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Abstract

Can blocks be tested in a randomized blocks design? It is well-known that two dif-
ferent linear mixed models can be written which yield conflicting answers to this question.
This paper examines the models from the point of view of statistical relevance. It is found
that the question of testing blocks is not the same as the question of testing a random
factor. Viewing blocking as a device to increase efficiency leads to the conclusion that
blocks can be tested. Two tests for blocks are discussed and compared, and confidence
intervals to assess the magnitude of the block effect-are described.
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1. Introduction

In a two—way mixed model, how should one test the random factor if additivity is not
assumed? Can blocks be tested in a randomized blocks design if blocks are regarded as
random and additivity is not assumed? Although these questions have been around for
several decades (Cornfield and Tukey, 1956; Wilk and Kempthorne, 1955, 1956), there is
still some confusion as to the answers. The conflict is dramatically illustrated by the fact
that the widely used SAS statistical package produces tables of expected mean squares
(EMSs) which disagree with those given in most textbooks, and with another widely used

statistical package, BMDP.

This paper will address these questions, with special attention to the important case of
blocked designs. We consider not only randomized blocks designs but also nonrandomized

observational designs which incorporate blocking.

To set the stage, consider the following examples of blocked designs. (Although our

examples all involve human beings, our discussion is meant to be quite general.)

Example 1.1. Pairs of female twins are randomly selected from a source population to
participate in a study of an anti-aging skin cream. One randomly chosen member of each
pair receives the cream (Treatment 1) and the other receives placebo (Treatment 2). The

observation Y is a measure of average skin thickness on the two forearms.

Example 1.2. The treatments are as in Example 1.1, but now the subjects are women (not
twins) randomly selected from a source population. The two treatments are randomly

allocated to the two arms of each subject, and skin thickness Y is measured on each arm.

Example 1.3. As in Example 1.2, the subjects are women randomly selected from a source
population. The question of interest now is whether the density of neurons is greater in
the right or the left hemisphere of the brain. Each measurement Y of neural density is

taken from a CAT scan of the head.

Example 1.4. As in Example 1.1, pairs of female twins are observed, but now the twins

are selected from a source population in which one member of the pair smokes cigarettes



and the other does not. The observation Y is a measure of cardiac health.

Examples 1.1 and 1.2 are commonly called randomized blocks designs. In Example
1.1 the block is a pair of subjects, while in Example 1.2 each subject is a block. In the

psychometric literature, Example 1.2 is also called a repeated measures design.

Examples 1.3 and 1.4 are blocked designs but are strictly observational: no randomized
allocation is involved. Note that the primary purpose of blocking in Example 1.4 is to
control confounding — that is, to remove the effect of covariates (such as age and genetic
background) which might otherwise distort the observed relationship between smoking and
cardiac health. By contrast, in Examples 1.1, 1.2 and 1.3 a valid study could be conducted

without blocking, but blocking is expected to increase efficiency.

For designs such as the above, a standard statistical approach — a mixed—model anal-
ysis of variance (ANOVA) - leads to two conﬂicting'answers as to whether the ANOVA
table yields an F test for blocks. More generally, there are two conflicting answers as to
which mean square should form the denominator of an F statistic for testing the random
factor in a two-way mixed model. Several authors (Hartley and Searle 1969; Searle 1971a,
Searle 1971b, pp. 401-404; Hocking 1973; Harville 1978; Hocking 1985, pp. 330-334) have
discussed the conflict and have noted that in a certain sense the discrepancy can be resolved
by suitable re-definition of the model parameters. This is an algebraic resolution, but it is
not a statistical resolution because it sidesteps the question of which parameterization is
preferable. We will discuss the problem from a statistical point of view and try to develop

some statistical perspective to aid the experimenter who asks: Can I test blocks? Should

I? And, if so, how?

In Section 2 the two conflicting answers are exhibited. In Sections 3, 4, and 5 the
special case of two treatments is explored. In Section 3 it is argued, not only that blocks
can be tested, but also that there are two ways to do so. In Section 4 two mixed models
are defined, the paradox of the conflicting ANOVA tables is resolved, and the statistical
implications of the resolution are discussed. In Section 5 the discussion is extended to the

case of unequal variances. Extension to more than two treatments is considered in Section



6 and the case of replicated observations is treated in Section 7. The statistical resolution
of the conflict is summarized and discussed in Section 8. Proofs and further details are

contained in three appendices.

In discussing formal inference, we will assume that the random variables in the models
are jointly normal. Much of our development, however, involves only first and second

moments and is not dependent on normality assumptions.

2. The Issue

For simplicity, we will use the term “treatments” throughout our discussion, even

though this usage is unnatural for an application like Example 1.3.

Let the data be represented by Y;;x, where ¢ = 1,..., I represents treatments,
J = 1,...,J represents blocks and k = 1,..., K represents repeated measurements on
the same treatment-block combination. (Although K = 1 in Examples 1.1—1.4 and in
many blocked designs, we will find it helpful to also consider the case K > 1.) Table 2.1
shows the usual orthogonal decomposition of the total sum of squares, including terms for
treatments, blocks, the treatment by block interaction and variation within a treatment—

block combination.

Table 2.1 goes here

Corresponding to the decomposition of the sum of squares, it is natural to think in

terms of an equation of the form
Yijk = o+ Ti + Bj + Gij + €35k (2.1)

where p represents an overall mean, T; the treatment effect, B; the block effect, Gi;
the treatment—block interaction and €(ij)k the residual variation within a treatment-block

combination. The equation (2.1) becomes a statistical model useful for guiding the analysis
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of data only when constraints and assumptions regarding the distributions of the various

terms are defined. These issues will be addressed in detail in Section 4.

For general analysis of variance models, construction of F tests or quasi-F tests for
testing hypotheses under normality assumptions is determined by a table of expected
mean squares (EMSs). The controversy regarding blocks arises because, using models that
appear similar on the surface, it is possible to calculate different expressions for the EMSs.
The case where disagreement exists is the mixed model, in which treatments are regarded

as fixed and blocks are regarded as random.

Routine application of the “EMS algorithm” (see, for example, Winer 1971 or Kirk
1982) to (2.1) with treatments fixed and the other terms random gives the first column
(Version 1) of Table 2.2. Examination of theses EMSs suggests that the denominator for
testing blocks should be"MS(Within T#B):In-the interesting and important case where
K =1, this term has no degrees of freedom, which seems to indicate that blocks cannot be
tested. The Version 1 table is essentially what is presented in most textbooks (for instance,
Scheffe, 1959; Winer, 1971; Snedecor and Cochran, 1980; Steel and Torrie, 1980; Hicks,
1982; Kirk, 1982; Montgomery, 1984) and by the computer program BMDPS8V.

Table 2.2 goes here

On the other hand, the text by Searle (1971, p. 401) and the RANDOM statement
in the SAS procedure GLM give the EMSs presented in the second column (Version 2)
of Table 2.2. This EMS table can be obtained via the EMS algorithm from the following
slight modification of (2.1):

Yijke = p+ T; + By + Gogijy + €(ije)k

where £ = 1. (See Appendix 1 for a further discussion of this model equation.) The
Version 2 EMSs suggest that the denominator for testing blocks should be MS (T+B), and,

in particular, that blocks can be tested when K = 1.



The EMS algorithm can be a convenient tool to guide an analysis, but we see that it
can give different énswers when applied to what appear to be very similar representations
for the same set of data. Furthermore, statistical practice should not be determined by
which software package is available to the user. We will try to clarify the situation by

translating (2.1) into more fully specified models.

In the models we consider, the random variables are generated by sampling from (infi-
nite) populations. Before proceeding, we note that other models are sometimes used for a
randomized blocks analysis. For example, one might use the restriction error models of An-
derson (Anderson 1970, Anderson and McLean 1974), or permutation models (Kempthorne
1952, pp. 135-151, White 1975). Such models are based on different assumptions than
the models considered here, and can lead to different answers. (In the restriction error
model, for example, blocks cannot be tested under any circumstances.) The models we
consider, sometimes called population models, represent a common approach to modeling
a statistical analysis. (Note that permutation models would be unnatural for Examples

1.3 and 1.4, since those examples do not involve randomization).

In the next three sections we assume that I = 2 and K = 1, that is, there are only
two treatments and one observation per treatment—block combination. This simplification
accomplishes two things. First, we can explore the issue of testing blocks with reduced
algebraic effort. Second, we can treat the case of unequal variances, which has some
interesting consequences and is helpful in understanding the relationship between the block

effect and the interaction effect.

3. To Block or Not to Block

In this section the testing and estimation of block effects will be approached from first
principles, rather than from the viewpoint of a linear model like (2.1). In Section 4 the

results will be related to two different versions of (2.1).

When an investigator considers the hypothesis that “There is no effect due to blocks,”
what exactly is meant? One interpretation, which we feel is the most reasonable, is that the

study could just as well have been done without blocks, that is, as a completely randomized

6



design (e.g., in Examples 1.1 and 1.2), or with independent sampling rather than paired
sampling (e.g., in Examples 1.3 and 1.4). In other words, the hypothesis is interpreted to
mean that nothing was accomplished by blocking.

What is blocking infended to accomplish? The answer can vary according to the
nature of the study. When blocking serves the purpose of controlling confounding (as in
Example 1.4), the conditions under which blocks can be ignored are complex. We will not
consider this case, but rather will limit our attention to cases (as in Examples 1.1—1.3)
where the purpose of blocking is to increase the efficiency of treatment comparisons. Thus,
we consider only the situation in which a non—blocked design would be a valid alternative

to the blocked design.

3.1 A General Model

For the case I = 2 and K = 1 we suppress the third subscript and let

{(Y15,Y25); 7=1,...,J}
be independently and identically distributed (iid) random vectors each distributed as the

vector (Y1,Y2)’. (Note that this formulation implicitly regards blocks as a random factor.)

The treatment difference to be estimated is E(Y7) — E(Y2). To compare a blocked de-
sign with a non-blocked design it is appropriate to compare the variances of the differences

(Y1 — Y2) under the two designs.

For a non—-blocked design, ¥; and Y> are modeled as independent random variables.
Thus, we have
Vary (Y1 — Y2) = Var(Y7) + Var(Y>) (nonblocked)
Varp (Y1 — Y3) = Var(Y;) + Var(Y3) — 2 Cov(Y1,Y?) (blocked).

A natural measure of the effect of blocking is the ratio A of these two variances, which

is called the relative efficiency: *
_ Vary(Y1 —-Yz) Var(Y1) + Var(Y3)

A= _
Varp(Y1 —Y2)  Var(Y;) + Var(Yz) — 2 Cov(Y1,Y?)

(3.1)

* Strictly speaking, (3.1) is the asymptotic relative efficiency, since it does not account

for the loss in degrees of freedom due to blocking.
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To obtain the same variance as a blocked design with J observations on each treatment
pair, AJ observations on each treatment would be required in a non—blocked design. Note
that if the covariance between Y; and Y is negative (a situation unlikely to be encountered
in most applications, but possible in principle), then blocking results in a loss, rather than

a gain, of efficiency.

If we let
ﬁ — COV(Yl, Y2) (3 2)
%[Va,r(Yl) + Var(Y)]’
then we can write (3.1) as
1
= — 3.3
A= 59

Note the similarity between p and the Pearson correlation coefficient
Cov(Y1,Y?)
™ Var(¥s) Var(¥2)]F
The coefficients 5 and p have the same sign. However, || < |p|, with equality if Var(Y;) =

Var(Y2). (The latter facts follow because the denominator of 5 is the arithmetic mean of

the variances, whereas the denominator of p is the geometric mean.)

From Equation (3.3) it is clear that in the context of this general model, issues re-
garding the effect of blocking can be addressed by consideration of the parameter 5. In

particular, the hypotheses of no block effect is expressed as
Ho: ﬁ =0

or equivalently,

Ho: COV(Yl, Y2) =0

and a measure of the effect of blocking is given by an estimate of 5.

3.2 Testing for Blocks

Table 3.1 gives the ANOVA table with expected mean squares derived from the general

formulation of Section 3.1. From Table 3.1 it follows that

EMS(Blocks) = %Va,r(Yl +Y3) = %[Var (Y1) + Var (Y2)] + Cov(Y1,Y2)
(3.4)
EMS(T*B) = £ Var(Y; — Y2) = 4[Var (Y1) + Var (¥3)] — Cov(¥1,Y3)
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Thus, under the hypothesis Ho: Cov(Y7,Y3) = 0, MS(Blocks) and MS(T*B) have the same

expectation.

In the remainder of Section 3 we assume that the distribution of (Y7,Y2)’ is nor-
mal. Under this assumption, MS(Blocks) and MS(TxB) are each distributed as a scaled
chi-squared random variable. Also, for now we impose the further assumption that

Var(Y;) = Var(Y2). Then, using the facts that
Cov(Y1 + Y2, Y1 — Y3) = Var(Y1) — Var(Y2) (3.5)

and that MS(Blocks) is a function only of (Y; + Y2) and MS(TxB) is a function only of
(Y1 — Y3), the equality of variance assumption, together with normality, implies that
MS(Blocks) and MS(T#B) are independent. Therefore, under the hypothesis
Hyp: Cov(Y7,Y2) = 0 we have

MS(Blocks)
—m =~ Fy 5= 3.6
MS(T+B) ~ 171 (5.6)
where F,, , is an F random variable with m and n degrees of freedom. Against a two—sided
alternative the test based on (3.6) is the likelihood ratio test (LRT) (Mehta and Gurland

1969).

Referring back to Table 2.2, note that the F test based on (3.6) is suggested by the
Version 2 EMSs but not by the Version 1 EMSs. We will return to this point in Section 4.

We have justified the F' test for blocks as a test of Hp: Cov(Y7,Y2) = 0. We now
might ask, why go through the gyrations of the development leading to (3.6), rather than
directly testing the covariance. In fact, we can directly test the covariance using the

Pearson product-moment correlation

2 (Y1 — Y1) (Y2 — Y3)

T (50~ Vo) S0~ V)

J

(3.7)

Under Hy: Cov(Y;,Y2) = 0, we have the familiar result that

VI —2r :
/——1_7.2 ~ b J—2,

9
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where ¢, is a { random variable with n degrees of freedom.

Thus, we find that under the assumption of equal treatment variances there are two
tests, based on (3.6) and (3.8), which are valid for testing Ho: Cov(Y;,Y3) = 0. If in fact
Var(Y1) = Var(Yz), then the F test based on (3.6) is more powerful than the ¢ test based
on (3.8) (see Appendix 2); however, computations suggest that the difference in power is
very small. The advantage of the ¢ test is that it does not depend on the assumption of

equal variances.

3.3 Estimation of the Block Effect

The investigator who is interested in testing blocks may also be interested in estimating
the magnitude of the increase (or, perhaps, decrease) in efficiency due to blocking. Such
an estimate would be helpful in planning future studies in similar settings. For example,
if blocking is costly or inconvenient, and the anticipated gain in efficiency is small, then

an experimenter might opt for a completely randomized design.

From equation (3.3) we saw that the relative efficiency is simply related to the pa-
rameter p. For a researcher interested in estimating the relative efficiency, an estimate of

p is therefore needed.

The natural estimator of g is
> (Y15 —Y1)(Yz5 — Y2
J
(V1 = Y1)+ 3 (Ye; — ¥2)?2]
J J

F= (3.9)

This statistic is the maximum likelihood estimator of 5, whether or not it is assumed that

Var(Y1) = Var(Yz) (Mehta and Gurland 1969). Furthermore, it is easy to show that

MS(Blocks) — MS(TB)
MS(Blocks)+MS(TB)

F= (3.10)

so that 7 is easily calculated from the mean squares in the ANOVA table. The statistic
7 is sometimes called an intraclass correlation coefficient or a reliability coefficient; more
often, however, these names are given to a somewhat different statistic (see Winer 1971,

pp- 286-287 and Cochran 1980, pp. 243-244).
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We turn now to the problem of setting confidence limits on j, and thereby on A. If
it is assumed that Var(Y;) = Var(Y2), then limits can be derived from the fact that the
quantity [(1 — p)(1 + 7)]/[(1 + §)(1 — 7)] follows an F distribution (Kristof 1972). The
resulting 100(1 — &)% confidence limits for  are given by

14+7— (1—'7)F1_%;J_1,J_1 1+7— (I—F)F%;J_I’J_l
1+;+(1_f)F1—g-;J—1,J—1 ’ 1+F+(1—;)F%;J_1’J_1

(3.11)

where Fy,m,» represents the pth percentile of an F,, , distribution. Note that the interval
(8.11) is different from the interval more commonly given for intraclass correlation (as, for
instance, implicitly by Snedecor and Cochran (1980, pp. 245-246)) because it is based on

a different experimental design.

4. Two Models and Three Hypotheses

In this section we formulate two different linear mixed models for the blocked design
with two treatments. In the context of these models we consider three hypotheses, each of
which asserts, in a different sense, the absence of a block effect. Both models are special
cases of the general model presented in Section 3.1. Recall that we assumed {(Y1;,Y>2;)":

j=1,...,J} to be iid random vectors. Let
E(Yy) =p+m

where X1; = 0, and let

ér = B72.

Thus, ¢, is the usual noncentrality parameter for treatment effects (the definition for

general values of I is given in Section 6).

As a first step, we decompose the Y;; as follows:
Yij = Wij + &4 | (4.1)

where the g;; are iid random variables with mean zero and variance 052. The W;; are

random variables that represent the mean value of ¥;; that would be obtained from a large
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number of observations of treatment ¢ in block j, while the ¢;; represent variation about
these means. For instance, in Example 1.3 Wi1; and Ws; would be the actual values of
neural density in the right and left hemispheres, while ;; would represent measurement

error. We assume that the W;; and the ¢;; are independent.

4.1 Two Models

We now formulate two models for the W;;. The following model is a special case of

Scheffe’s (1956, 1959, pp. 261ff) model.

Model 1:
Wij = p+1i+ B + v (4.2)
where the §; and ~;; are random variables which are iid as j varies and for which
(a) E(B;)=0 )
(b) Var(B;) = 0[2,
(c) E(vij) =0
(d) Var(yi;) = 303

(€) mj+7v2;=0

(f) Cov(B;,7i5) =0 )
A more general version of Model 1 can be obtained by replacing (f) by

(f') Cov(Bj,i;) constrained only by (4.3e) (4.4)

We will see that this more general version (which is Scheffe’s model) is necessary to accom-
modate unequal variances. The notation in (4.3d) may seem unnatural, but it is used in
most textbooks because it agrees with the results of the EMS algorithm. (The definition
for general values of I is given in Section 6.) Some authors (e.g., Steel and Torrie 1980)

choose a more natural notation.
A second model, given, for example, by Searle (1971, pp. 400-401) is the following.
Model 2:
Wij = u+ 1 + B + 3ij (4.5)
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where the ,éj and 4;; are random variables which are iid as j varies and for which

(2) E(B;)=0 )
(b) Var(B;) = o3

(c) E(s)=0
(d) Var(%;) = of
(e) Cov(H1j,72;) =0

(f) Cov(B; %) =0 )

The key difference in the two models is in assumption (e) of (4.3) and (4.6). In Model
2, the terms 7;; and #3; are uncorrelated while the analogous terms in Model 1 are perfectly
negatively correlated because v1; = —72;. Note that Model 1 allows the generalization
(4.4), whereas replacement of (f) in (4.6) for Model 2 would require a change in assumption

(e) also.

4.2 EMS Tables

For simplicity in the following developments, we will drop the subscript 5 and write

the models as follows:

General:
Yi=Wi+e
(4.7)
Yo=Wa+e
Model 1:
Wi=p+n+8+m
(4.8)
Wo=p+r+B+72
Model 2:
Wi=p+n+p+m
(4.9)

Wo=p+rg+B8+5

where we assume that {8, 1,72} satisfy the conditions (4.3) and that {ﬁ, 1,72} satisfy
(4.6).
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We can now express the EMSs of Table 3.1 in terms of the model parameters. From

(4.7), (4.8) and (4.9) we note that for Model 1,

Y1 —Y2 = (1 —72) + (71 — ¥2) + (e1 — €2)
(4.10)
Yi+ Y, =2u+28+ (e1 + €2)
and for Model 2,
Y1—-Y2 = (r1—7m2)+ (31 — A2) + (e1 — €2)
. (4.11)
Yi+Ye=2u+26+ (31 +32) + (€1 + €2)

Note that the key difference in these expressions is the absence of ~y; terms in the expression
for Y1 + Y2 under Model 1. This is a consequence of the constraint in part (e) of (4.3).
Applying the assumptions of each model to (4.10) and (4.11) yields immediately the EMSs
given in Table 4.1. Note that these EMSs agree with the two versions in Table 2.2 for the
case I =2, K =1.

Table 4.1 goes here

4.3 Relationships among Model Terms and Parameters

From the Model 1 assumptions, it follows that

Var(W1) = Var(Ws) = o5 + 302

(4.12)
Cov(W;,Ws) = ag — %02.
This implies
Var(Y1) = Var(Yz) = 0} + 302 + o2
(4.13)
Cov(Y1,Y2) = 0[2, — %0,3.
In contrast, Model 2 gives
Var(W;) = Var(W;) = 0’[2; + o2
(4.14)

Cov(W,,W,) = U%.
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This implies
Var(Y1) = Var(Yz) = 0[2} +0%+0?

(4.15)

COV(Yl,Yz) = 0'%.

Note that Model 2 imposes the constraint
COV(Yl,Yz) Z 0. (4.16)

We will see in Section 4.4 that Model 1 does not constrain the covariance. Under the

constraint (4.16), we can relate the models in the following way:

ﬂ=,é+-;-("71+’~72)
(4.17)
1= 251 — A2)
and

(4.18)
The relations (4.17) and (4.18) are given by Searle (1971, pp. 403—404) and Hocking (1973).

4.4 Representations

If the joint distribution of (W7, W) is such that it cannot be represented by either
Model 1 or Model 2, then the relationships (4.17) and (4.18) are nonsense. For this reason,
and also in the interest of better understanding, we now ask whether and how a given joint

distribution can be represented in each model.

Given any joint distribution of (Wy,W3) such that
Var(W,) = Var(W,), (4.19)

it is immediate from (4.2) and (4.7) that a representation of (W, W5) in terms of Model

1 can always be found, namely

B = (Wi +Wy) }
(4.20)

¥%=W; -8
where

Wi = W; — E(W;).

3
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(Furthermore, even if (4.19) is violated the relations (4.20) define a representation in terms

of the generalized version of Model 1, with (4.3f) replaced by (4.4).)

For representation by Model 2, it is necessary that the joint distribution of (W1, W2)
satisfy not only (4.19) but also
COV(Wl,Wz) 2 0. (4.21)
In this case, a representation in terms of Model 2 can be constructed by introducing a
random variable Z which is independent of W; and W>. The construction is
8= cr(Wi +W3) +caZ +ecs
i (4.22)
i = W,-* -8B

where ¢;, ¢z and c3 depend on the first and second moments of (W1, W) and Z.

If Model 1 is additive (a,"; = 0), then Model 2 is also additive, and in this case the
two models coincide and are unique. Otherwise, the construction (4.22) of Model 2 is not

unique because the (nondegenerate) random variable Z is arbitrary.

4.5 The Hypotheses

Consider the following three hypotheses, each of which in some sense expresses the
assertion that there is no difference between the blocks.
Hél): crg =0
Héz):af; =0, 0,3 =0

Hé3):a% =0

We now ask whether (assuming normality of the random variables) the above hy-
potheses can be tested. Consideration of the likelihood function easily confirms what is
suggested by Table 4.1 — that the parameters ag and a,?, are non—identifiable (and so is any
linear combination of them), so that neither Hc(,l) nor Héz) can be tested. On the other
hand, if the assumptions of Model 2 are satisfied then the statistic MS(Blocks) /MS(TxB)
yields a valid F test of Hés).

The preceding paragraph and the relations (4.17) and (4.18) provide an algebraic
resolution of the paradox of the conflicting EMSs. To guide the user in deciding which
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hypothesis is of interest in a given case, we proceed to discuss statistical interpretations of

the hypotheses.

Consider first the interpretations of the Model 1 hypotheses, Hél) and H(SZ). To
interpret H((,l), let
W = L(W; + Wa); (4.23)

then, because of (4.20), Hél) asserts that W has variance zero. The stronger hypothesis
Hc(,z) asserts that the random variables W; and W, each have variance zero. The following

example illustrates these interpretations.

Example 3.1. Consider Example 1.3, where Y is neural density. The hypothesis H(gz)

asserts that all women in the population have the same neural density in the left hemi-
sphere, and also that all women in the population have the same neural density in the
right hemisphere. The hypothesis H(gl) asserts that the average neural density in the two

hemispheres (VV—) is the same for all women in the population.

The hypothesis H(§2) is equivalent to its analog in Model 2, that is, to the hypothesis

H((,4):0% =0, 0,% =0.

By contrast, Hél) cannot be expressed in terms of the parameters of Model 2. (Confusingly,
however, the relation (4.18) seems to suggest that HC(,I) is equivalent to Hé4); this is an
illusion, for if Hél) is true and o2 > 0, then it follows from (4.12) that (4.21) is violated

and Model 2 cannot be constructed, so that the parameters a% and a?y are meaningless.)

Turning now to the interpretation of H((,s), we note from (4.15) that Hc(,s) is equivalent
to -

Hp: Cov(Y:,Y2) = 0.

Recall that in Section 3.1 it was argued that this hypothesis is a natural interpretation
of the idea of no effect due to blocks. In terms of Model 2 we can rewrite the relative

efficiency A of equation (3.1) as

0% + 02 + o?
_ B v c
A= 0% ) (4.24)
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which explicitly indicates that within Model 2 the hypothesis of no efficiency gain due to
blocking is I-Io:a% = 0. Note, however, that within Model 2 the alternative hypothesis
must be one-sided, that is, Hy4: a% > 0.

In summary, the block effect expressed by the parameter a% of Model 2 and tested by

the F statistic MS(Blocks) /MS(T#B) corresponds to the approach presented in Section 3.

5. Unequal Variances

In many ANOVA settings, the assumption of homogeneity of variance might be re-
garded as a necessary evil. However, in the present context of a mixed model with I = 2, it
is not necessary, and the data analyst could (and, we will argue, sometimes should) consider
dropping it. Note that the generalized version of Model 1, using (4.4), can accommodate

unequal variances.

5.1 Test for Treatment Difference

Thus far we have ignored the test of treatment difference. The usual F test of Ho: 1y =
T2, based on the ratio of MS(Treatments) to MS(T%B), is the square of the ¢ statistic for
paired samples. Thus, the test of treatment difference is valid even if the variances of Y;

and Y3 are not equal.

5.2 Test for Blocks

If Var(Y7) # Var(Y2) then the F test for blocks discussed in Sections 3 and 4 is not
valid. The argument leading to (3.6) fails because, although MS(Blocks) and MS(T«B)
have the same expectation under the null hypothesis (from (3.4)), without the equal vari-
ance assumption these mean squares are no longer independent (from (3.5)). Thus, gen-
eralizing Model 2 to accommodate unequal variances would be undesirable, because the

model would then suggest an invalid F' test for blocks.

On the other hand, when Var(Y;) and Var(Y3) are unconstrained, the test for blocks
based on the Pearson correlation given by (3.8) is valid (and is the LRT) for testing
Hy: Cov(Y1,Y2) =0.
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5.3 Confidence Interval for 5

Recall from section 3.1 that the relative efficiency of the blocked design compared to

the nonblocked design is given by

where
COV(Yl ) Yz)

[ Var(¥1) + Var(Ya)]

p=

The problem of constructing a confidence interval for p when Var(Y;) and Var(Y3) are

unconstrained was solved by Kristof (1972), who showed that

F—p
A—~tj_2,
1—p2
where
r [J—2
A=-
rV1—r2

and 7 is given by (3.9) and r by (3.7). It follows that 100(1 — «)% confidence limits for 5

are given by
¥+ Bv1 — 72 + B2
1+ B2 ’

where B = A~ 1¢,_,, /2;7—2 and ¢y, is the pth percentile of a ¢, distribution. The confidence

(5.1)

limits for A are therefore 1/(1 — L) and 1/(1 — U) where L and U are the lower and upper

confidence limits for p.

5.4 Examples

The assumption of equal variances is not as innocuous as may at first appear. In the
two-way mixed model, the assumption has substantive force because it stringently limits
the kinds of interactions that are permitted. Specifically, it follows from the definition of

Model 1 ((4.3) and (4.4)) that Var(Y;) = Var(Y>) if and only if

Cov(v1,8) =0 (5.2)

This condition says that the interaction term is uncorrelated with the term representing

the main effect of blocks. The condition is perhaps more intuitively meaningful if it is
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expressed as

Cov(W;, — W2, W) =0, (5.3)

where W = (W + W2). This condition asserts that the difference between responses is

uncorrelated with the average response.
The following two examples illustrate the limitations of the equal variance constraint.

Example 5.1. As in Example 1.2, suppose Y7 and Y3 are measured skin thickness (and W,
and Wy are “true” skin thickness) in the two differently treated arms of each subject. In

the source population, assume that women differ in their overall skin thickness, as follows:
50% have “thick” skin, defined as W = 150
50% have “thin” skin, defined as W = 100

Assume further that women differ in their “sensitivity” to the difference between Treatment

1 and Treatment 2:
50% are “sensitive”, defined as W; — Wy = 40
50% are “insensitive”, defined as W; — Wy =0

Will such a population satisfy the assumption of equal variances? The answer is Yes if
sensitivity is distributed independently of overall thickness, and No if it is not. Table
5.1 shows the joint distribution of sensitivity and overall thickness for two hypothetical

populations, A and B. Population A would satisfy (5.3) but Population B would not.

A common source of violation of the equal-variance assumption is a multiplicative

treatment effect, as in the following example.

Example 5.2. As in Example 1.3, suppose Y7 and Y, are measured neural density in the
right and left hemispheres, and assume that the true neural density is 10% higher in the
right than in the left hemisphere, so that

Wi = 1.1W,

Clearly, (5.3) would be violated in this situation.
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The foregoing examples show that the case of unequal variances can arise quite natu-
rally in practice, and may be necessary to adequately model many situations. If a flexible
model is required, where variances and, hence, interactions are not restricted, then the ¢ test
based on (3.8) is the only way to test the hypothesis of no block effect, Ho: Cov(Y;,Y2) = 0,

and (5.1) should be used if an interval estimate of the intrablock correlation j is desired.

5.5 Testing for KEquality of Variances
The hypothesis

Hy: Var(Y1) = Var(Y2) (5.4)

is of interest in a blocked design for two reasons. First, if this hypothesis is false then blocks
should not be tested with the ANOVA test (3.6), but rather with the Pearson correlation
test (3.8). Second, as illustrated in Examples 5.1 and 5.2, falsity of (5.4) may indicate the
presence of a certain kind of interaction — namely, interaction correlated with the block

effect.

Using equation (3.5), the homogeneity of variance hypothesis (5.4) is equivalent to

Hp: COV(Y1 +Ys, Y1 — Yz) = 0.

[J—2
! m ~tyj_o, (5.5)

where r’ is the observed Pearson correlation between Y7 4+ Y2 and ¥ — V5.

Under this null hypothesis,

The test based on (5.5) was suggested by Pitman (1939) and also by Morgan (1939),
who showed that it is the LRT of (5.4) when the alternative hypothesis is two-sided.
Pitman also showed how to obtain a confidence interval for the ratio Var(¥7)/Var(Y;) (see

also Kendall and Stuart, 1979, Chap. 20).
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6. More than Two Treatments

The discussion in Sections 3, 4 and 5 was limited to the case of two treatments (I = 2).
The models discussed in Section 4 extend in a natural way to the case of arbitrary I. The

decomposition (4.1) extends immediately and the noncentrality parameter is

1
rri.

¢T:I—1 1

Models 1 and 2 can be defined by (4.2)—(4.6) for general I, with conditions (4.3)(d) and

I—1
Var(vij) = ( 7 ) o2

(e) replaced by

and
Xivi; =0
respectively.

For these generalized models, the same discrepancy occurs as for I = 2; that is, the

EMSs for blocks disagree because the parameter o% is not the same as the parameter ag.

We turn now to the question of testing blocks when I > 2 and K = 1. Suppose first
that the covariance matrix of (Y1,...,Y7) is compound symmetric — that is, that the ¥;

have the same variance and the same pairwise correlation
p=p=corr(Y;,Y) ¢ #7 (6.1)

(The assumptions of Model 2 imply not only compound symmetry but also p > 0). Then
the results given in Sections 3 and 4 for the case I = 2 extend naturally. The F test for
treatments is valid. The hypothesis Hy: o?, = 0 cannot be tested. What can be tested by
an F test is the hypothesis Hozog = 0 which is equivalent to Hp:p = 0. The efficiency
gain due to blocking is

1

A= ——
1-p

and the maximum likelihood estimator of p is
> (Vi =Y )(Yo; — Yo
1A 5 _
(I-1) 22 (Y:; —Y:)?
i g

F= (6.2)
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Note that 7, which is the direct extension of (3.9), can be interpreted as the average ob-
served covariance divided by the average observed variance. In Appendix 3 a computational

formula for ¥ and a confidence interval for p are given.

If the assumption of compound symmetry is dropped, the considerations of the pro-
ceeding sections do not immediately extend. In the case of an arbitrary covariance matrix
with I > 2, the validity of the F' test for treatments becomes questionable. We will not

pursue this case any further here.

7. The Case of Replication (K > 1)

The case K > 1 represents replicate measurements within the (7, j)th block—treatment
combination. For instance, in Example 1.2 one might make K independent measurements
on each forearm of éach subject. Another example is the generalized randomized blocks
design in which each block contains I K experimental units which are randomly allocated

to the I treatments.

As in Section 2, we let Y;;x represent the kth observation on the ith treatment in the

Jth block; we decompose Y;x as
Yijk = Wi + €55k (7.1)

where the random vectors (Wyj,...,Wr;) are iid as j varies, and the &;;% are iid random

variables with mean 0 and variance af which are uncorrelated with the W;;.

The models for W;; discussed in the preceding sections carry over unchanged to the
present case. As in the éase K = 1, there are two seemingly similar hypotheses which
actually address different questions. The hypothesis Ho: o% = 0 asserts that blocking has
no effect on the efficiency of treatment comparisons, whereas the hypothesis Hp: or% =0

asserts that the “true” response W, averaged over treatments, is the same for all blocks.

The entire discussion in Sections 3-6 of testing, estimation, and interpretation of 0%
and p can be readily carried over to the present case by identifying Y;; of the previous

discussion with 7,-_,'. of the present case.
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In contrast with the previous discussion, as suggested by the Version 1 EMSs in Table
2.2 the hypothesis Hp: of,, = 0 can be tested when K > 1. The F statistic for this test is
the ratio of MS(Blocks) to MS(Within T*B), and is, of course, not the same as that used
to test Hop: 0% = 0.

8. Summary and Discussion

We have seen that, even when a blocked design is modeled as a mixed model, the
question of testing blocks is not identical to the question of testing the random factor.
The difference arises because “testing the random factor” has two different meanings cor-

responding to two different parametrizations of the model.

Model 1, which agrees with the mixed—model ANOVAs given in most textbooks,

expresses the hypothesis of no effect of the random factor as
Ho:05=0 (8.1)

The hypothesis (8.1), which is the direct analog of the hypothesis of no main effect in a
fixed—effects ANOVA, can be tested by the F ratio MS(Blocks) /MS(Within T+B); the test
requires within—block replication (K > 1). In a discussion of mixed models, Kempthorne

(1975) writes:

Is there a case for testing the main effect of the random factor? I think it is hard

to make one ...

We agree with this statement in reference to the hypothesis (8.1), which is what Kempthorne
had in mind. Cases like Example 1.3, where (8.1) is a natural hypothesis, probably are
rather rare. [The parameter af, may, however, be of interest in animal genetics, where
mixed models are used which incorporate interaction between environment (fixed) and
genotype (random); see, for instance, Muir (1985). There appears to be some controversy
concerning the choice of models in this context (Fernando et al., 1984; Yamada and Sug-
imoto, 1988); because the choice depends on specific genetic considerations, we do not

consider it here.|
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On the other hand, in the setting of a blocked design, where the blocks are of interest
only insofar as they can enhance the comparison of the treatments, it is natural to express

the hypothesis of no block effect, not as (8.1), but rather as
Ho:p=0 (8.2)

where p is the intrablock correlation. The hypothesis (8.2) implies that blocking has no
effect on the variance of inter-treatment contrasts; the efficiency gain due to blocking is
equal to 1/(1— p). For instance, in the case considered by Kempthorne (1975) of locations
(random) and varieties (fixed) of corn, the quantity 1/(1—p) expresses the effect of blocking
by location on the efficiency of comparisons among varieties. (In a field setting, the effect

of locations is usually large, but in a greenhouse it may be rather small.)
Within Model 2, the hypothesis (8.2) can be expressed, in analogy to (8.1), as

Ho: ag = 0. (8.3)

However, (8.2) is of interest not only within Model 2 but also in two cases where the
constraints implied by Model 2 — compound symmetry of the covariance matrix and
nonnegative p — are violated. First, if compound symmetry holds then the efficiency gain
due to blocking is equal to 1/(1 — p) even if p is negative. Second, in the case of two
treatments (I = 2) the efficiency gain due to blocking is equal to 1/(1 — p) even if j is
negative or compound symmetry fails (that is, Var(Y1) # Var(Y3)).

We have considered two tests of (8.2) under the assumption of normality. First,
if the covariance matrix is compound symmetric, then the F test of (8.2) based on
MS(Blocks)/MS(T#B) is valid. The second test arises in the case I = 2; then, even if
the treatment variances are unequal, the hypothesis (8.2) can be tested by a t test based
on the Pearson correlation coefficient. Corresponding to the two tests of (8.2) in the case

I =2, two different confidence intervals for p can be constructed.

The question of whether Var(Y;) = Var(Y2) has played a nontrivial role in our devel-
opment for the case I = 2, and we have indicated in Section 5.4 how to test for equality
of variances. From a practical point of view, it should be noted that inequality of vari-

ances may also indicate that the basic linear model (4.1) is inappropriate, and/or that the
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usual ¢ test for a treatment difference would lack power. In some situations a logarithmic

transformation, corresponding to a multiplicative model, may yield improved power.

Many discussions of the randomized blocks design assume that the treatment-block
interaction is zero. Such an additivity assumption implies that the conditions of Model
2 are satisfied and that the hypotheses (8.1) and (8.2) are equivalent. In our opinion,
the additivity assumption is unnecessarily restrictive for investigations in which blocks
are regarded as random. Indeed, the notion that a treatment can be represented by the
average response over a conceptual population of people, plots of ground, or other units is
fundamental to statistical thinking. For this reason it appears to us to be useful to develop

a view of blocked designs which does not depend on the additivity assumption.

We have not dealt with the case where an experimenter prefers to regard blocks as a
fixed factor rather than as'a random factor. In this case, the EMS table is unambiguous:
the denominator for the F test on blocks must be MS(Within T%B) unless additivity
of treatments and blocks is assumed, in which case the pooled value of MS(T*B) and

MS(Within T+B) can be used instead.

How do our conclusions about testing blocks reflect on the merits of Models 1 and
2? The strengths of Model 1 are its explicitness (see Section 4.4) and its great generality;
however, Model 1 is heuristically misleading for a blocked design because it suggests an
inappropriate F' ratio for blocks. On the other hand, while Model 2 suggests the appropri-
ate F ratio, this model has serious limitations. First, as discussed above, Model 2 implies
equal treatment variances, a constraint which is unnecessary for I = 2. Second, Model 2
constrains intrablock correlations to be nonnegative, a constraint which is irrelevant to the
question of testing blocks. If the correlation is indeed negative, then blocking decreases,
rather than increases, the efficiency of treatment comparisons. This may sometimes hap-
pen in practice; for instance, Snedecor and Cochran (1980, p. 244) note that competition
between animals in a pen may produce negative intrablock correlations. Hocking (1985,
p. 334) suggests weakening Model 2 to allow negative correlation; however, this modifica-
tion would vitiate the heuristic value of the model, because the term 5’]- appearing in the

model equation would have a negative variance! From the foregoing, it would appear that
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neither Model 1 nor Model 2 is entirely satisfactory for representing blocked designs in the
presence of interaction. For mixed models in which the random factor does not represent
blocks, the choice between models may depend on the context of the investigation. Note,
however, that in some applications what is wanted is a variance components model, which

(as indicated in Appendix 1) is different from either Model 1 or Model 2.
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APPENDIX 1. A COMPONENTS OF VARIANCE MODEL

In Section 2 it was stated that if the EMS algorithm is applied to the model
Yijri = p+ Ti + B + Gii5) + eijnk (A1)

then setting I = 1 yields the Version 2 EMSs of Table 2.2. However, as we now show, the
model (A1), as usually applied, is quite different from those considered in the body of the
paper. Our concern has been to model interaction between factors T and B. By contrast,
in the usual application of (A1) the G term represents, not interaction, but a variance

component. The following is a typical application from animal breeding.

Example Al. In equation A1, define

1 = grand mean
T; = effect of herd 2
B; = effect of year j
Gi(i5) = effect of sire !
Yk = milk yield of kth daughter cow of

lth sire in ¢th herd in the jth year.

Suppose the herd effect T; is regarded as fixed, the year effect B; is regarded as random,

and the sire effect Gj(;;) is regarded as random.

In an application like Example Al, the G term represents a variance component.
The difference between a variance component and an interaction can easily be appreciated
heuristically as follows. If the model were modified so that years were regarded as fixed
rather than as random, then the G term, which models variability inherent in sires, would
still be random. In other words, the G term is random regardless of whether the B term
is random. By contrast, in interaction models such as those considered in this paper, the

G term is random because the B term in random.

More precisely, in the variance components model the sire effects Gi(i5) are random
variables which are not only mutually independent and independent of the B;, but fur-

thermore are conditionally independent given the year. The situation is quite different for
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the models we have considered: conditional on blocks (that is, on Wj;), the v terms are
constant in our Model 1 and the 7 terms are perfectly correlated (because of (4.22)) in our

Model 2.

Note that, with the above variance components interpretation, the model (Al) is
additive with respect to the effects T and B, in the sense that, for herd ¢ and year j, the
average yield of many offspring of many sires would be the sum of a component depending
only on 7 and a component depending only on j. In fact, the model could be generalized
by adding another random term, say H;;, to represent the interaction between herd and
year. The component (p + T; 4+ B; + H;;) would then be analogous to our W;;, and could
be represented by either our Model 1 or Model 2.
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APPENDIX 2. THEORETICAL CONSIDERATIONS

The properties of the tests of variances and covariances which are discussed in Sections
3, 4 and 5 are closely linked because, for bivariate normal samples, a duality exists between
tests of variance and of covariance. Suppose that (X1, X2;), § =1,...,J, are a random

sample from a bivariate normal population with parameters (p1, p2,02,0%2,px). Define
Y1 = X5 + Xoj
Ys; = X5 — Xoj.

Then the pairs (Y15, Yz2;), J=1,...,J, are also a random sample from a bivariate normal

population with parameters (i}, uy, 012, 0%, py). Furthermore, since

Cov(Y1;,Y2;) = Var (X1;) — Var (X25)
= 0% - 0'%,

it is clear that the hypotheses
Hp:0? = o2 and Hl:py =0

are equivalent, that is, Ho is true if, and only if, Hj is true. Thus, testing equality of
variance is equivalent to testing lack of correlation in normal samples. (This is one of the

facts exploited by Pitman, 1939).

The correspondence between the hypotheses carries over to the likelihood ratio tests
(LRTs) for the hypotheses, whether or not the other parameters are restricted. Consider
the pair of hypotheses

Ho:02 =02,px =0 H}:py =0, o =07
and
Hy:0? #02,px =0 Hl:py #0, of =07

The LRT of Hy vs. H; is based on the ratio of sums of squares. Using the relationship

S (X1 = X1)? N~ V)2 4+ S (Ve — Y2 )2 +23(Vey — Vi) (¥es — V2.)
> (X5 — X2)2 Y (Vi - Y1)2+ Y (Yo — Y2)2—2) (Y1 — Y1) (Yo; — Y..) ’

and the fact that the LRT of H} vs. H] is based on the righthand side of the above equality,

we see that the tests are equivalent.
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There is also a duality between the more general pair of hypotheses

Ho:0? = o2 Hl:py =0
and

H;:02 # o2 Hl:py #0

where any unmentioned parameter is left unspecified. The LRT of Hg vs. Hy, with u1, p2
and px unspecified, was first given by Morgan (1939). An argument similar to the one
above shows that this LRT is equivalent to the LRT for testing Hj vs. Hj with the variances

unspecified.

In terms of an ANOVA, the usual F test applied to blocks, based on (3.6), is the LRT
of Ho: 0} = 02 under the constraint px = 0. The correlation ¢ test based on (3.8) is the
LRT of H{: py = 0 with 0'12 , 032 unspecified. Thus, the ANOVA F test can be regarded as

a restricted version of the correlation ¢ test.

It can be shown that if the restriction holds (px = 0), then the F' test is more powerful;
the argument is based on the fact that the correlation t test is not based on a minimal
sufficient statistic if px = 0. If the restriction is not satisfied, then the ANOVA F test is

not valid and no comparison can be made.
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APPENDIX 3. DETAILS ON ¢

The coefficient 7 defined in (6.2) can be written in terms of the ANOVA mean squares
as (see Hocking 1985, p. 325)

_ MS(Blocks) — MS(T+B)
~ MS(Blocks) + (I — 1)MS(T*B)’

<

an extension of (3.10).

In Model 2, 7 can be interpreted as

>

2100 T

F= -
(2

>

3

T 6%+ 02

Wb

where &% and 62 + 62 are the unbiased estimates of 0% and 0% +0? derived from the EMSs.

Using results of Kristof (1963), under the compound symmetry assumption
100(1 — &)% confidence limits for § can be written as

1+ (I -1)F — (1 - F)F_a/20-1,0-1)(J 1)
1+ (I — 1)’7" + (I — 1)(1 — f)Fl_a/z;J_l,(I_l)(_]_l) ’

1+ (I = 1) = (1 = 7)Fo/g;0—1,0-1)(J—1)
1+ (I = 1)Ff + (I = 1)1 — 7)Foy2;5-1,(1-1)(J-1)

This interval is an extension of (3.11) and, as noted in Section 3, is different from the
interval more commonly given for intraclass correlation because it is based on a different

experimental design.

34



Table 2.1. Orthogonal Decomposition of the Total Sum of Squares

Source df SS
Treatments I —1 JK Z(?i.. ~-Y.)?
Blocks J—1 IK i)(?.,-. -Y..)?
T+B (I-1)(J—1) Kz;Z(?ij. ~Y:.. -Y.;.+Y.)?
:
Within T+B - IJ(K —1) )3 éj(y,-,-k ~Y ;)2
1]
Total

IJK —1 NS (Vi — Y ...)2
1 7 k
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Table 2.2: Two Versions of Expected Mean Squares for
Mixed Model with Treatments Fixed, Blocks Random

Expected Mean Squares
Version 1 Version 2

Treatments JK¢r+ Kok +02 JKér+ Ko +0?

Blocks IKo% + o2 IKo% + Ko + o2
T«+B Kok + o2 Ko% + o2
Within T+B o2 o?

e [
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Table 3.1. ANOVA Tablefor =2 and K =1

Source ' SS df EMS
Treatments %J(?l. -Y,)? 1 Jor + %Va.r(Yl - Y2)
Blocks 23 (Y. —Y.)? J—1 1Var(Yy+Y2)

J
T+B 3 (Y1 — Yo5) — (V1. —-Y2)]? J—1 3Var(Y:-Y3)

j
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Table 4.1. EMSs for Model 1 and Model 2 when I =2 and K =1

EMS
Source Model 1 Model 2
Treatments Jé, + 02 +0? J¢r+ 02+ a2
Blocks 20% + o? 20[2; + 02 + o?
T+B o2 + o? o2 + o?
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Table 5.1. Two Populations for Example 5.1.

Overall Relative Frequency
thickness Sensitivity W; W, Pop. A Pop.B

Thin Insensitive 100 100 5 1
Thick Insensitive 150 150 .5 4
Thin Sensitive 120 80 .5 4
Thick Sensitive 170 130 5 1
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