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ABSTRACT

For sequential Bernoulli trials, a necessary condition for a parametric function to be
unbiasedly estimable is that it be continuous. Depending on the existence of the moments
of the corresponding stopping time and the estimator, these functions are differentiable
upto a given order. We also study the implications of these results to the problem of
estimating min (p,1 — p) unbiasedly.
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1. Introduction

Let (X;),2 > 1 be a sequence of i.i.d. Bernoulli r.v.’s with P(X; = 1) = p and
P(X;=0)=1-p, 0<p<1. D. Basu (1975) posed the problem of generating an event
with probability p*, a > 0. Banerjee and Sinha (1979) pursued this problem and were led
to the problem of estimability of g(p) = min(p,1 — p).

Singh (1964) had proved that if (X;), ¢ > 1 are i.i.d. observations from some paramet-
ric family Gg,0 € Q2 and there is a fixed sample size estimator which estimates § unbiasedly,
then a sufficient condition for a parametric function g(8) to be estimable on the basis of a

random sample size N, is that it be in Baire class 0 or 1.

This result is clearly applicable to the Bernoulli situation. However, Singh’s sequential
plans are not true sequential plans since he assumes N to be independent of the entire

sequence (X;), 7 > 1.

In the Bernoulli case, we consider the class of all true sequential plans (with no external
randomization). By quite simple arguments, we are able to show that if a parametric
function is (unbiasedly) estimable, it is necessarily continuous. Higher order smoothness

can be proved under existence of moments of the sample size and the estimator.

The original motivation for writing this paper was to see whether there are sequential
plans allowing the unbiased estimability of the function g(p) = min(p, 1 — p). As a
consequence of our main result, this is not possible if we restrict our attention to proper

or bounded estimators and with expected sample size finite.

2. The main results

Let (Xi), ¢ > 1 be a sequence of i.i.d. variables with P(X; = 1) = p, P(X; = 0) =
1—-p, 0 < p < 1. Any realization of this sequence can be viewed as a path in the first
quadrant of R2. Starting from the origin, at the sth trial (¢ > 1), we move one step to the
right if X; = 0, and one step above if X; = 1. A non randomized stopping rule tells us
whether to stop or continue sampling after we have reached a given point — this depends

on the path traced upto that point. Hence if T' denotes the point where we stop, then
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Py(T = (z,y)) = K(z,y)p*(1 — p)¥ where K is an integer with 0 < K(z,y) < (zjy)
Only closed plans are relevant and so we assume Pp(T < o0) = 1, or in other words,

>, K(z,y)p*(1—p)Y =1forallp, 0< p< 1. IfT = (z,y), the random sample size
}:\,TZ;?(i)s given by N7 = £ 4+ y. An estimator e is a function defined on the possible points
(z,y) of T. A parametric function g(p) is said to be (unbiasedly) estimable if there exists

a stopping rule T and an estimator e such that
Z le(z, y)| Pp(T = (x,y)) <cofor0< p<1and
T,y

Ze(x,y)Pp(T = (z,y)) = g(p) for 0 < p< 1.

z,Yy
Theorem 1: If g(p) is unbiasedly estimable, then g is continuous.

Proof: Let et and e~ be the positive and negative parts of e and let
g+(p) = Ze™ (z,y) Pp(T = (2,))
g9-(p) = Ze™ (z,y) Pp(T = (,y))
Then g (p) and g—(p) exist and g(p) = g+ (p) — g—(p). It is enough to prove that g (p) is

continuous on any subset [a, b] of (0,1).

Define g% (p) = z+§y:<ne+(a:, Y) Pp(T = (z,y)).

On [a,b] each g7} is continuous (in fact a polynomial in p) and g7 1 g4 pointwise.
Hence by Dini’s theorem (page 248, Apostol (1974)), this convergence is uniform, which

in turn shows that g4 is continuous on [a,b]. O

Remarks:

(1) As a consequence, if for a stopping time T, E,(Nt) < oo for 0 < p < 1, then

p — E,(N7) is continuous.

(2) We believe that continuity of g(p) is sufficient for its estimability but we have not

been able to prove it.

The following theorem strengthens continuity to differentiability under stronger con-

ditions.



Theorem 2: Suppose ¢ is unbiasedly estimable by an estimator e and a stopping rule T

such that EpleNr| < co. Then g is continuously differentiable.

Proof: Fix [a,b] C (0,1) and define g4,g7% as before. It is enough to show that g, is

continuously differentiable on (a, b).

@@ = Y (f— y )e+(m,y)Pp(T=(x,y))

p 1—p

Define R, (p) = Z (E - ) et (z,y9)Po(T = (z,v))

z+y2ntl p 1-p

Note that by the assumption that Ep|eNr| < co, R,(p) exists and further,
|Rn(p)] < Ep(NretI(T > n+1)) | O for every fixed p

by dominated convergence theorem.

By Theorem 1, E,(N7eTI(T > n+1)) is continuous in p and hence the above convergence

is uniform.

By dominated convergence theorem, as n — oo,

@)~ 16 = ¥ (2= 1) e nplr = ()

1 —
z,y=>0 p p
and as shown above, this convergence is uniform.

On the other hand, g% (p) — g+ (p) for every fixed p. Thus ¢/, (p) exists and ¢, (p) =
f(p) (see Theorem 9.13 of Apostol (1974)). The continuity of g/, (p) follows easily (e.g. by
Theorem 1). O

Remarks:

(3) Exactly the same arguments show that if Ep|eN£| < oo for some integer & > 1, then
g(p) is k times continuously differentiable. Hence if E,(NZ) < co then p — E,(N7)

is continuously differentiable.
(4) We conjecture that if E,(|e| exp(aNT)) < oo for some o > 0, then g(p) is real analytic.

4



3. Estimation of g(p) = min(p, 1 — p):

Since g(p) lies between 0 and 1/2, it is realistic to restrict attention to only bounded
estimators. If we restrict ourselves further to stopping rules which have finite expected
stopping times, then g(p) is not unbiasedly estimable. This follows immediately from

Theorem 2.

We give below examples of a large class of stopping rules which allow us to estimate

g(p) (with possibly proper estimators).

Define n = p(1 — p). Then it follows easily that

1— (1~ 4n)'/?
2

min(p,1 — p) =
[0}
(2z — z
—Z =) ,x,p *(1-p)®.
(This relation also follows from the theory of random walks). Hence for any stopping rule
for which (at least) the points (z, z) are boundary points, we can estimate g(p) by

(2z — 2)!
(z — 1)1zl K (z,y)
= 0 otherwise.

e(z,y) = ifz=yand T = (z,z)

2
:)‘

However, it is easy to see that any such estimator is highly improper since K (z,z) < (

We have not been able to get a plan with a proper estimator of g(p). Note that any
such estimator has to be positive at some points (z,¥), £ # y. Further, by Theorem 2,
g(p) is not unbiasedly estimable by a bounded estimator with finite expected stopping time

for all p. This remains true for any other g(p) which is nondifferentiable.

This leads us to the problem of characterizing all plans which yield (proper or im-
proper) estimators of g(p). It is easy to see that a plan which includes as stopping points,
the points {(1,1), (z+ 1,z), (z,z+1); = = 2,3,...} enables to estimate g(p). This is
because for any z, p*T1¢® + p®¢®t! = p®¢®. This argument can be pushed further. For
instance a plan including {(z,z), (o + 2,20), .(T0,%0 + 2); = # z0, = = 1,2,...} as
stopping points, yields an unbiased estimate of g(p). These facts make the problem of

characterization difficult to solve.
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