and Gupta [3] have studied in detail several prop-
erties of this procedure including its performance compared with thé single-stage
procedure Ryss.G.

5.2 Swanepoel-Geertsema Procedure, Ryss:sg. This procedure is devised for se-

lecting a subset containing the population with the largest §; assuming that the o2
are unknown and possibly unequal. It is a sequential procedure with no_elimination
employing vector-at-a-time sampling, and is based on constructing a selection se-
quence. For each n > 1, let B,, be a subset of the k populations defined by n

observations from each. Any sequence {B,} is a selection sequence if
Pr{my) € B, foralln > 1} > P*

for all § € Q2 where 7(x) denotes the best population and 0 < P* < 1 is given.
Swanepoel and Geertsema [50] construct a selection sequence {B,,} where By =
{m1,..., 7k} and
By = {7, : X,(n) > élz%kyi(n) — Sprh(k, P*,n)}

17



where X;(n) is the mean of n observations from i, Spr 1S an estimator of max

t#r
2
5‘:—03-, and h is a constant depending on k, P*, and n. The stopping time N is

defined to be the first integer n > 1 such that |B,| < m, where | B,,| denotes the size
of By, and m is an integer chosen in advance with 1 <m < k — 1. At termination,
we select the subset By.

In the unknown true configuration of 4, let s denote the number of 8;’s equal

to Ojx). f s < m, then N < o0 a.s., |By| < m, and By includes the best population
with minimum probability P*.
5.3 Gupta-Liang Procedure, Ryss:¢cr. Gupta and Huang [23] ﬁroposed and stud-
ied two procedures based on log-likelihood ratios which can be applied to loca-
tion and scale parameter cases. One of these two procedures is with elimina-
tion. Their goal is to select all mildly ¢ best populations (i.e. those m;’s for which
0i 2 Ojx_141) — 6* for a specified §* > 0, in the location case).

Recently, Gupta and Liang [25] have considered a similar setup (with some
slightly modified assumptions) and proposed a sequential procedure applicable to lo-
cation and scale cases but with a modified goal. For the location case with ¢ = 1, the
Gupta-Huang goal is to select all good populations. The Gupta-Liang goal is to se-
lect a subset which includes the best population and at the same time excludes all
that are not good. An event of selecting a subset consistent with this goal is denoted

by CS(6*) [Note that CS(6*) js different from §*—CS].

For the normal means problem with a common known variance o2, let X;1, Xio,
... be a sequence of independent observations from n;, ¢ = 1,...,k. For m >1,

define Y;,, = 727)' Xij. Let Sy, denote the set of contending populations at the
=1
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beginning of stage m and |S,,| denotes the size of S,,. We now define the Gupta-
Liang procedure.

Procedure Ryss:gr: Choose a 6; in the interval (0,6*/ 2). At stage m (m =
1,2,...), take one observation from each population in S,,. Include in Sy,41 only

those 7;’s in S,, for which

) mé? k-1

for all w, € Sp,,r #1;

and eliminate all other 7;’s from any further consideration. Now, label as good only

those 7;’s in Sy,4; that have not been labeled so far and for which

61 + 6*

N m(6* — 62) k-1
2

>1
=81 P~

(Yim — Yim) for all w4 € Spyy1,t # 4.

Stop sampling if either |Sy4+1| =1 or Sy,41 does not contain any unlabeled popu-
lation, and make the terminal decision: “Select all the populations in Sm+17; oth-
erwise, go to stage m + 1.

It should be noted that a population is not labeled unless and until it qualifies
to be called good. Once so labeled, it is not examined for labeling again. It is also
possible that a labeled population is eliminated at a later stage. The populations
that are selected are the ones which have been found to be good at some stage
and which have survived elimination. The choice of §; in (0,6*/2) assures that
the procedure terminates with probability one. The procedure guarantees that the
PCS(6*) is at least P*. The question of an optimal choice of §; is open.

6. SELECTION FROM BERNOULLI POPULATIONS: SS APPROACH

As in Section 4, my,..., 7 are Bernoulli populations with success probabilities

P1,-.., Pk, Tespectively. Gupta and Sobel [29] proposed and studied a single-stage
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procedure based on n independent observations from each population. Let X; de-

note the number of successes from m;, ¢ = 1,...,k. The Gupta-Sobel procedure

Rpss.gs is: Select 7; if and only if X; > jmax Xj —d, where d = d(k,n, P*) is the
<i<

smallest positive integer for which the P*-requirement is satisfied.

Sequential procedures are important in pra.cticé when the cost of sampling is
high or when the observations are scarce so that it is difficult to have the sample
size needed by a fixed sample size procedure in order to achieve the desired level
of the PCS. In the Bernoulli model, they have the added importance of ethical
considerations when the experiment concerns comﬁarisons among drugs; oﬁe would
want a drug with a small success rate 6; to be identified soon. Since a subset
selection rule also serves as a screening procedure before selecting one of the drugs
as the best, it makes sense to eliminate poor drugs rather quickly so that more

observations can be used for the remaining ones.

Recently, Sanchez [46] considered a class of sequential procedures which take no
more than n (common sample size in Rpss:cs) observations from each population
and result in the identical terminal decision as does Rpss.gs. All the procedures
in this class share the same stopping rule S* and terminal decision rule 7™* (to
be defined later). An optimal procedure in this class is defined to be the one
which minimizes the expected value of N, the total number of observations taken
until termination. In order to determine an optimal procedure, we should consider
procedures that take observations one-at-a-time. However, this turns out to be
a difficult task (seé Sanchez [46]). In this context, Sanchez [46] investigated a

procedure which uses a modification of the so-called least-failures sampling rule of
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the Bechhofer-Kulkarni procedure Rp;z.px described in Section 4. Although this
procedure is not optimal, it seems to perform well enough to be of practical interest.
Sanchez has considered asymptotic [46] as well as small sample [47] performance of
this procedure, the latter based on simulation.

We now complete our discussion by formally describing the modified least-
failures procedure of Sanchez [46]). Let n and d be the common sample size and
the constant of the Gupta-Sobel procedure Rgsgs.qcs. Observations are taken one-
at-a-time. Let z;y,, Yim, and n;,, denote the number of successes, number of
failures, and the total number of observations, iespectively, from 7; through stage
m. Let Ss and Sg denote the subsets of selected populations and of excluded
populations, respectively, into which the populations are assigned possibly at each

stage according to the following rule:

Assign 7; to Ss if z;, + 1:;1;1_1 Yjim > n — d;
FED
Assign 7; to Sg if yim + maxzj;,m > n+d+1; (8)
J

No assignment is made otherwise.

Sanchez Procedure, Rpss.s: Least-failures sampling is employed until for some
iy Nim = 1 and Yim = lrélf%{k Yjm at which time this #; is assigned to Ss. ;From
this stage on, additional observations are taken from 7, (j # i) until the first stage
when 7; can be assigned to Ss or Sg according to (8). Sampling is stopped when
no population remains to be assigned. The terminal decision is: Select all the

populations in Ss.

7. SELECTION FROM EXPONENTIAL FAMILY

21



The Bechhofer-Kiefer-Sobel [12] book provides a very comprehensive treat-
ment (including loss functions) of indifference—zone selection for the exponential
family. In this section, we discuss some recent results of Gupta and Miescke [26]
and Liang [38] for selection from k populations belonging to a one-parameter expo-
nential family. Liang’s approach is classical with the goal of C'S (6*), same as that
of the Gupta-Liang procedure Ryss.cr described in Section 5. Gupta and Miescke
[26] adopted a decision-theoretic approach to sequential selection. Their treatment
includes multi-stage selection. They have obtained results for selection of subsets
of random as well as fixed sizes.

7.1 Liang Procedure, Rgrss:r. Let 7y,..., 7k be k populations where 7; has den-
sity f(z|6;), where

f(z|6) = ¢(0) exp(z)h(z), = real

and @ € ©, an interval on the real line. For specified §* > 0, any population =; is
defined to be good if 6; > 6y} — 6*. Liang [38] considered the goal of selecting a
subset which contains the best population and excludes any that is not good (same
goal as that of Ryss.qr in Section 5). His sequential procedure with elimination is
based on certain conditional likelihood functions and it achieves the P *-requirement

for CS(6*). The details are omitted here.

7.2 Gupta-Miescke Decision Theoretic Approach. Consider the one-parameter ex-
ponential family 7 given by

F = {c(0) exp(0z)h(z), = € R}sce

where ® C R is an interval. We consider the class P; of permutation invari-

ant sequential procedures with or without elimination, employing vector-at-a-time
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sampling. Let Xj;;, X;s,... be a sequence of observations available to the experi-

menter from m; (with associated parameter 6;). At stage m (m =1,2,...), let n,,

N
observations be taken from the eligible populations. Let W;,, = X Xi;j, where
j=1

N, = E n;, denote the sufficient statistic for 8;, based on all observations from
i=1

m; through stage m, and let W, = (Wyp,... yWim), m=1,2,....

For § = (0y,...,0) € 0 = OF, L (Q5t1,...,tmytm+1) denotes the loss in-

curred when the procedures stops at stage m with a record {t1,- - stmrtmt1}s

where £, j = 1,...,m, denotes the subset of {m,...,7;} that is eliminated at
stage j, and t,,4+1 denotes the subset finally selected at termination. Note that
{t1,...,tm41} is a disjoint decomposition of {y,... sTk}. It is assumed that: (a)

L,, is permutation invai'iant. and (b) L,, increases if a record is changed so that a

better population is eliminated before an inferior one.

A natural terminal decision, at stage m, selects only those populations among
the noneliminated ones which yielded the largest values of W;,. Gupta and Mies;ke
[26] have shown that between any two procedures which differ only in their terminal
decisions, the procedure that uses a natural rule for terminal decision has a smaller

risk.

It is reasonable to speculate that, within stages where a procedure with elimi-
nation does not stop, natural subset selections are optimal as in the case of terminal
decisions. However, this has been proved by Gupta and Miescke [26] only in the
case of multi-stage procedures with the sizes of the subsets selected at each stage
fixed, under the assumption that ¥ is strongly unimodal [i.e. exponential density is

logconcave]. For additional comments, see Miescke [39).
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8. CONCLUDING REMARKS

As pointed out earlier, we have not attempted to provide any sort of compre-
hensive survey of sequential selection procedures. We have discussed only a few of
the selection procedures which are dealt with in the books mentioned in Section 1.
These few procedures are included to make the discussion of recent results contex-
tually clear. There are other problems of current interest which are not includedv
here. For example, there is some interest in multinomial selection problems with
truncation and curtailed sampling. There are several papers relating to multi-stage
procedures; espeéially,b two-stage procedufes. Thes.e ére not inéluded here. Also,
we have not discussed sequential procedures for selecting populations better than a
standard or a control.

SUMMARY

This paper describes some sequential selection procedures for selecting the nor-
mal population having the largest mean, and for selecting the Bernoulli population
having the largest success probability, with emphasis on recent developments. Both
the indifference-zone and subset approaches are discussed. Some results for the ex-
ponential family including a decision-theoretic approach are also described. Specif-
ically, the review of recent accomplishments include the development of truncated
procedures, detailed comparisons of the performance characteristics of procedures

for normal means, curtailment, adaptive sampling, and new selection goals.
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