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Abstract

Let {Lk, k > 1} be a sequence of independent Bernoulli random variables with P[L; =
1] = ar = 1—P[Ly = 0], where a; and 1—ay, are respectively the probabilities of acceptance
and rejection of the k** lot in a sampling inspection and aj, varies with the sampling plan.
A sampling system, MIL-STD-105D, used in quality control consists of three sampling
plans with different acceptance probabilities alternatingly used for lot inspection. The
decision to switch from one plan to another is based on the history of {L;} and a set of
stopping rules. We derive the performance measure AOQ of this sampling system from a
renewal process where AOQ involves the moments of various stopping times. The renewal
approach is computationally simpler than that of the Markov chain generally used in
evaluating AOQ for an infinite sequence of lots. Additionally, it provides a formula for
AOQ for a finite sequence of lots.

Key words: Renewal process, stopping time, quality control, acceptance sampling, Average
Outgoing Quality.



I. INTRODUCTION

Consider a sequence of lots of N items each. A sampling plan is carried out in each
lot by inspecting n items (n < N), and the lot is accepted if the number of defectives in
the sample does not exceed a preset acceptance number. This sampling plan is therefore
characterized by a pair of numbers, (n, A) representing the sample size and the acceptance
number respectively. One can tighten or relax the lot inspection by varying the sample
size and thé acceptance number. The widely used MIL-STD-105D in quality control is a
system of 'such sampling plans. The system consists of three levels of inspections, normal,
tightened and reduced, which are alternatingly used on a sequence of lots. The decision
to switch from a current sampling plan to another one depends on the history of the
acceptance records. The stopping rule for the currently used sampling plan is defined in
terms of the observed number as well as the pattern of occurrences of the accepted lots

under the current sampling plan.

In this paper we formulate this continuous sampling procedure as an alternating re-
newal process in which the time between two renewals (of a sampling plan) is'a sum of
several stopping times. A stopping time is defined to be the number of lots inspected under
a current plan before switching to a different one. The renewal process formulation pro-
vides a convenient mathematical basis for investigating the performance of such sampling
system, for instance in computing the performance measure “Average Outgoing Quality”
(AOQ) which is defined as the long r-un proportion of defectives that slipped through the
sampling inspection (precise definition is given in Section III). In a renewal process, AOQ
can be clearly defined and easily computed. Conceivably, this approach would help clarify
some of the ambiguity in applying MIL-STD-105D with respect to the interpretation of

“averages” (see Section III for details).



The performance of MIL-STD-105D Waé evaluated by Stephens and Larsen (1967)
who used asymptotic properties of Markov chains to derive formulas for several perfor-
mance measures which were later tabulated by Schilling and Sheesley (1978). The tables
were included in the 1981 version of the MIL-STD-105D which was adopted as a vol-
untary American National Standard by the American National Standards Institute as
ANSI-ASQC-Z1.4. This standard has also been adopted as an international standard,
ISO 2859, by the International Organization for Standardization. Other contributors to
the development of the performance measures include Dodge (1965) and Burnett (1967);
see Schilling and Sheesley (1978) for a historical development. For further analysis based
on Markov chains see Koyama (1979). The Standard has also been utilized for medical

applications (Jennison and Tarnbull, 1983).

Theoretically, the AOQ curves obtained by the Markov chains and renewal processes
should be identical. However, a small discfepancy between the two results exists because of
the approximation used in Schilling-Sheesley and also the way they computed the average
(see Section IV). The renewal method is computationally simpler than that of the Markov
chain; for instance, the manipulation of a rather large transition probability matrix can
be avoided. It also provides a way of evaluating the sampling system for a finite number
of lots. We have used the renewal approach in studying the Continuous Sampling plans
in MIL-STD-1235 (Yang, 1983). The mathematics required for 105D is however more
complicated than that of MIL-STD-1235. In the former, the switchings are among the
three sampling plans applied to individual items packed in lots, while in the latter the
switchings are between the two sampling plans applied to individual items without having

to consider the lots.

After presenting the notation and basic definitions in Section II, we discuss in Section



IIT several possible definitions of AOQ’s for finite and infinite number of lots. The gener-
ating functions of the stopping times for each of the component sampling plans and for an
inspection cycle are derived in Section IV. The distributions of the number of rejected lots
are derived in Section V. Formulas for- AOQ in finite number of lots and the asymptotic
AOQ are given in Section VI together with a numerical illustration. Concluding remarks

are given in Section VII.
II. NOTATION, BACKGROUND AND DEFINITIONS

Consider items which are produced at a uniform rate in a factory. Let Y, for u =
1,2,..., indicate whether the u?* item is defective or non-defective; set Y, = 1 if it is
defective and Y, = 0 otherwise. The process average used in the quality control literature
is the limit of £ .Y, /m as m tends to infinity. We assume that the Y,’s are an i.i.d.

sequence of random variables with
P{Y,=1}=1-P{Y,=0}=p, for0O<p<l.

Then the p value is called the process average. In reality the Y3 ’s are not observable and
p is unknown. If a sampling inspection plan is imposed on the items, then the attributes

of those Y’s included in the sample, say {Y1,...,Y,}, can be determined.

In procurement, a number called AQL (acceptable quality level) is specified in the
contract for the producer. It is lset to be the largest p value that the consumer is willing
to accept as an indication of the quality of the product. The acceptance sampling plan
provided by MIL-STD-105D assures that the p value does not violate the specified AQL

in the sense of having AOQ < AQL.

Denote by (n1, A1), (n2, A2) and (ns, A3) the sample size and the acceptance number

of the normal, tightened and reduced inspection plans respectly. Associated with each
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component sampling plan is a lot acceptance probability which is a function of p,n, N and
A. The acceptance probabilities of the normal, tightened, and reduced plans are denoted

by Pa1(p), Pe2(p) and P,3(p) respectively. They will be specified in Section III.

MIL-STD-105D starts with a normal inspection plan on a sequence of lots of NV items
each. It is convenient to think that we are sampling from an infinite sequence L1, Lo, ...
of lots. A switch from the norrﬁal to a reduced inspection occurs if 10 consecutive lots
are accepted®, and a switch to tightened inspection occurs if two out of five consecutive
lots are rejected. A switch out of the normal inspection occurs when either one of the
two events is observed. The normal inspection is reinstated either when five consecutive
lots are accepted during the tightened inspection or when a single lot is rejected during
the reduced inspection. The following diagram illustrates the directions of the switchings,

where N*, R and T denote normal, reduced and tightened inspections respectively,

N*

Fig. 1

We call a return to normal inspection from a normal inspection an inspection or a
renewal cycle. A cycle can be completed either with a path N* — R — N* or with a path

N* - T — N*.

*To keep the presentation clear, we consider first the case that only 10 consecutive
acceptances are required for switching. The extension to the case in which switching
from normal to reduced inspection requires 10 consecutive acceptances and that the total
number of defectives found in these 10 lots be less than a specified number will be given
in Section VI



For deriving AOQ and AOQ (t) we need to compute the cycle length, i.e. the number

of lots inspected in a cycle. The problem can be broken down by computing the number

of lots inspected, deriving N* — R, R — N*, N* —» T and T — N* respected. The length

of each segment depends on the lot acceptance probabilities P,1, P2 and P,3.

For this purpose, we need the following set of variables.
Let
the event of accepting 10 consecutive lots for the first time,

the event that the k'* lot being the 10®* of a 10-consecutive acceptances, for k =

1,2,...,

the event of rejecting 2 out of five consecutive lots for the first time,

the event that the k** lot being the second reject in five consecutive lots inspected,
the event that A occurs before B,

number of lots inspected before switching out of the normal inspection,

number of lots inspected during a normal inspection before switching to a reduced

inspection (i.e., when A occurs before B),

number of lots inspected until the first occurrence of the event A (irrespective of the

occurrences of B),

number of lots inspected during a normal inspection before switching to a tightened

inspection (when B occurs before A),

number of lots inspected until the first occurrence of the event B (regardless of the

occurrence of A),



¢ = number of lots inspected during a reduced inspection before reverting to a normal

inspection,

p = number of lots inspected during a tightened inspection before reverting to a normal

inspection,
W = number of lots inspected in one inspection cycle,
Zr = number of slip-through defective items in an N* — R — N* inspection cycle,
Z71 = number of slip-through defective items in an N* — T'— N* inspection cycle.

III. DEFINITIONS OF AVERAGE OUTGOING QUALITY (AOQ)

We are given an infinite sequence of Y’s which are labelled as Y3,...,Yn,YN41,- -,
Yon,YoN+1,... . The ji* segment {YG-0yN41s -+ 7, Y;n} represents the defectiveness of the
jt* lot. Let Dy, Do, ... denote the sequence of number of defectives found in the respective

lot when applying the sampling system.

Under a tightened plan, the lot acceptance probability is given by
Pas(p) = P[D < 4]

where D is a binomial random variables B(ns, p).

Under a reduced plan, it is
P,3(p) = P[D < A3]+ P[4; < D < R.],

where D has a binomial distribution B(ns, P) and R.(< N) is another assigned number

in the plan.

Under a normal plan, there are several alternatives for calculating the lot acceptance
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probability. One version is

Pai(p) = P[D < 44]
where D has a binomial distribution B(nq, p).

Other versions are to take two or multiple samples sequentially from the same lot to

determine the lot acceptance and the acceptance probability (see Schilling, 1982).
The definition of AOQ given in ANSI/ASQC Z1.4-1981 is as follows:

“The AOQ is the average quality of outgoing product including all accepted lots or batches,
plus all lots or batches which are not accepted after such lots or batches have been effec-

tively 100 percent inspected and all nonconforming units replaced by conforming units.”

Since the intended sequence of lots for sampling inspection is not specified, there are

many different ways to interpret this definition, for example
(i) AOQ of a single lot given that we know Which component plan is used on that lot,
(ii) AOQ of the j** single lot under the sampling system,
(iii) AOQ of an inspection cycle,
(iv) AOQ of the first ¢ lots inspected,
(v) AOQ of infinitely many lots inspected.

As to which AOQ to use, and to compare it with AQL, it depends, among other

things, on the number of lots inspected under the sampling system.

In Case (i) the AOQ (p) for a single lot is simply
(1 —(ni/N))P,i(p) - p, for a specified z.

This is a conditional AOQ given that we know which component plan is used on the lot.
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In Case (ii) we need to first determine the probability that i** sampling plan will be used

on the j* lot and then calculate AOQ as a weighted average:
(1) A0Q(p) = px3 (1 - %)Pai(p)P[ith component plan will be used on the j%* lot],

where n; and P,, denote the sample size and the acceptance probability of the normal,

tightened and reduced plans, for ¢ =1,2,3.

In Case (iii),

A0Q(p) = E(Zr + Z1)/N(EW)
In Case (iv), we denote the AOQ as

AOQ(t,p) = Expected number of slip-through defectives in the first ¢ inspections/tN.

In Case (v),

AOQ(p) = lim AOQ(% p).

The expressions in Cases (i) and (ii) are for evaluations of the sampling system on a
single lot, whereas the performance measures in Cases (iv) and (v) are for the sampling
system that applies to either a finite number or an infinite number of lots. Since the two
AOQ’s defined in Cases (iii) and (v) are mathematically identical, the AOQ used for an

inspection cycle in Case (iii) can be considered as an asymptotic measure of performance.

The rest of the paper will be devoted to the calculation of AOQ(p) and AOQ(%,p) in

Cases (iii)-(v).
IV. DISTRIBUTION OF THE STOPPING TIMES

Our goal is to derive analytical expressions for the AOQ(p) and AOQ(t, p). For this

we need to derive the distributions of v, v,,7,7r, W and V. The computation of the
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distributions of other variables listed in Section II is straightforward. To simplify the

notation, we set

(2) Pal(p) = /\7 PaZ(p) = K, Pa3(p) = 6.

IV.1. Distributions of ¥ and 7

Set

gm = P{y=m} and

3)

by, = P{the event B occurs at the m'® inspection}.

Suppose that the first rejected lot occurs at the Si* inspection. Then S; has a geometric

distribution with the probability generating function (pgf),

(4 Gs ()= Bls™) = G200 <1

The pgf of v can be obtained by using a renewal argument as follows. Evaluate the

probability ¢, by conditioning on Si,
gm = E[P{y =m|S1}].
For m > 6, we obtain a recurrence formula for gm,
(5) gm = 4(1 = APA™72 £ XTI — Vg
For2<m <35,

(6) gm = (m — 1)(1 = A\)2A™ 2
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and go and g, equal zero. Making use of the ¢gp,’s in (5) and (6) we obtain the pgf of v

(1= A [(Blgli + DY) (1= As) + 43%°]
(7) Grls) = 1o — (1 N)s® '

For related study of -y in connection with theory of runs see Li (1980), Huntington (1976).

The distribution of 7 is the same as that studied in Yang (1983, see eq. A.1) for
Continuous Sampling Plans in which 7 is “the first success run of length :”. To apply eq.

(A.1), we set 1 = 10 and ¢ = A and obtain the probability generating function of our 7 as

05101 — As)
1—s4(1—=X)At0g11°

(8) G (s) = Bls"] = sl < 1.

IV.2. Distributions of ¥, 7, and V.

The techniques used in this section can be found in Feller (1968, Vol. 1,. Chapter 8).

Fork=1,2,..., set
br = P{Bt}, hir=P{Ax}, cx=0br+hi

where By and Ay are the events defined in Section II. Denote the generating function of
{bx} by H,(s), and that of {hx} by H,(s). For every fixed k, the events Ay and B; are

mutually exclusive and therefore,

P{either Ay or By, occurs} = bg + hy = c.
Consequently, the generating function of the sequence {cy} is
(9) | Hy(s) = Hy(s) + He(s) — 1.

Since V' = min(y, 7), the probability generating function of V is given by

1
(10) Gv(s) =1~ T ()’

| (=Gi())(1=Gy(s))
1= Gr(s)G(s)

s <1

ls] < 1.
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From (10) we obtain the expected duration of a normal inspection,
(11) E(V)=G,(1) = ETEy/(ET + E¥).

Given the pgf’s of v and 7 in (7) and (8) we can readily write down the pgf’s of g and

~r which are

Gr(s){1 — G4(s)}

(12) GTR(S) = 1— GT(S)G»Y(S) ) lsl < 1a
and
(13) Grr(e) = L=<,

IV.3. Distributions of £ and p

The p has the same pgf as that of 7 in (8) except that the 10 (acceptances) is changed
to 5 and that the acceptance probability X is replaced by p, (see (2)) the acceptance

probability of the tightened plan. For easy reference, we present it below.

p2s°(1 — ps)
1—s+(1—ppsst’

(13) Gpo(s) = ls| < 1.

The variable ¢ has a geometric distribution with pgf

(1-6)s
1—46s ’

(14) Ge(s) =
where € is the acceptance probability under the reduced inspection plan.

IV.4. Distribution of W

To determine the pgf of W, the number of lots inspected during a full inspection
cycle, we partition the set of all possible ways of completing an inspection cycle into two

subsets according to whether A occurs before B or B occurs before A. Let

§ = I[A occurs before B] = I[T < «].
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Then

W =1r + &, ifé=1

and

W=rp+p, ié=0.
It follows that

(15) Gw(s)=FE [63”“*‘&] +FE [(1 — 5)37T+”]

= Grp(s)Ge(s) + Gyr(s)Gp(s), [sl<1.
Since T and ¢ are independent, likewise vy and p, we have

(16) EW = G (1)E{ + ETr + Exr + G (1)EDp.

V. COUNTING REJECTED LOTS

To quantify the number of slip-through defectives in an inspection cycle, we follow

the convention that a rejected lot is subject to a 100% inspection and every defective

item found is replaced by a nondefective one. Therefore the slip-through defectives are

contained in the accepted lots only. For this we need to determine the expected number

of accepted lots in an inspection cycle. For computational convenience, it will be derived

as the difference of the expected number of lots inspected and rejected. The expected

number of rejected lots needs to be calculated separately for each of the three component

inspection plans.

Let S, for j = 1,2,..., be the time at which the j* rejected lot is observed (for

convenience, we identify the time as the lot number). Then the normal inspection continues

as long as

$;<10 and 5<S;—S;1<10, for j=23,4,...,
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where Sy = 0. The random variables S; — S;_; are independent with a common geometric

distribution and parameter A.

Let Kr be the number of lots rejected during a normal inspection before switching to

a reduced inspection, i.e., we evaluate Kg on the event [T < v]. We have

(17) P[Kg = 0] = Plfirst 10 lots are accepted] = A'?,
P|Kg = k] = P[S; <10]P[5 < S; — S;—1 < 10]F~1P[10 lots
following Si are accepted|

= (1= AN = NN for k=1,2,... .

It follows that

/\10(1 _ )\10)
(1 — )5 + /\10)2 ’

(18) EKgp6 =
where § = I[1 < 7].

Note that both 7r and Kg are defined on the event [r < |, and they are not in-
dependent. It would be natural to compute P[Kg = k] via the conditional probability

(19) . P[Kg=k]=P[Kg = kjrg = £]P[rg = 4.

But for evaluating EKgrI[r < 7], (17) is much easier to use than (19). Similarly, the
probability distribution of the number of rejected lots K (if normal is switched to a
tightened inspection) is given by
(20) P{Kr =k} =P{S1 <10}P{5 < S; —Sj-1 <10
for j=1,2,...,k—1}*"2P{Sy — Sp_1 < 4}
= (1 =M% = X212 for k=2,3,... .
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The number of lots rejected during the tightened inspection, K, has a probability distri-

bution

) PE=0]=,
P{K =k} =P{S;—S;_1 <5, forj=1,2,...,k, and Sg41 — Sk > 6}

=1 -t E=1,2,....

VI. FORMULAS FOR AOQ (p) and AOQ (t, p) IN CASES (i) - (v)

The switching rule for the reduced plan involves three numbers, n3, A3 and R.. A lot
is accepted if the number of defectives D found in the sample < As and it is rejected if
D > R,. If A3 < D < R., the lot is accepted, however, when this happens the reduced
plan will be inserted to the normal plan. Recall that ¢ is the first lot under reduced plan

with D > Az, then ¢** lot will be accepted with probability

¢ = P[As < D < R.|D > As].

From the results in Sections IV and V, we find that the expected number of slip-

through defectives Zg in an inspection cycle using the path N* — R — N* is given by
(22) EZp = p{(Etr — EKR)(N —n1) + (B — 14+ ¢)(N —n3)G,(1)}.

Similarly, the expected number of slip-through defectives in an inspection cycle using the

path N* - T — N* is
(23)  BZr=p{(Byr — BKr)(N — ) + (Bp— BR)(N — na)Goy, (L.
Then, AOQ (p) is the ratio

(24) AOQ(p) = E(Zg + Z1)/NEW.
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The required moments for computing AOQ (p) are listed in Table 1.

For a finite sequence of t lots, the AOQ(¢,p) can be studied in exactly the same way

as in Yang, (1983, eq. (8)), an approximation formula for AOQ(¢, p) can be obtained as

E(Zr+ Zr) [o—gv +EW 1]
2tN (EW)?

(25) A0Q"(t,p) = AOQ(p) +

The moments in the second term of the right side of (25) can be computed without difficulty,
though tediously, from the pgf’s given in Sections IV and V. The second moment of W

can be easily put into a computer-ready formula which is long and will not be given here.

The formulas in (24) and (25) are for the switching rules described in Section II. We
now extend these formulas to the case where switching from a normal to a reduced plan
requires the simultaneous occurrence of ten consecutive acceptances and that the total

number of defectives in these ten samples be no more than a specified number, say £g.

Consider a direct path N* — R (without going through T). At Tg, ten consecutive
acceptances have occurred. Let Dj, for j = 1,...,10, denote the number of defectives

found in these ten samples. Let
(26) ¢ =P [2;2,D; <Lr|D; < Ac, for j=1,...,10].

Given the occurrence of 7g, the probability of switching to a reduced plan in the next
inspection is ¢ and the probability of starting from scratch with a normal plan in the next
inspection is 1 — ¢. The number of inspections needed to complete the direct path N* —
R is

(27) 5 =2, mr()),

where M has a geometric distribution with pgf

s
1—s(1—¢)’

16
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and 7r(j) are i.i.d. random variables with pgfG,.(s) given in (12). It follows that 73 has

a pgf
(28) Gfﬁ(s) = GM(GTR(S))a IS| <1l

Replacing 7r by 73 in egs. (16) and (22) gives EZ}% and EW™ corresponding to the
expected number of slip-through defectives in the inspection cycle N* — R — N* and

the total number of inspections in an inspection cycle respectively. Therefore, the new

AO0Q(p) is

(29) AOQ(p) = E(Z% + Z1)/NEW*.

The AOQL is the maximum

(30) AOQL = 01;1;1%{1 AOQ(p) and AOQL(Y) = orélg?_%cl AOQ(p,1).

Figure 2 gives a numerical example of the AOQ(p) and AOQL. The upper AOQ
curve is computed with formula (24) which corresponds to the definition in Cases (iii)
and (v) of Section III. The lower AOQ curve is computed with formula (1) where the
probability P [ith component plan will be used on the jth lot] is replaced by its asymp-
totic probability P [ith component plan will be used on any lot]. In our formulation, this
probability equals to %,(EP)G,YT (1)/EW, (E£)G.,(1)/EW, respectively for the nor-
mal, tightened and reduced plan. This definition of AOQ corresponds to the one used
in Schilling-Sheesley (1978). Figure 2 exhibits a slight difference of the two definitions.
In addition to the difference in definitions, their computation involves an approximation

which may further contribute to the discrepancy.

Figure 3 is the probability of switching to a reduced plan first. It was computed from

eq. (12) evaluated at s = 1 by using the L’Hospital rule.
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VII. CONCLUDING REMARKS

We stuaied the performance measure of the sampling system MIL-STD 105D, AOQ,
by using alternating renewal processes. Our intention is to illustrate its utility rather than
providing extensive tables for applications. This approach also clearly reveals a variety
of ways of interpreting the AOQ, which of course affects the evaluation of the sampling

system.

While the AOQ depends on the acceptance probabilities P,,(p), for : = 1,2, 3, it does
not depend on how they are calculated. This means that our formula for AOQ is applicable

to either a single or a multiple-sample version of the normal inspection plan.

Acknowledgement. Research supported in part by the USDA under contract 58-3198-

8-2.
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Table 1. Moments

Er (1 = A19)/(1 — A)A10

G (1) 2(1 — 12210 4+ 1101 4+ 220 — x21)/ (1 — A)ae)’

Ey [w(S)y,(f)(_)g)lz(S)wl(S)] where z(s) =1 — As — A%(1 — A)s®.
e s=1 y(s) = (1= A)2 L(z?zolgj + 1M 7H2) (1 - Xs) + 42456

nyl(l) [=(s)y (.(si(.—s-)g)/gs)m ()] - 2E;f(a;)(s) B zrgsgl’egi\ggi’vzs gfr?éhyrésgect to s.

Etr [(B)G4(1) + 2(Br)? By — GY/(1)Ev] /2[Er + Ev]?

Grp(1) | 1+ (Br/Ey)]™!

Eqp interchange 7 and v in ETg

Gyr(1) | 1-Grg(1)

E¢ 1-6)1t

Ep (1 -6/ - we’

EW Grr(1)E€ + Etp + Evyr + G4 (1)Ep

EKgr AL10(1 — A10) /(1 — A5 4 )10)2

EKg (1 = A5)(1 = A10) /(1 — A5 + A10)2

EK (1 —p®) /b

EZg p[(Btr — EKR)(N —n1) + (E€ = 1+ ¢)(N — n2)Gr5(1)]

EZrp p [(Byr — EKT)(N — n1) + (Bp — EK)(N = n3)Goy @]
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