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Summary

Trend-Free Run Orders of Mixed-Level

Fractional Factorial Designs

Coster and Cheng (1988) presented a Generalized Foldover Scheme for the construction of sys-
tematic run orders of fractional factorial designs, with all factors having the same prime power number of
levels, for which all the main effects components of the factors are orthogonal to a polynomial trend
present in every block of the design. We present here modifications to the foldover method that allow
polynomial trend-free run orders to be constructed in the following more general settings: designs for
which the number of levels of each factor is not a prime power; mixed-level factorial designs with factors
at different numbers of levels; cases in which some or all two- and higher-factor interactions, not just the

main effects, are required to be orthogonal to the polynomial trend.
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1. Introduction. Suppose that the treatxﬁent combinations of a given fractional factorial plan are to
be performed in a time (or space) sequence and that the experimenter has reason to believe that the
observed yields will be influenced by a temporal (spatial) trend over the course of the experiment. In
such cases, instead of the normally recommended randomized orders for the runs in each block of the
design, the experimenter may prefer certain systematic run orders that improve or maximize the
~ efficiency with which the main effects and certain multi-factor interactions are estimated in the presence
of this nuisance trend. In this paper, we modify the Generalized Foldover Scheme (henceforth, GFS) of
Coster and Cheng (1988) to achieve optimal efficiency for this estimation problem when the trend is
modeled by a (typically, low-degree) polynomial over the equally spaced run positions of the observa-
tions in each block. We define optimal efficiency to be orthogonality between the factor effects of

interest and the trend effects, in terms of the usual homoscedastic linear model, (see Section 2).

The principal extensions made in this paper to the results in Coster and Cheng (1988) involve the
specification of sufficient conditions on the appearance of factors at non-zero levels in sequences of gen-
erators of a fractional factorial design such that two- and higher-factor interactions also achieve the trend
orthogonality criterion previously applied only to the problem of main effects estimation. We further
generali;e the foldover approach to designs that need not have every factor with the same number of lev-

els (mixed-level factorials) and the number of levels need not be a prime power.

Cox (1951) introduced systematic designs for replicated variety trials with the criterion of efficient
estimation of the treatment effects in the presence of a smooth polynomial trend. Other early approaches
to the problem of trend elimination are discussed in Draper and Stoneman (1968), Dickinson (1974),
Cheng (1985) and John (1986). Much of their work is generalized in Coster and Cheng (1988). Cheng
and Jacroux (1987) and Cheng (1988) discuss an alternative and elegant approach, first introduced by
Daniel and Wilcoxon (1966), to the trend elimination problem for main effects and (some) two-factor

interactions in unblocked two-level fractional factorial designs. For the 2" series, they provide a
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construction technique with this approach that is essentially equivalent to the GFS generator sequence
shown in Example 3 of Section 4. Cheng (1988) also discusses the correspondence between our foldover
method and the Daniel and Wilcoxon scheme for designs for factors all with two levels. Numerous prac-
tical examples of fractional factorial designs for factors with two or three levels are available in two
National Bureau of Standards publications, Applied Mathematics Series 48 (1957) and 54 (1959). Exam-

ple 4 of Section 4 is taken from AMS 48 (1957).

The primary advantage of the GFS for achieving the trend orthogonality optimality criterion is the
ease with which an experimenter can try various generator sequences and quickly verify, using the
sufficient conditions detailed in Theorems 1, 2 and 3, whether trend elimination for the factor effects of
interest has been achieved. Except in very small designs, it is not difficult to achieve orthogonality for
the main effects components. Interactions present a greater challenge, in particular when we model non-
prime-leveled factors with prime-leveled pseudofactors and require interactions among the pseudofactors
belonging to each real factor to be trend free. The examples of Section 4 fall mostly into this latter
category.

In Section 2, we summarize the definition of the mixed-level fractional factorial designs to which
the modified GFS is applied in Section 3 to obtain optimal, trend-free run orders. All proofs of construc-

tion results are left until the Appendix. Some applications are shown in Section 4.

2. Mixed-Level Fractional Factorial Model. Let G denote a fractional factorial design involving
n factors, say ay, . . ., a,, with n; 21 of these factors at s; levels, fori =1,...,q, where each s; is a dis-
tinct prime number. Then n=n1+ --- +n,. Let the levels of any factor with s; levels be the set of

integers {0,1,..., si-;}, with all arithmetic on these levels being performed modulo s;. A complete

i=1

q : . .
factorial design in all n factors would require [T s/ runs or treatment combinations.

We use the notation

G = sl(’”-Ph") oo sq(’lq,Pq,rq) (2.1)

to denote a (possibly) blocked and/or fractional factorial design in the n factors. For eachi=1,...,q

and the n; factors with s; levels, let G; =5,"+"*) denote an s;? fraction of the complete factorial design



found by selecting a set of p; independent defining effects, »; > p; 0, involving only these n; factors.
We assume that the fraction chosen always contains the treatment combination 1 in which all the »; fac-
tors are at level 0. Another 7; independent effects are used to block the s/ ~P runs into s7* blocks each of
size s/*"P~". Then the notation of (2.1) implies that G = G{XGyX - - - X Gy, the product of the sub-
designs G;, so G contains all the treatment combinations formed from products of the runs in each sub-

design G;. We assume that the principal blocks of each sub-design generate the principal block of G, the

q
block containing the run 1. Thus, G contains N =TJ s/ ™7 runs blocked into B =] s/* blocks each of

q
i=1 i=1

size R =N /B. While other methods may be used to define mixed-level fractional factorial designs, this
product structure for G has, for our purposes, the two-fold advantage that (i) it is an easily applied
method that is in common use and (ii) it proves compatible with the GFS used in Section 3 to achieve the

design objective of trend orthogonality.

q
Define r = f‘, r; and p =Y p;. Let B denote the principal block of G. Then the treatment combi-
: =

i=1 i
nations of G may be found by choosing » =n —p ~r independent runs in B; and forming all possible
powers and products among them to generate B,.” There are h; =n; —p; —r; within-block generators of B

contributed by each sub-design G;, say g;;, j=1,...,h;,i=1,...,q. Then every run in B has the

general form
@ ko
g= ]j[[ I]:gq"],
i=1 j=1
where §;; ranges over the set {0,, . .,5;—1} foreachi=1,...,q. The remaining B{—1 blocks of G
may be generated in a similar fashion using independent between-block runs gy, ...,g, from distinct
blocks of G.

In Coster and Cheng (1988), trend orthogonality via the GFS was developed for main effects (only)
plans with ALL »n factors having the same prime power number of levels, s™* m>1, s prime. The results
of Section 3 allow us to cover not only this prime-powered case but more general mixed-level fractional
factorial designs by modeling non-prime leveled factors by products of prime leveled pseudofactors and

requiring all main effects and interactions among these pseudofactors to achieve the trend orthogonality



condition. Theorem 2 provides the primary construction results for this purpose.

Following the development in Coster and Cheng (1988), we define below the form of the polyno-
mial trend present in each block of G and the main effects components of each of the »n factors. In these

definitions, s is any one of the prime numbers s, ..., Sq-

DEFINITION 1. The system of orthogonal polynomials on m equally spaced points [ =0, . .., m~1 is

the set {Pg, , k =0,1,2,...,m~1} of polynomials satisfying

m-1
Y Pun)y=0 forall k=1 22
1=0
“m-1
Y Pin ()Pym A)=0 forall k #k’, @2.3)
1=0

where Py, () =1 and Py, () is a polynomial of degree k. We assume that each polynomial in the sys-

tem is scaled so that its values are always integers.

DEFINITION 2. (Factor effects). The s coefficients of the jth main effects component of a factor,
1<j ss-1, are Pj; (1), 0<l <s-1, the values of the orthogonal polynomial of degree j on s equally spaced

points.

DEFINITION 3. (Trend effects). The R values of a polynomial trend of degree j, 1sjsR-1,in a
block of size R are Pjr (), 0<l <R -1, the values of the orthogonal polynomial of degree j on R equally
spaced points.

The linear model for the N observations is

Y =(X;,X;,T) (B'1.P2.83) + €, 2.4)

where € is an N -vector of zero mean, uncorrelated random errors, X; is an N X1 matrix of factor effect
coefficients, X, is an N XB matrix of block effect coefficients, and T is an N Xk matrix of polynomial
trend coefficients, the same in every block, of degrees 1, ...,k. The first R rows of X=(X;,X;,T) are
the R treatment combinations in the principal block B, the next R rows the treatment combinations in
the second block, and so on. The terms By, B, and B; are the corresponding factor, block and trend

parameter effects, respectively. The product design definition of G, the assumption of the same degree



trend in each block, and the requirements that only one effect from each alias set and no effects con-
founded with blocks are included in X; imply that:

X1X;=0, X'1X,=0, »T=0.
We may now define the design criterion for trend elimination.

DEFINITION 4. (Design optimality). A run order of design G is optimal for the estimation of the

factor effects of interest, By, in the presence of a nuisance k-degree polynomial trend in each block, if
X’l T= 0 (25)
If condition (2.5) is satisfied, we say that the run drder of G is k-trend free.

If x is any column of X; and t any column of T, then we call the usual inner product X't the time
count between x and t. Criterion (2.5) states that all the time counts are zero for an optimal run order. As
stated in the Introduction, our primary objective is to satisfy optimality condition (2.5) in a setting where
X, contains columns representing two- and higher-factor interactions among factors not constrained to

have the same prime power number of levels.

3. Construction of Optimal Run Orders by the GFS. We begin by modifying the Generalized
Foldover Scheme, GFS, of Coster and Cheng (1988) for the mixed-level fractional factorial designs
defined in the previous section. We then present conditions under which both main effect and interaction
components of the n factors become othogonal to the polynomial trend. This leads to a stepwise con-
struction method for optimal run orders of G. In what follows, we may assume that G is run in a single
block of size N. The usual block structure is replaced after Theorem 2 and the advantage of blocking is

demonstrated by Theorem 3.

DEFINITION 5. (GFS for G). Suppose that {gy, ..., g€.-p) are n —p independent generators of G .
Assume that g;, j=1,...,n-p, contains at a non-zero level at least one factor with f i levels,
fj€{s1,....55}. Let Up=1. Then the run order of G produced by the GFS with respect to generator

sequence { gy, ...,8:— } and foldover sequence { fy, ..., fr-p }is givenby U,_, where

Uj =Uj_1 (8))=(Uj-1,Uj1gj , ..., Ujiagf™),  j=1,...,n—p. @3.1)



DEFINITION 6. (k-trend free factor effects over U;). Letfactors ay, ... ,a,, m21,have ty,...,1,
levels, respectively. Then the m-factor interaction in factors ay, . . .,a,, is k-trend free for some k >0

over the run order of U fi if

(a) atleast one of the m factors, say a,, occurs equally often at each of its levels over U i and

m
(b) allt=TT (#; —1) interaction components are orthogonal to the trend polynomials Pqy, . . . , Piy-
=1

Condition (a) of Definition 6 ensures that our definition of k-trend free interactions is in keeping
with the definition for k-trend free main effects only, that is, m =1, in Coster and Cheng (1988). When
constructing run orders with the GFS (3.1) of Definition 5, if at least one of the m factors, say a; with ¢,
levels, is at a non-zero level in a generator g, of U; for which f, =t,, then a, meets condition (a) and is

0-trend free.

Among the foldover levels {f;,j=1,...,n—-p} there are exactly n; —p; appearances of the level
si,i=1,...,q. If this last condition were not met, G would not be correctly generated. Note that gen-
erator g; may contain, at non-zero levels, other factors with numbers of levels not equal to the foldover
level f;. This has the advantage that it easily pmduces run orders of G that are not simply the product of
the separately ordered sub-designs G;. This latter run order, while it might have the trend orthogonality

properties we seek, would be considered too systematic for many practical applications.

EXAMPLE 1. Let G =2®193@10 pe defined by / =AB for the two factors with 2 levels and by
I=CD for those'with 3 levels. If we choose g;=abc?d and f 1=2 followed by g,=cd? and f 2=3, by
Definition 5, the GFS (3.1) generates the run order

G =U,=(1,abc%d ,cd?,ab ,c%d ,abcd?),
which is not the simple product of G;=(1,ab ) and G,=(1,cd?,c%d).

We now state our primary construction results. Theorem 1 is a generalization, for our mixed-level
factorial design structure, of the results in Coster and Cheng (1988) that guarantee k-trend free main
effects components. Essentially the same conditions must be met. Our primary result, Theorem 2, pro-
vides sufficient conditions on the generator and foldover sequences that ensure trend orthogonality for

two- and (possibly) higher-factor interactions. We then recover the usual block structure and show how
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this is useful in Theorem 3. Before presenting these theorems, we state in Lemma 1 the essential require-
ment that any m -factor interaction that is k -trend free over U, _; remains & -trend free over U, (and hence

over G). In what follows, let the generator and foldover sequences be as given in Definition 5.

LEMMA 1. Suppose that the m -factor interaction in factors ay, . . ., a,,, m 21, is k-trend free, k >0,
over U,_; according to Definition 6. Then this same interaction is also k-trend free over each piece

U,-gl.j=1,...,f,—1,0f U, and hence is k-trend free over U, .

Note that some of the components of the m -factor interaction of interest may not be part of the
columns of the effects matrix X; of (2.4) because of aliasing or confounding in the blocking and frac-
tionating schemes. However, our definition applies to all the components of the interaction even though

some of these components are not part of the final estimation problem.

THEOREM 1. Let a be any one of the n factors and let a have s levels, s € {5, . . . .54 }. Suppose
that factor a is at a non-zero level in (k +1), & 20, of the generators for which the corresponding fold-

overlevel is s. Then all s —1 main effects components, as given by Definition 2, are k-trend free over G.

Each factor must be non-zero at its foldover level in at least one generator, that is, all factors are
necessarily O-trend free over G. The conditions of Theorem 1 must be met for all n factors if the result-
ing run order is to be an optimal k-trend free main effects plan. Note one limitation of the GES for con-
structing k-trend free main effects run orders of G : if n; ~p; =1 for one (or more) i, so that there is only
one use of foldover level s;, then the factor(s) with s; levels cannot be made k-trend free for any & > 1.
Therefore, we exclude this possibility in all practical examples. Theorem 1 is, in fact, a special case of
Theorem 2 (iii) below and no proof of Theorem 1 is given in the Appendix. However, we have stated the
sufficient conditions for main effects to be k-trend free in a separate theorem because of the assumed
importance to the experimenter of achieving trend orthogonality for main effects before being concemed

about interaction components.

THEOREM 2. Suppose that all the components of an (m—1)-factor interaction, (m >2), involving
factors ay, . . . , 4,1 are k-trend free over U,_;, 2<v <n—p. Suppose that a factor a,, with s levels is at

a non-zero level &, in g, and the foldover level is f,,. Then one of the following cases may apply:



(i) ifa,e{ay,...,an1}, then the m-factor interaction in factors a,, . . ., a,, is k-trend free over U,
if factor a,, is at level zero in generators g, . . ., g,-; of U,_;;

(i) if a,€¢{ay,...,an-1}, then the m-factor interaction in factors a;,...,a, is (k+1)-trend free
over U, if all of the factors ay, . . . ,a,,-; are at level zeroin g, and f, =s;

(i) if a,, € {a;,...,a,}, say a,,=a,, then the (m—1)-factor interaction in factors ay,...,a,- is
(k+1)-trend free over U, ifa,, ... ,a,_; are at level zeroin g, and f, =s.

Case (i) of Theorem 2 indicates that the m -factor interaction inherits the k-trend free property of the
(m-1)-factor interaction, provided factor a,, has yet to appear in any previous generator. Of greater
import are the sufficient conditions, expressed in the second and third cases of Theorem 2, that produce
an increase in the degree of trend orthogonality. Case (ii) shows how the degree of trend orthogonality
may be increased from £ to (k+1) provided that the new factor, a,,, appears in g, in isolation to the other

(m-1) factors. A similar requirement is needed in case (iii).

Our construction objectives are now apparent. To achieve main effects orthogonality to a kth
degree trend, we seek a generator (and foldover) sequence that has each factor appearing at a non-zero
level and at its foldover level in (k+1) generators. Interactions involving two factors are k-trend free if
the two factors are non-zero in isolation to one another in (k+1) generators with the appropriate foldover
levels, or if case (i) applies to the two factors of interest. We may similarly procede to conditions for
higher factor interactions to be trend free. When attempting to meet the trend orthogonality conditions
for main effects, if the foldover level for a generator is f,, we would like to have as many as is possible
of the factors with f, levels appearing at a non-zero level in g,. Conversely, trend orthogonality for
two-factor interactions requires these factors to be isolated from one another in different generators.
Clearly, these conditions compete with each other and in some cases run orders with, say, all main effects

and two-factor interaction components  -trend free cannot be generated by the GFS.

EXAMPLE 2. Let G be as in Example 1, but generated by g;=ab and g,=cd?, with ;=2 and
f2=3 as before. Then the two ac interaction components are 1-trend free over G. (Note: the same is
true of the ad, bc and bd components, but these are not part of the effects matrix X, of (2.4) because of

the aliasing of A with B and C with Ii) Both main effects are 0-trend free but neither is 1-trend free in



this (impractically) small example.

Before moving to examples and applications in the next section, we replace the usual block struc-
ture of G defined by (2.1) and state a theorem that exploits the block structure and, in particular, the
assumption that the same degree trend is present in every block. Recall that the principal block uses
h =n—p—r generators. Let g,, h+1<v <n-p, be a between block generator with foldover level f,.

Then, with the GFS construction method, the following conditions hold.

THEOREM 3. (Blocked designs). Suppose that factor a; with ¢;=f, levels is at a non-zero level in

g,. Then,

(i) all ¢;—1 main effects components of a, are orthogonal to all the trend columns of matrix T of

model (2.4).

(ii) if factors a,,...,a, are atlevel zero in g, , then the m-factor interactionin ay, . . . ,a,, is onhogd-

nal to all the trend columns of matrix T of model (2.4).

4. Examples of k-Trend Free Runs Orders. Coster and Cheng (1988) gave an example of a run
order of G =2%4%9), a complete factorial in four factors each at two levels, for which all four main effects

and six two-factor interactions are 1-trend free. We generalize this individual example as follows.

EXAMPLE 3. Suppose that the design is G =s®%9, a complete factorial design in n factors each

with 5 levels, where s is a prime number and » >4. Then, for the following two cases:

(i) n is even, and we choose generators
8 =a1 GGy, i=1,...,n=1,  ga=ay- - aypafifDmeds);
(ii) »n is odd, and we choose generators
B1=a2° "Gy, 8u1=a) 8@ ifTNCNN g =g,
g =dy1° " ai18i0Gp-1, i=2,...,0-2;

the resulting run order of G has all n(s—1) main effects components and all 1/2n (n~1) (s—1)? two-factor
interaction components 1-trend free. Note that the integer ¢ in the generator expressions above is any
choice of 1<¢q <s-1 such that we obtain a complete set of n independent generators. It is sufficient to
choose ¢ #(n—2) (mod s). The case for n odd simply uses the sequence for an even number (n-1) of fac-

tors, modifies g; by including a, and a;'lds the last generator g, =a, to meet the requirement for the main
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effects to be 1-trend free that each factor be at a non-zero level at least twice in the generator sequence.
Each pair of distinct factors a;, a;, i #j are isolated from one another in two different generators.

Hence, by Theorem 2 (ii), all two-factor interactions are 1-trend free.

For example, the design G =299 presented in Coster and Cheng (1988) would now use generator
sequence {bcd ,acd, abd,abc}, while design G=2%9 would have generator sequence
{bcde , acd , abd , abc , e }. In a similar fashion, design G =3%29 is generated by the sequence
{bcd , acd , abd , abc?}, except that the foldover level is now 3, not 2, at every stage. For this last case,

the value ¢ =1 was used for g4 since (4-2)=2 (mmod 3) cannot be used.

The examples shown here are generally large, complete factorial designs. In practice, such large
designs are often blocked, especially in our trend elimination setting where the experimenter may believe
the trend to be linear in each block when the blocks are relatively small but may doubt this assumption
for one very large block of size s”. As Theorem 3 demonstrates, blocking typically makes the trend elim-
ination problem easier, although success does depend on the choice of block confounding effects. For
example, if G =291 with the ABC interaction confounded with blocks, the same generator sequence
shown above for the unblocked 2¢ is sufficient. However, if the highest factor interaction ABCD is con-
founded with blocks, the GFS fails to find a run order for which all main effects and two-factor interac-
tions are 1-trend free. As stated in the Introduction, Chené and Jacroux (1988) provide an alternative

approach to the trend elimination problem for the 2 series.

EXAMPLE 4. Consider the design G =2®3 defined by I =ABEGH =ACFG =ABCD with block-
ing effects ABEF and ACE, a design in 4 blocks of size 8 for 8 factors each at 2 levels. This is plan 8.8.8
in Applied Mathematics Series 48 (1957) from the National Bureau of Standards. There are 12 estimable
two-factor interactions (out of a total of 28 two-factor interactions), and these are listed in AMS 48
(1957). The following sequence of five generators, the first three generating the principal block and the
last two the remaining three blocks, make all 8 main effects and 12 estimable two-factor interactions 1-
trend free:

abcd , abefh , beegh , abcdefg , eh.
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EXAMPLE 5. Consider now designs for n factors each with a proper prime-power number of levels.
For our purposes, we will restrict attention to the prime powers 4, 8 and 9. (The prime powers 16, 25, 27
and so on seem unreasonably large for most practical factorial designs in at least n >2 factors, especially

complete factorial designs.)

To use the GFS construction method of Section 3 and the results developed there, we first define
pseudofactors, each with a prime number of levels, to represent each real factor. If each factor g; has s™
levels, s prime, m > 1, let m pseudofactors each with s levels be a;;,j =1, ..., m. Then all main effects
and interactions among the m pseudofactors are equivalent to the s™—1 main effects components of the
real factor. Thus, a factor with 4 levels requires two pseudofactors each at 2 levelé, a factor with 9 levels
is represented by two pseudofactors with 3 levels, and so on. Then, we have the following construction

results:

(@) For n 22 factors each at ¢ =4 or ¢ =9 levels, there is a run order of G =¢* with all main effects com-
ponents 1-trend free. This follows from the fact that for the 2n >4 pseudofactors with 2 or 3 levels,
respectively, Example 3 above produces a run order with all main effects and two-factor interactions

1-trend free, which is more than sufficient to make the main effects of the real factors 1-trend free.

(b) For n 22 factors each at ¢ =8 levels, there is a run order of G =¢" with all main effects components
1-trend free. In this case, we have the additional requirement that the three factor interaction
between each set of pseudofactors (a;;, a;3, @;3) also be 1-trend free. A sequence of generators
having the required properties is

n

n n n-13
gi=IT1an, 2=T1ai2, g=I]as. g4=[ Hr_[aij] Gn1Gn2, €5=Q110p3," "
i=1 i=1 i=1 i=1j=1

where the remaining (n—5) generators may be anything to complete the design. Note that the two-
and three-factor interactions among each set of three pseudofactors are 1-trend free over Usj, by
Theorem 2 (i) and (ii), while g4 and gs simply meet the main effects requirement that each pseu-

dofactor appear at least twice in the sequence.

Similar results are possible for the other prime powers but we omit the details since these other

designs would rarely be used in practicé.
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Our final two examples illustrate the application of the GFS to designs with a mixture of levels
among the n factors. Before presenting the example, note that the GFS cannot produce a run order of a 62
design with both 6-leveled factors 1-trend free. This is a reflection of the fact that no run order of a 22 has

both main effects 1-trend free.

EXAMPLE 6. Consider a design G =6", n 23. Each factor g;, i =1, ...,n may be represented by a
pseudofactor with 2 levels, say b;, and another with 3 levels, ¢;. For the main effects of the factors in G
to be 1-trend free, we require that the main effects of the b; and c¢; be 1-trend free, as also must be each
interaction between b; and c;. By Theorem 1, each b; and ¢; must appear in at least two generators using
its foldover level, while Theorem 2 tells us that each pair (b;,¢; ) must be isolated from each other in dif-

ferent generators using the appropriate foldover level. It is sufficient to use as the first two generators
n n
gi=J1bi, f1=2, g=[lc, f2=3,
i=1 i=1

and continue with (n—3) other genera’tors that complete the main effects requirements among the {b;})
separately and the {c; } separately. For example, when n =3, the generator and foldover sequence

bib2, f3=2, bibs, f4=2, cic2, f5=3, cac3, f6=3
completes the required run order of G. Similar results apply for cases having factors with 10, 12, 14 and

so on levels.

EAMPLE 7. Consider now the specific example of a 1/6 fraction of a 6* design involving four fac-
tors, aj, ...,d4, each with six levels. If a, b, ¢, d are four pseudofactors each at two levels and
e,f,g,h are four pseudofactors each with three levels, let the pairs (a,e), (b,f), (c,g), (d.k)
represent the four real factors ay, . . ., a4, respectively. To choose the fraction, use the defining effects
ABC and EFGH for the two and three level pseudofactors, respectively. Then the main effects of the
four real factors are 1-trend free if the main effects of the eight pseudofactors plus the intéractions
AE, BF, CG and DH are 1-trend free. Interms df the pseudofactors, if six generators are given by

bed, acd, abd, efg, efh, fgh,
then all eight main effects are 1-trend free by Theorem 1, while any interaction between the pseudofactors

with two levels and those with three levels are 1-trend freé by Theorem 2 (i), since none of the factors



13

with three levels appears in the generator sequence until each factor with two levels has become 1-trend

free. Hence, the four main effects each with 5 degrees of freedom are estimated with full efficiency.
APPENDIX
The proofs of Lemma 1 and Theorems 2 and 3 are presented here.

PROOF OF LEMMA 1. Without loss of generality, let the m factors be a,, . . ., a,,, with g; having 1,
levels, I=1,...,m. Let factor a; be present equally often at each of its levels ;€ {0, ..., ¢;—1} over

U,1. Letn; €{0,...,4-1} be the possible levels of each factorg;, [ =1,...,m.

Let the treatment combination (7, ...,N, ) occur ¢ (Ny,..,N,,) times over U,_; in run positions
i...mmjrd=1,...,¢(My,...,Nyp). Then the assumptions of the Lemma imply that, foreach O<u <k
and every ¢;=1,...,4~1,1=1,....,m,

-1 tn—1 cMy....,Mm) m
0= -~ X {[ Y  Pw(ig....nmj )} II'[IPq,:,(‘ﬂt )}- (A.1)

nm=0 Nm =0 j=1

Let the term in square brackets *‘[...]'" in expression (A.1) be denoted by W(Ny,...,Nm) if
cMy, ...,Nm)>0, with the dependence on # and N suppressed. Set the function W(n;,...,N,)tobe a
constant, say C, for those level combinations for which c(ny, . .. ,M,)=0. Using the constant C in this
fashion in (A.1) does not affect the sum since summing over those combinations of levels that do not
occur involves summing the product at the end of the expression over all the levels n; of a; and by

Defintion 1 this sum is always 0.

The function W(n;y, . . .,M,,) represents the contribution from the trend of degree u to the time
count with each component (qq,...,q,) Of the m-factor interaction. We now show that
WM, ...,N,)=C for all the level combinations, not just those that do not appear in U,_;. From this,

the statement of the Lemma easily follows.

For fixed 0y, . . . ,Mm-1, the ,, points (M, , WMy, ..., Mm)) Nm =0, ..., 1n~1, may be fitted by a
polynomial of degree at most ,,~1, say Q, —1(N,,), With coefficients that depend onn;, . . . , N1 but not
onm,. Then,

tn—1

O1Mm)= 3 0N, . . ., Nmt3i 1) Pyt M- (A2)
J1=0
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Substitute (A.2) into (A.1) and sum over n,, and j;. By expression (2.3) of Definition 1, only the term

for which j,=g,, makes a non-zero contribution to the time count. Then, expression (A.1) reduces to

-1 In-1—1 m-]
0= 3 - % {[d@mom....Muian)] T Pu}. A3)
nl=o nn-l=0 =1 .
tn—1
where d(g,)= Y, ( P,,_,,,,_(n,,,))2 >0. We have shown that W(n;, . ..,n,,) contributes to the time count
M= =0
only through a positive constant d(g,,) and a coefficient "y, . . . ,Nm-1:4) that does not involve 1,,.

Continuing this induction for 0,1, . . . , 3, We may eventually reduce (A.3) to the form

0=d(q1,....9m)0q1, ..., qm)

where d(q1,....9,)>0. So each of the coefficients that contribute to the original expression for
W@y, . .. .Nm,), when expressed as a polynomial in 1, in successive iterations, must satisfy the condition
(o(qlv se !qm) =0

and this is true for all 1<¢;<¢-1,1=1,...,m. Thus, W(n,,...,N,) is constant as a function of its

arguments.

We now complete the proof of the Lemma by showing that the m -factor interaction remains & -trend
free over U,. For each l=1,...,m, let factor q; be at level &; in g,. Let f be the number of runs in
U,-1. Then the run positions in U,,g,", w=1,...,f,—1,ae wf,...,(w+1)f-1. Forthe (qy,...,qn)
component of the interaction over these run positions, the time count with the trend of degree k is given
by

-1 tnl [ [ cn....nm) m
)IIRERED > { [ Y PwWf +ig, ... nwj )] l];IIPq,,,(n, +w§,)}, (A4

‘nl=0 11.‘= j=l

where it is understood that the sum 1, +w&, is reduced modulo #; in expression (A.4). Now expressing

the trend polynomial in (A.4) in the form
k .
Pow(Wf +ig,...n)) = X GO ) Pnv(i, ... qm))
u=0

where o, (wf ) does not depend on (11, . . . , M, ), and substituting this expression into (A.4) gives
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tl_l In -1

k m
zoau(uf) Z e z { [W(nl' e 'nm)] I]__%qu(nl +W§1)}

m=0 Nw=0

k -1 1| m .
= Zo{ o, IWwN) 3 - X [HPq,z,(Tlﬁwﬁl)J } (A.5)

m=0 Ne=0]| =0

by the result for W(n,, .. .,M,,) developed earlier. Now, since 1; ranges over all its values in U,_;, so
too does n; +w&; for any w and &; by the cyclic group properties of addition and multiplication modulo
t1, so the inner sum over 1; is 0, establishing the claim that the m -factor interaction remains k -trend free

over U,_;g,’ and so over all the runs of U,

PROOF OF THEOREM 2. Before establishing the results, we introduce a slightly more convenient
notation. Let the level of factor g, be §;; in generator g;, I =1,...,m and j=1,...,v, and the foldover
levels be f;, as usual. Forindex i;€{0,...,f;-1},j=1,...,v, the run position in U, given by a fixed

choice of (iy, . .., i,) may be expressed as

v j—1 v-1 v=1 j-1
3 (T1 /)i =fi, +d, F=Ifu d=% CTLfi

j=1 hL=1 j=1 h=1

where d dependson iy, ... ,i,—y but not oni,. The level of factor g; in this run position is of the form
v . * .
¥ &l =& +i,&,
j=1
where &, is also independent of i,. Arithmetic in the above expression is understood to be carried out

modulo ¢. Then the assumptions of the theorem together with Lemma 1 imply that, for any O<u <k and

all 1sg <4-1,1=1,...,m,

[ forl m—1 .
0= Z T Z PHN(flv +d) H qu(gl +iv§lv) ’ (A6)
i1=0 i,1=0 1=1

foranyi, =0,...,f,~1.

PROOF OR PART (i). The time count over U, between the trend of degree k and any component of
the m -factor interaction is expression (A.6) summed also over i,, except that the product at the end now
runs from /=1 to / =m and includes a term of the form P,, , (&, +i,&,y ). By the assumptions of part
@), §,: =0, independent of iy, . ..,#,_;, so this additional term in the product may be taken outside the

summations over iy, . ..,i,; and by éXpression (A.6) the result is O for each value of i,.
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Note that part (i) allows a factor that has not yet appeared in any previous generator to inherit, in its
interactions with those other factors already used in the earlier generators, any trend free properties exist-

ing among this first set of factors.

PROOF OF PART (i). The time count over U, between the trend of degree (k +1) and any component

of the m -factor interaction is of the form

fi-1 -1 m
T(k+1,v)= % -+ ¥ Pran(fi,+d) TT Pou(E +i & ). (A7)
=0 i,=0 I=0

By the assumptions of part (ii), &, #0, &, =0, I=1,...,m-1,and f, =s. If we express the trend poly-
nomial in (A.7) in the form
k+1

Pran(fiy+d) = F, o, (fiy)Pun(d), (A.8)

u=0

where o4,1(fi,)=1 independent of i, , we may write (A.7) as

k+l1s-1 ) Ji-1 fra-1f m-1 . . .
T(k+l,v)= 3 3 (i) Y -* X 1| Pv@) IT PonC| PotnEm+isEmy) . (A9)
u=0i,=0 i1=0 i1=0 1=1
Foru=0,..., k, the inner summations overi,, . ..,#,_; yield O for any value of i, by the assumptions of

the theorem and Lemma 1. Then, since oy,1(fi,)=1, expression (A.9) reduces to

fir-1 Soa—1 m-1 . -1 N
Tk+l,v)=% --- ¥ {Pkﬂ,N(d) I1 qu(gl)[ PotnCm +iv§mv)] }
i1=0 =0 =1 i,=0

Finally, the inner summation over i, always yields O by (2.2) of Definition 1. .Hence, the m-factor

interaction is (k+1)-trend free over U, .

PROOF OF PART (iii). Since a,, =a, the expression for T(k+1,v ), the time count over U, between
the trend polynomial of degree k+1 and any component of the (m—1)-factor interaction, is the same as
expression (A.9) except that the product inside the square brackets “‘[...]"* now runs over / =2 to [ =m-1.

Then, the same arguments that follow (A.9) now apply to this time count and the proof is complete.

PROOF OF THEOREM 3. Let factor a; be atlevel E#0in g, .
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PROOF OF PART (). When U, is folded over with respect to generator g, at foldover level f, = t,
each block of size R of U,_; generates f,_; — 1 new blocks of the same size. If factor a, is at level € ; in
run position j, j=1,...,R, in any block of U,_,, then a, is at level €; +i,& in some block of U, gen- -
erated from this starting block. Since §; +i,& takes each possible level of a; exactly once as i, runs from
0to f,—1, and since the trend polynomial of any degree £ is the same in every such block in run position
J» the contribution to the time count from starting position j for any main effects component ¢, of a; is

given by
fo-1
Y P (& +i,E) P () (A.10)
=0

which is O for every j by (2.2) of Definition 1. Hence, a is k-trend free over G for any 0<k <R-1.

PROOF OF PART (ii). For starting position 1<j <R of any fixed block of U,_; and trend polynomial
of degree 0<k <R -1, since a, . . . ,a,, are at level zero in g, , the product of Pz (j) and any component
of the (m—1)-factor interaction in factors a,, . .. ,a,, is constant for this same position j in all f,—1
blocks generated from the current starting block of interest. So the time count contributed by position j
is the same as (A.10) except for the addition of a constant product, that does not depend on i, , involving
any componént of the (m—1)-factor interaction. The resulting sum is again O for every j and hence the

m-factor interaction of a;, . . . , a,, is k-trend free over G.
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