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ABSTRACT

In shrinkage estimation of a multivariate normal mean, the two dominant approaches to con-
struction of estimators have been the hierarchical or empirical Bayes approach and the minimax
approach. The first has been most extensively used in practice, because of its greater flexibility in
adapting to varying situations, while the second has seen the most extensive theoretical develop-
ment. In this paper we consider several topics on the interface of these approaches, concentrating,
in particular, on the interface between hierarchical Bayes and frequentist shrinkage estimation.

The hierarchical Bayes setup considered is quite general, allowing (and encouraging) utilization
of subjective second stage prior distributions to represent knowledge about the actual location of
the normal means. (The first stage of the prior is used, as usual, to model suspected relationships
among the means.) We begin by providing convenient representations for the hierarchical Bayes
estimators to be considered, as well as formulas for their associated posterior covariance matrices
and unbiased estimators of matricial mean square error; these are typically proposed by Bayesians
and frequentists, respectively, as possible “error matrices” for use in evaluating the accuracy of the
estimators. These two measures of accuracy are extensively compared in a special case, to highlight
some general features of their differences.

Risks and various estimated risks or losses (with respect to quadratic loss) of the hierarchical
Bayes estimators are also considered. Some rather surprising minimax results are established (such
as one in which minimaxity holds for any subjective second stage prior on the mean), and the
various risks and estimated risks are extensively compared.

Finally, a conceptually trivial (but often calculationally difficult) method of verifying minimax-
ity is illustrated, based on numerical maximization of the unbiased estimator of risk (using certain
convenient calculational formulas for hierarchical Bayes estimators), and applied to an illustrative

example.
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1. INTRODUCTION

Suppose we observe
X = (X1,X2,---,Xp)  ~ N,(6,%), 3 known,

and desire to estimate the unknown @ = (6y,...,0,)". We will consider both “inference” and
decision-theoretic estimation; for the latter we will utilize the usual quadratic loss for an estimator

6(z) = (61(=),...,6,(z))?, namely
1(6,6(2)) = (0 - 6(2))'Q(6 - 8(z)), )

where Q is positive definite. (Some attention will also be paid to the matrix loss (8 — 6(z))(0 —

6(z))".)
When 3 = 021, and the 6; are thought to be “similar” or exchangeable, an often recommended

estimator for 8 (cf. Efron and Morris (1972)) is (when p > 3)

s)=z— 2= (o _z1), (1.2)
Ee-m

P
where 7 = - > x; and 1 = (1,1,...,1)®. The usual derivation of this estimator follows from
=

%
assuming that the 6; are i.i.d. (8, 02), calculating the corresponding Bayes estimator, estimating
B and o2 from the data, and finally inserting these estimates in the Bayes estimator.

This standard empirical Bayes approach has a number of well-documented difficulties, espe-
cially when p is small or moderate or when confidence intervals are desired (cf. Berger (1985)).
These difficulties are most easily overcome by using the hierarchical Bayesian approach to the
problem. Instead of estimating 8 and o2 directly, one simply places a “second stage” prior distri-
bution, 73(, 02), on them, and then performs a Bayesian analysis (e.g., calculation of the posterior
mean). When prior information about 3 (or 62) is available, the hierarchical Bayes estimator can
be substantially better than (1.2) when p is small or moderate (cf. Berger (1982b) and Berger
and Chen (1987)). And even when the noninformative second stage prior 72(8,02) = 1 is used,
the hierarchical Bayes approach will typically equal or outperform the empirical Bayes approach.
(Note that the modified empirical Bayes approach of Morris (1983), which is itself quite successful,
is patterned after the hierarchical Bayes approach.)

A recent discovery in Brown (1987) also pertains to this issue. Brown has shown that (1.2)

is inadmissible (in a nontrivial sense) and can be improved upon by additionally incorporating
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shrinkage to a specified point. Such additional shrinkage is precisely what subjective hierarchical
Bayes estimators tend to produce, providing further frequentist motivation for their study.

From the Bayesian perspective, there are also purely subjective reasons for utilizing the hierar-
chical Bayesian approach. Here are two examples from Berger (1985) that emphasize the richness of
the structures that can be modelled within the hierarchical Bayesian framework. (These examples

will be utilized later.)

Ezample 1. For years 1,2,...,7, the IQ of a child is tested. Letting 6; be the true IQ in year 1,
suppose that §; is measured by a test score X; ~ N(6;,100). Here, it is quite natural to treat the
0; as being i.i.d. N(B,02), allowing for year-to-year variation in IQ, but recognizing that the IQs
should be similar.

Another available piece of information here, assuming that the child is a “random” member
of the population (i.e., that he has not been identified as belonging to some special group having
a strong correlation with IQ), is that the overall population distribution of IQs is A(100,225). To
incorporate this information, one could assign § a A(100,225) prior distribution.

To complete the hierarchical Bayesian description of the problem, a second stage prior distri-
bution for 02 is needed. Although an expert might well have subjective knowledge about o2, which
could certainly then be incorporated, it will probably be more common to be quite vague about

this parameter, and choose, say, 7(a2) = 1. O

Ezample 2. Consider a variation on Example 1. Suppose a linear trend in the 6; is suspected.

This could be modelled as
9; =p1+ P2 i +e,

where (3, and §; are unknown, and the ¢; arei.i.d. N'(0,02). This fits into the hierarchical Bayesian

framework by defining the first stage prior of @ to be N,(y B,0%1,), where

1111111\° b1
= d = .
y (1234567) and (ﬂz)
It is then necessary to also choose a second stage prior m3(f1,82,02). The prior for (61, 2) could

be chosen in a similar fashion to that for 8 in Example 1. O

A third reason to consider the hierarchical Bayesian approach is the need for conditional mea-
sures of accuracy. To either construct error estimates or confidence sets, there is considerable
evidence that conditional (i.e. data-dependent) measures must be used. (The recent literature on

-this issue includes Johnstone (1988) and Lu and Berger (1988a,b).) The hierarchical Bayesian
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approach produces accuracy measures, based on the posterior distribution, that are automatically
conditional. The major competitor to the hierarchical Bayesian approach is the conditional frequen-
tist approach based on unbiased estimators of accuracy (see, e.g., Stein (1981), Johnstone (1988),
and Lu and Berger (1988a,b)). We will be partly concerned with comparison of these alternative
approaches.

A final motivation for the paper is to consider minimaxity of various hierarchical Bayes esti-
mators. While it has been recognized that minimaxity and “good” shrinkage patterns are often
incompatible (cf. Morris (1983), Berger (1985), and Casella (1985)), they are sometimes simultane-
ously achievable. Here we are only considering estimators developed through Bayesian hierarchical
modelling designed to reflect actual beliefs about 8, so that “good” shrinkage patterns are auto-
matically obtained. If minimaxity is also present, one has a very attractive situation.

Two minimaxity results are discussed. The first, based on ideas of Stein (1981), Zheng (1982),
and George (1986a,b,c), is quite surprising, in that it establishes minimaxity of certain hierarchical
Bayes estimators simultaneously for all second stage priors on the first stage mean. For instance,
one can model exchangeability but also incorporate any subjective information about the location
of the common mean, all while staying minimax (and hence satisfactory to a frequentist).

Unfortunately, the result is applicable only in rather special cases. Thus we also discuss a con-
ceptually trivial numerical method of verifying minimaxity of a given estimator, namely numerically
maximize the unbiased estimator of risk, and see if it is less than the minimax risk. Although there
can be formidable computational problems involved in this verification, the approach is much more
general and typically much easier than analytic verification of minimaxity. This will be further
discussed in Section 4.

The organization of the paper is as follows. In Section 2, the general model being considered
is developed, and useful expressions for the hierarchical Bayes estimators are given. Section 3
considers the determination of estimation accuracy (e.g., estimated variances and estimated risks),
from both Bayesian and estimated frequentist perspectives, and compares the two approaches.
Section 4 presents the minimaxity results.

Among the huge literature on  hierarchical Bayesian methodology, works
that consider estimators similar to those in this paper include Lindley and Smith (1972), Box
and Tiao (1973), Smith (1973), Deely and Lindley (1981), DuMouchel and Harris (1983), Berger
(1985), and Angers (1987). Works that discuss minimaxity of Bayes estimators include Brown
(1971), Strawderman (1971, 1973), Efron and Morris (1972), Berger (1976a, 1980, 1982a,b, 1985),
Faith (1978), Judge and Bock (1978), Stein (1981), Li (1982), Zheng (1982), Chen (1983, 1988),
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Cooley and Lin (1983), George (1986a,b,c), Haff and Johnson (1986), Spruill (1986), Berger and
Chen (1987), DasGupta and Rubin (1988), and Haff (1988).

2. THE HIERARCHICAL BAYES ESTIMATOR

2.1 THE HIERARCHICAL PRIOR DISTRIBUTION
The prior distribution that will be considered is a mixture of a “first stage” distribution on 8

w.r.t. hyperparameters g and 3, ; in particular, we consider

71'(0) = /7{-1(0'”’7 $7r)7r2(”" Er)d” d$7r, (21)

where the first stage prior

Wl(olﬂ', Ew) is NP(”" 2#) (2'2)

and the second stage prior is m2(p, X, ), which will always be assumed to have a density w.r.t.
Lebesgue measure on the domains of ¢ and X',. (The theoretical Sections, 2.3.2, 3.1.2, and 4.1,
do not require assumption (2.2).) The following two examples indicate the diverse possibilities for
choice of my; these examples will also form the basis of our later developments. Two important

generalizations of these examples are given in Appendix 1.

Ezample 3 (Regression structured means). Suppose

©r =98, (2.3)

where y is a (p x £) matrix of known regressors (such that y'y is positive definite) and B3 is an

(1 x £) vector of regression coefficients. Thus 6 is modelled as having the regression structure
0=yB+e¢, (2.4)
where & ~ M,(0,X,). An important special case is that of exchangeable means, defined by
y=1, BeR, and X, = a,erp. (2.5)
The second stage prior density will be assumed to be of the form
(8, Xx) = my(B)m3(¥5),

where either

Case 1: w3(B)is No(B°, A), or



Case 2: =3(B)is Te(e, 8%, A);

here 3°, A, and « are given, and Ty(a,3°, A) denotes the {-variate t-distribution with a degrees
of freedom, location vector 8%, and scale matrix A. Usually B° can be thought of as a subjectively
specified “guess” for 3, while A is typically a subjectively specified “accuracy” matrix corresponding
to this guess (cf. Example 1). When p is small (or £ is a substantial fraction of p) it can be quite
important to utilize such subjective information about 3 (cf. Berger, 1982b). Note, however, that
it is typically possible to be “noninformative” about 3 if desired, by letting A — oo in 71 (which
can be shown to correspond to choosing 73(3) = 1).

Case 1, the choice of a normal distribution for 71, is calculationally easiest. Using a t-
distribution, as in Case 2, adds one dimension of numerical integration to the calculations but
results in additional robustness with respect to the subjective input 3° (cf. Angers, 1987).

Finally, we will allow A~! to have eigenvalues that are zero. (All expressions will be in terms

of A=1, so there is no need to define A in this case.) Let
m = Rank (A71), (2.6)

and let £ denote the null space of A1, For 8 — 3° € Qo, 73(B) is constant, implying that the
prior is noninformative on that part of the parameter space of 3. Note that m = 0 corresponds to

a constant (noninformative) prior for the entire parameter space of 3.

FEzample 4. The second example that will be utilized for illustrative purposes is based on Berger
(1980) (see also Strawderman (1971), Berger (1976a, 1985), and Lu and Berger (1988a)). The
example has the virtue of often yielding essentially closed form expressions for most quantities of
interest, allowing for easier comparisons of various proposed methodologies.

Take, as the first stage prior,

m1(0lp, &) Np(m, B(£)), (2.7)

where B(£) = £C — 3, C being a given positive definite matrix and £ a scalar. (Thus, ¥, = B(¢)
in (2.1).) The domain of £ is taken to be a subset of

(chmaxC ™1 ¥, 00), (2.8)

where chpax stands for maximum characteristic root, so that B(§) is always positive definite.
This form of B(€) is used because it allows for closed form calculation, while resulting in “robust”

Bayesian shrinkage estimators; this is discussed further below.



Various scenarios will prove to be of interest in this example. For instance, the minimax
theorems in Section 4 will be established under the assumption that the second stage prior for
(p, &) has conditional densities 72(£|p) that are nondecreasing in ¢ for each . The calculational

simplifications that were alluded to earlier arise in the following special case.

Special Case of Example §: Let H = {u = yB: B € R‘}, where vy is a given matrix of covariates,
as in Example 3, and [yC~'y?] has full rank £. Suppose further that

o = chpax(C1X) <1, (2.9)

and that the second stage prior for (u,€) is supported on H X (1,00) and has constant density

therein.

The assumption about p above is equivalent to placing a noninformative prior on 3, as men-
tioned in Example 3 (there, setting A~! = 0). The case £ = 0 is allowed, and will be defined by
H = {u®}, p° given.

When £ = 0, the usual choice of C is

C=1(%+A), r=(-2)/p, (2.10)

where A is a specified positive definite matrix satisfying (2.9), i.e.
chnax(A™'2) < 2(p - 2) (2.11)
This choice of C and H results in a prior that is similar to the usual conjugate A,(p, A) prior, in
that it is unimodal with subjectively specified mode p while A can be thought of as a subjectively
specified accuracy matrix (for the best guess p). The reason for building a two stage prior (i.e.,
introducing the random £) is that this robustifies the usual conjugate prior, resulting in familiar
robust shrinkage estimators. See Berger (1980, 1985) for general discussion (though Berger, 1985,
uses a slightly different prior). _
When C = X = I, then this prior can be seen to specify shrinkage towards the subspace H.
When £ = 0, one then has shrinkage towards the point u°. Indeed, defining 02 = £ — 1, the prior
reduces to the Example 3 scenario with X, = 02I, and a noninformative prior on 3. Note that

we will, therefore, also be providing closed form expressions for the hierarchical Bayes estimator in

that case. a

2.2 EXISTENCE OF THE BAYES ESTIMATOR
The Bayes estimator that we will consider is the posterior mean (optimal for quadratic losses).

Since we will often be working with improper second stage prior distributions, m3(u, X,), it is
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important to keep track of when the Bayes estimator actually exists (i.e., when the posterior
distribution has a mean). The following lemma gives such a result. (We use f(z|0) to denote the

Np(6, X) density of X.)
LEMMA 2.1. If, for all © € RP, the marginal distribution
m(z) = /f(a:|0)7r(0)d0
- / F(@|0)m1 (011, X )ra(ps, X )dOdpd X, (212)
is finite, then the posterior mean and covariance matriz exist.

Proof.  The reason for this result is essentially the analyticity of the Laplace transform on its

domain of definition. In fact, we can write
m(z) o« e~ lIeIP/2 / Pz~ 1012 (g 40
x e~N=IP/2p (),
where h(z) is the Laplace transform of e~1161°/21(6). As m(z) is finite for every , it follows from
Corollary 2.6 of Brown (1986, p. 38) that all derivatives of m exist at every & € RP. And the

posterior mean and the posterior covariance matrix can be expressed in terms of derivatives of m

(see Sections 2.3.2 and 3.1.2). d

The following lemmas give conditions under which m(z) is finite, for the situations of Exam-

ples 3 and 4. The proof of Lemma 2.2 is given in Appendix II.

LEMMA 2.2. Consider the situation of Ezample 8 (Case 1 or 2) when X, = o%I. If, for some
K,
K
/ 72(02)do? < oo, (2.13)
0

and

o0
1 272 2
/K (02)(P—ttm)/2 w3 (07)don < oo, (2.14)

then m(z) < oo for all x.

NoTk: The conditions of Lemma 2.2 are satisfied if, for some ¢ > 0, K3 > 0, and K5 > 0,

K,
Ky + (o2)1=3(p—t+m)te]”

ri(al) < (2.15)
In particular, the conditions are satisfied by 73(¢2) = 1 if

p>2+L—m. (2.16)



LemMA 2.3.  Consider the situation of Ezample 4, “Special Case.” Then, ifp > 2+£ , m(z) < oo

for all z.

Proof. A straightforward calculation yields

m(z) / g~ (P=0/2g=5% D2 ge (2.17)
1
where
D =cC!'-CclylyCctyl | lyCc . (2.18)
The conclusion is immediate. O

2.3 EXPRESSIONS FOR THE HIERARCHICAL BAYES ESTIMATOR
There are two quite different representations for the hierarchical Bayes estimator (the posterior
mean), §7B, One is useful for calculation and relies upon the normality of the first stage of the
prior distribution; the other will be used for theoretical purposes and is based on a representation

in terms of the marginal distribution (2.12). Explicit formulae will be presented when X = o021I,.

2.3.1 CALCULATIONAL FORMULAE

We have (cf. Lindley and Smith (1972) or Berger (1985))

6HB(:I:) — Er(olz)[o]

= BP9 [z, X)) (2.19)
where, letting W = (X + 3,)"1,
5(aln, X,) = = - EW (e - ) (2.20)
and
T2 (s Xrl) o (det W2 exp{~3 (2 — )W (@ — )} ma(, 2). (2.21)

Note that §(z|pu, X,) is the conditional mean of 8 given p and 3. This decomposition can be
calculationally advantageous when p and 3, have low dimensional distributions; in that case, the
calculation of (2.19) requires only low dimensional integration. Also, when u has a normal distri-

bution or a #-distribution, the computation of (2.19) simplifies further, as indicated in the following
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examples. For motivational purposes, we begin with the exchangeable scenario of Example 3, as

defined by (2.5).

Ezample 3 (exchangeable means case). Here, p = 81 and B has a normal distribution. Then
(2.19) becomes
§5(2) = B[ (alo)],

with
o2 2
2\ o — 20
6($|0'7r) =T - (0_2 2)(:13 ) (pA_I_ o? + Uzr)(x /H )1 (222)
and
{_l ||z—=1]) p(z-8°)? 1}
2 2 xpi—3[(oio3y + Gareron) 293
7l'2(0'7r|513) & (0_2 +U,2,)(7"1)/2(pA+02 0'2)1/2/-1 1/2 2(0r) ( . )

(see Berger (1985, pp. 183-184)). If one chooses the noninformative second stage prior distribution
To(p,02) =1, i.e.,if A= 0o and 72(02) = 1, then 6§#B is glven by

§9B(z) = ¢ — E™(% l=>[ ](:1: —71), (2.24)
where
P z —T1|?
rh(02le) o (0 + o)~V expy— Q(Uz 5 (225)

This estimator is the hierarchical Bayes version of the estimator (1.2) given in the introduction.
Note that 672 is defined even for p = 3, as long as A < co; when A = 00, so m = 0, §#B does
not exist for p = 3 (see Lemma 2.2). Thus, when A < oo, §7B defines an exchangeable shrinkage
estimator when p = 3, while (1.2) requires p > 4. Furthermore, 6778 will be shown to be minimax
even when p = 3; thus a frequentist who desires to use an exchangeability-based minimax shrinkage
estimator when p = 3 must in addition incorporate subjective prior information about the location
of the 6; (see also the discussion in the introduction concerning Brown (1987)). Of course, if A is
very large and p = 3, there will be very little shrinkage. Indeed, for large A and p = 3, it can be

shown that

A 2 D —llz=71]]2 /(202 =
§HB(p) = o — (logA)”{_ mllz(l—e ll2=21I1%/(20%)y (2 — 71). (2.26)

Thus, significant practical gains when p = 3 will only be available if subjective information about

B is not too vague. In contrast, when p > 4 even A = oo (yielding (2.24)) will result in significant

practical gains. O

Ezample 3 (Case 1, continued). If X ~ Np(0, X),71(0]B,02)is Np(yB,021,), and B is Ny(B°, A),
it is shown in Berger (1985, pp. 190-192) that

678 (z) = E™(o219)[§(z|02)),
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where

§(zloy) = = — XW(z —yB) - EWyUA(B - 8°), (2.27)
W= (¥+02L)", B=(y'Wy) ly'We,
U=(y'Wy+A)™,

w3 (o7 |2) o m(=|o})mi(a%), | (2.28)

exp{—3[(z — yB)'W (= — yB) + (B - B°)!(y'Wy)UA"(B - )]}
[det W]~1/2[det U1/2 )

m(@|oy) = (2.29)

Recall that setting A~! = 0 corresponds to choice of a noninformative prior (73(3) = 1) on 8.

O

Ezample 3 (Case 2, continued). Consider the situation above, except that now 8 ~ Ty(a, 3%, A).

As in Generalization IT of Appendix I, we can use the representation of the Z5(a, 3%, A) distribution

as a Gamma (£, %) (denoted 73) mixture of normals, to derive analogous expressions for §¥5,

Indeed, one need only replace A~! by AA~! in (2.27) and (2.28) (call the resulting expressions

6(z|), %) and m(z|),02), respectively), and define
m3(X, o%la) = m(z|A, 07)A™ P (W13 (oF)
(recall that m is the rank of A=1). Then
6B () = EROoi ) [§(z| ), 02)]. (2.30)
Angers (1987) gives a related expression for 678 in this case. O

Ezample { (Special Case, continued). As in Berger (1980) (see also Berger (1985) and Lu and
Berger (1988a)), it can be shown that

6HB(:1:) =z — h(p_e_2)(]|:z:|],2k)$C_1 (z — Pz), (2.31)

v where
P = y'lyc 1yl 'yC, (2:32)
le|l2 = 2C1(I, - P)a, (2:33)

and hn,(v) is a closed form expression defined in Appendix III. O
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2.3.2 THEORETICAL FORMULAE

A general expression for the posterior mean, when X ~ N,(0, X), is
§9B(z) = & 4+ XV logm(z), (2.34)

where m(z) is the marginal distribution of X. (For a proof when X = I,, see, e.g., Berger and

Srinivasan (1978)). Another representation that will be useful follows from defining

(i) = / F(18)m1 (18, Fip)72(3 | 12)dOAX,

so that
m(z) = [ m(alu)r(uw)ds
Then
coy ) [Vm(wallzf)j;r%(u)du
= [elwmi(ulz)dn, (2.35)
where
§(z|p) = = + XV logm(z|p), (2.36)
) (il = I, (2.37)

m()
This decomposition will allow us to work conditionally on g (see Section 4.1). For other uses of

this type of representation for 675, see Haff (1988).

3. ESTIMATED ACCURACY AND LOSS

What error measures are to be associated with the hierarchical Bayes estimator §72?7 Two
types of measures that are often considered are (i) Bayesian posterior measures and (ii) unbiased
estimators of loss or variance. The use of Bayesian posterior measures is well-established, while
consideration of unbiased estimators of loss is increasing (cf. Stein (1973, 1981), Judge and Bock
(1978), Berger (1985), Johnstone (1988), Brown (1988), Bock (1988), and Lu and Berger (1988a,b)).
Section 3.1 gives standard posterior measures for our scenario, while Section 3.2 presents unbiased
estimators of loss and accuracy. Both “calculational” and “theoretical” versions are given. In

Section 3.3, the two types of measures are compared.
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3.1 POSTERIOR MEASURES
3.1.1 CALCULATIONAL FORMULAE

For the model developed in previous sections, the posterior mean §72 is given by (2.19) and

the posterior covariance matrix is
VHB () = Erowd: D) _ W 3 + (6(z|p, Xr) - §7B(2))(6(z|n, Xr) — 67P(2))]]  (3.1)

where 8(z|u, X,) is given by (2.20) and mo(p, X ,|z) by (2.21) (see Berger (1985, pp. 139-140)).

When the quadratic loss (1.1) is being considered, the posterior expected loss is given by
pfB(z) = ETC[(6 - 675 (2))'Q(6 - 675 ())]
= tr (VHB(2)Q). (3.2)
In the various examples, we will explicitly give only the formulae for VHZ; the formulae for pZ(z)
follow immediately from (3.1).
Ezample 8 (continued). For Case 1, the posterior covariance matrix is (Berger (1985, p. 190))
VEHB(z) = ETC:R) 3 _ SW 3 + IWyUy'W 3
+ (8(zlo%) — 675 (2))(é(2lo2) — 655 ()], (3.3)
where 6§(z|02), W, U, and n2(oZ|z) are given by (2.27) through (2.29).

For Case 2, the same formula holds, but with AA~! replacing A~! in U (and elsewhere),
6(z|), 02) and 72(02, A|z) replacing 6(x|02) and 7%(c2|z), and §¥B(z) given by (2.30). ]

FEzample 4 (Special Case, continued). Asin Berger (1980, 1985), it can be shown that the posterior

covariance matrix is given by

VHB(z) = X — hipos_s)(||2||2)XCT X
+ 9(p—-2)(||2|[2) ¥C (T, — Pz’ (I - P)'C™' X, (3.5)

here ||z||2 and P are defined in (2.33) and (2.32), while h,, and g,, are defined in Appendix III.
O
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3.1.2 THEORETICAL FORMULAE

ProrosiTiON 3.1. If Hy () is the Hessian matriz of m(x) (i.e. the matriz with (3,5) element

2 . . . .
(ﬁa—x—jm(m)) ), the posterior covariance matriz can be written

VHB(z)= X + Eﬁ-(—m—)ﬂ' — X (Viegm(x))(Vlegm(z))'X. (3.6)

m(x)

Proof.  Straightforward, using (2.34) and differentiating inside the first integral representation for
m(x) in (2.12). O

COROLLARY 3.2. Under quadratic loss, the posterior expected loss of 68 is

PHB(2) = t{QX) + —— tr(Hn(2)Q) — (Viegm(z))'Q(Viegm(z)),  (3.7)

m(z)

where

Q=3%qQx. (3.8)

3.2 UNBIASED ESTIMATORS OF ACCURACY

For quadratic loss, the usual frequentist measure of performance of 6 is the risk function
R(0,6) = E¢(0 - 6(X))'Q(0 — 6(X)),

Ey denoting expectation with respect to the distribution of X conditionally on @. Stein (1973,
1981) introduced the unbiased estimator of risk (for the normal problem), which is an expression
Dé satisfying

R(6,6) = Eo[D5(X)}; (3.9)

here D is a certain differential operator. The concept has been mainly used to establish minimaxity
results, though it is being increasingly used for other purposes (cf. Berger (1982), Spruill (1986),
Chen (1988), Bock (1988), Johnstone (1988) and Brown (1988)).
A useful related concept follows from consideration of the matricial mean square error of 8,
defined as
V(6,6) = Eol(6 - 6(X))(0— §(X)). (3.10)
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While dominance of one estimator over another according to this criterion is rare, an unbiased
estimator of V(8,67 B) can be used as a frequentist version of V#B(z); i.e., it can be used as an

estimated “accuracy matrix” and to calculate the unbiased estimate of risk.

ProrosITION 3.3. For 6HB(z) in (2.34), assume m(z) satisfies Eg|Vlogm(X)|*? < oo,
Eo|lH; ;(X)/m(X)| < oo for all i,j (where H;; is the (i,37) entry of H,,), and

lim_[Vlogm(z)| exp{—3(z— 0)'F (=~ 0)} = 0

for all i. Then
V(0,87B) = Ey[Vsus (X)), (3.11)

where Viun(-), the unbiased estimator of the matricial MSE of 678, is given by

Vsus(z) = X + 22‘—1-1—7—"Lm—)$ — ¥ (Viegm(z))(Viegm(x))'X. (3.12)

m(x)

Proof. A standard “integration by parts” argument; see Stein (1981) or Berger (1985) for similar
proofs. O

COROLLARY 3.4. Under the conditions of Proposition 3.3, an unbiased estimator of R(6,5%P)
is given by

2

Rsus(z) = t(QX) + tr(Hm(2)Q) — (Vlogm(z)) Q(V logm(z)), (3.13)

where Q = 3XQ3.

Proof. Follows immediately from Proposition 3.3, since
R(6,6%B) = t1(QV(0,6H5)). O

Note the considerable similarity between the results of Propositions 3.1 and 3.3, and between

the results of Corollaries 3.2 and 3.4. Indeed, it follows immediately that
Vsus(z) = 2VHB(2) - 3 + (2 — 678 (2))(z — 6B (2))?, (3.14)

and

Rons(z) = 207%(2) - 2(Q2) + (= — 677())Q( — 675 (x))" (3.15)
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These expressions are quite convenient for calculation of Vszs and Rsrs (see Section 3.1.1).

3.3 COMPARISONS OF THE MEASURES OF ACCURACY
The posterior covariance matrix, VHB(z), and the unbiased estimator of the matricial MSE,
Vsus(x), are natural candidates for an “error matrix” to use in the evaluation of §¥#B. (Of
course, VHB would likely be preferred by Bayesians, while Vzz» might often be preferred by non-

VHB or Vius are many; the diagonal elements give “estimated

Bayesians.) The possible uses of
variances” for the 6§78, and “confidence” ellipses or rectangles, based on these matrices (and a
normal approximation), are easy to construct (see Berger (1980, 1985) for examples).

VHB and Vzus can be very different. The purpose of this section is to give

Not surprisingly,
some indication as to the types of differences that can be expected, so as to allow a more informed
choice between VHB and Vyns.

In Section 3.3.1, VHB(z) and Vyrs () are compared in a hopefully representative special case.
Analogous comparisons between the posterior expected loss, p7B(z), and the unbiased estimator
of risk, Rsus(a), are given in Section 3.3.2. Section 3.3.3 contains some discussion.

Some might argue that comparing VB and Vyus (or pHB and Rb‘HB) is meaningless; after all
they are derived from completely different statistical perspectives and mean very different things.
Furthermore, since § 8 is derived using a prior distribution, it might seem odd to some statisticians
to even consider using an unbiased estimator of accuracy. Our rationales for this comparison include
the following:

(i) In practice, VHB and Vius (or pB and Rgus) will be used in exactly the same way: to convey
the possible error in 878, That they are derived from different perspectives will not mean much
to a practitioner; in particular, if they are very different numbers, the natural question will be
“which one is a better reflection of accuracy?” It is a conceit of theoreticians to believe that
practitioners will be intimately aware of delicate theoretical differences in esoteric situations.
To most practitioners, a standard error is a standard error.

(ii) Although 678 is derived using a prior distribution, the prior distribution may be viewed by a
frequentist as simply a technical device. Very strong arguments can be made that, if one desires
to use a shrinkage estimator for frequentist reasons, it should still be developed in a hierarchical
Bayesian fashion (to properly direct the shrinkage and possibly to ensure admissibility). In this
case the prior would be viewed simply as an artifact, and the frequentist would not necessarily
desire to use the posterior measures of accuracy. Much of empirical Bayes analysis (cf., Morris,

1983) can also be viewed in this light.
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(iii) Related to (ii), we feel that it is wrong to argue that the unbiased estimators of accuracy are

“more robust” or require “less assumptions” than the posterior measures of accuracy. If the
prior distribution is viewed simply as a helpful technical device, then the posterior measures
of accuracy should start out on an equal footing with the unbiased estimators. Each prior
just yields a different accuracy procedure, and it is fair to simply consider and compare such
procedures. We have always found it rather curious that non-Bayesian will often consider and
compare a variety of different procedures, but will not include procedures that happen to arise
as Bayes procedures because “then you must believe in the prior.” This is an unfair double
standard. Of course, Bayesians will argue that it is valuable to treat the prior seriously, but
our argument is that frequentists will do better if they develop procedures in a Bayesian way,
even if they do not take the prior seriously.

In this section we will only consider Example 4, Special Case, of Section 2.1, because the closed

form expressions for VHB and Vzns will allow for easier comparison. We also restrict attention to

the £ = 0 case, with C as in (2.10) and (2.11). Again, therefore, the prior is to be thought of as a

“robust” alternative to use of the conjugate M,(p, A) prior, p and A being subjectively specified

location and “scale” factors for 6.

For this situation, it is notationally convenient to define (recalling that 7 = (p — 2)/p)
B=3(Z+A)'?, z=(X+A)(z-p),

2|l = (z — w)'(F + A) (2 - p) = 2°2 = |2,

h(v) = T_lh(p_z)(r_lv), g(v) = T—zg(p_g)(T_l’U),

so that

678(z) = z - h(||2|) Z(Z + A) (= - p),

VHB () = ¥ — h(||z||*)BB* + g(||«||*)Bz='B",

Vsus(z) = X — 2h(||2|*)BB* — (K*(||=|I*) + 2¢(||||*))Bzz' B,

p"B(z) = tr(QX) - h(||2|) tr(QBB") + ¢(||||*)z* B'QBz=,
Rensn(z) = tr(QX) — 2h(||2|*) tr(Q BB*) + (1*(||2|*) + 29(||=||*))z' B'QBz.

3.3.1 COMPARISON OF VARIANCES

I. SMALL VALUES OF ||z|[?

As v — 0, it is shown in Berger (1980) that A(v) — 1 and g(v) — 4/(p? — 4). Hence, if ||z||?

is small,

VHB(z)= ¥ - BB' =¥ — ¥(X + A)' ¥,
Vins(z)= ¥ — 2BB' = 3 — 235(3% + A)~' 3.
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This exposes a potential problem with Vzrs, since Vzus will have negative eigenvalues unless
¥ < A. One might thus need some type of positive part fix for Vzzs. Even then, however, Vsus

can be accused of being too small. To see this note that, for small ||z||?,
6" (z) 2 & — Y(X + A) =z — p),

which happens to be the posterior mean w.r.t. a conjugate A, (p, A) prior. For this conjugate prior,
X — ¥(X¥ + A)~' X is the posterior covariance matrix, and is often considered to be an optimistic
assessment of the accuracy of the posterior mean (because of possible prior uncertainty). The often

substantially smaller Vzus might strike many as definitely too small, therefore.

II. LARGE VALUES OF ||z||?
As v — 00, it is shown in Berger (1980) that vh(v) — (p — 2) and v%g(v) — 2(p — 2). Hence,

for large values of ||z[|?,

—2) 2(p—2)
Vv HB o~ yp (p i tpt
ED B BB'" + G Bzz'B",

~ 2(1’— 2) t (P2 — 4) t ot
V; o -———"BRB -—PB B*.
un(@) & B~ ST BB 4 S Baz

Note first that both VHE and Vus converge to 3 (at a rate proportional to ||||~2). This
is natural, since it can also be shown that §72(z) — @, and lends credence to the analysis being
“robust” w.r.t. possible misspecification of p and A. (If 4 and/or A is misspecified, ||z||* will tend
to be large.)

Note next that

¢
Vsus(z) — VAB(z) = =2 [—BBt + pB (i) (_z_) Bt] .

[E41f 121/ \ 2|

The interest here is that the difference clearly has a comparatively large eigenvalue (at least when
p is large) in the Bz = X(3 + A)~'(z — u) direction. Thus Vsup seems to assess the accuracy
in this direction to be less than does VHB, This behavior will be seen to also hold for moderate

||z|[%, and will be discussed further in Section 3.3.3.

III. MODERATE ||z||?> AND LARGE p
Recall that g and A are roughly to be thought of as the prior mean and covariance matrix for
6. Hence p and (3 + A) are roughly the marginal mean and covariance matrix of X, so that we

would “expect” to have

lzl? = (x ~ )" (¥ + A) 7 (z - p) 2 p.
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Indeed, as p — oo, ||z||?/p would then converge to 1.
In Appendix ITI, it is shown that, if ||z||2/p — 1 as p — oo, then A(]|z||?) — 1 and pg(||z||?) —
(2 — 4/7). Hence, for large p and ||z||> = p,

VEB(g)~ 3 _ BB + (2 - %)BE?Bt,

Vsus(z) = X — 2BB' + pBz3'B*,

where 2 = z/2| = (X + A)™ 2 (z — p)/||l2 - pl|.
Interestingly, this exhibits features of both the “small ||z||2” and “large ||z||2” cases simulta-
neously. To see this, let
vy = BE _ B+ A - p)
|Bz| | X(¥ + A)~!(= - )
and {w(),w(3),..., W)} be an orthonormal basis. Then the “variances” of the “contrasts”

w(;) (0 — 6¥B(x)) are, for i > 2,

wfz)VHB(w)w(z) = ’wf,)($ — BBt)w(i),
wfi)vﬁ“(“’)w(i) = wfi)(E — 2BB")w;,

and, for i = 1,

4. <
wfl)VHB(a:)w(l) = wfl)(ﬂ' - BBY)wq) + (2 - ;)ztBth,

wfl)f/,'gﬂs(m)w(l) = wfl)(E’ - 2BBt)'w(1) + pz'B'Bs.

For i > 2, the variances arising from Vzzs might seem “too small,” much as in the “small ||z||2”
situation. On the other hand, for large p and ¢ = 1, the variance arising from Vsue can be huge,
much larger than that arising from VHB; this is related to the difference between Vzxs and VEB

that was noted for large ||z||2.

IV. A NUMERICAL EXAMPLE

To indicate that the insights gained from the previous “limiting” cases can hold for “normal”
situations, consider the example p = 6, u = 0, ¥ = diag. {0.1,1.0,1.0,1.0,1.0,10.0}, and A =
diag. {1.55,2.0,2.0,2.0,2.0,6.5}. (Note that chmax A™1 ¥ = 10/6.5 < 2 = 1(p — 2), so that (2.11)
is satisfied.)

We will investigate the behavior of VHB and Vizs when z = |z|e;, €; being the unit vector

on the i* axis; thus we assume that y (and hence z) lies on a coordinate axis. It is then easy to
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see that VB and Vius are both diagonal matrices, with diagonal elements

V(@) = of - Sy =) - =)
4
(a +A )
Vi(z) = o} - mph(lzm — {R*(|21*) + 2¢(12))}|=[],
204
NCEYD

VHB(2) =0} - ——L—=h(lz]*)  ifj#i;

h(l2l?) i #1,

.

o? and A; being the diagonal elements of X' and A, respectively. Here h and g have the compara-
tively simple forms (see Appendix III)

4 9v
ho) =3 = S — 130y’

9(e3?/4[4 — 3v] — 4)
(4€3v/4 —4 — 3v)2 "’

g(v)—‘—+

Figure 1 graphs k(v), h1(v) = [h(v)—vg(v)], and hy(v) = [2h(v)—{h%(v)+2g(v) }v] as functions
of v. It is then easy to compare the VB(z) and Vi (z) for any value of |z|2. For instance, if |z|? = 6
(recall that |z|? = p is what one “expects” to observe), then h(6) = 0.587, hy(6) = —0.149, and
h2(6) = —2.36, so that the VFB(z) for j # i are the “conservative”

4

ViB(z) =0l - (. 587)(2—+A—)

(compared with the conjugate prior variances 0% — o /(0% + A;)), while the Vj(z) are the “opti-

mistic”
04
V (:‘B) = 0‘ (1 17)m

On the other hand, the variances VB (z) and V;(z) for |z|? = 6 are given by

VHB((B) = 0' + ( 149)m
0.4
V(:B) = 0‘ + (2 36)m

Interestingly, both V;HB and V; are larger than o2, but V(a:) is dramatically larger. For instance,

VHB(£) = 1 149)— =1
§B(x) =104 (. 9)165 0.90,
. 1
V() = 10 + (2.36)ﬂ = 24.30.

16.5
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To emphasize: in this example if one observes z = (0,0,0,0,0,v/6) (i.e., z = (0,0,0,0,0,9.95)%),
then the estimated variance of f¢ obtained from V#P is 10.90, while that obtained from Vs is

24.30. Note that, here,
8§'5 (2) = 26 — h(6)03(0E + As) ' z6

10
=9.95— (. —(9. = 6.41
9.95 — ( 587)16.5(9 95) = 6.41,
so that 678 shifts zg = 9.95 about one sample standard deviation (v10).
Of some interest is the observation that

sup sup wt(V,gHB—VHB)w
z w: |w|=1

= s|11F el(Vsus — VHB)eq
S sup[—h(v) + (R2(v) + g(v)}v]

- (Ug + AG) v
3 20 9v(10 + 3v)
= (6.0606) sgp [? - W]

=13.44
the maximum occurring for v = 6.24, which is near the “expected value” of 6 for ||z||?).
g
3.3.2 COMPARISON OF RISKS

For illustrative purposes here we take @ = I, in (1.1). The formulae for p#Z(z), analogous

to those in Section 3.3.1, are as follows: we only give the analogs of Parts IIT and IV.

III. MODERATE ||z|[? AND LARGE p
Under the condition ||z||?/p — 1 and p large,
pHB(2) ™ tr 3 — tr BB! + (2 — %)stBth,
Rsns(x) = tr 3 — 2tr BB + pz'B'Bz.

To highlight the differences, consider Z;, the unit eigenvector corresponding to the characteristic
root A; of B*B. Then (writing z* for the corresponding value of , and A = (tr BB? — );))

PPl = ¥ A- (2D,
and

Rsus(z') = tr X —2A + (p— 2)\i.

Note first that the pB(z?) are always less than tr 3, while Rsus(z¢) can be much larger

(if p is large, and ); is large compared to the average of the other characteristic roots). On the
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other hand, p¥3B is bounded below by tr 3 — tr BB! > 0, while Rsz5 can be much smaller (even

negative) when J; is a small characteristic root. (This is true even for |2|> = p; for smaller |z|, it

~

will often be the case that Rsus is negative.)

IV. THE NUMERICAL EXAMPLE

For z = |z|e;,

4 4
BBy =) "o% — b(|2|? S — + 12202 2) =i,
10w = Tt -1 S gy e

. o o
Roun (@) = 3 of = 20(12F) D oy + IR () + 200
J j J 7 1

For z = |z|eg, these become

pP(2) = (14.1) - (7.4)h(|=[?) + (6.061)|=[g(|=[?),
Ronn(x) = (14.1) — (14.8)h(|=]%) + (6.061)|=*(h2(|=I) + 29(|=]")).

At z = \/6eg, pHB = 14.23 and Rsur = 26.83. This is quite a discrepancy, Rsnp estimating the
risk as being almost twice p5B.

At the other extreme, for z = |z|e;,

P8 () = (14.1) — (7.4)h(|2]*) + (.00606)| zI*g(|z|*),
Rsus(z) = (14.1) — (14.8)h(|2|*) + (.00606)|2|*(h*(|2|*) + 2¢(|2[*)),

which at z = v/6e; become, pHB = 9.76 and Rsrs = 5.43. Here Rsup evaluates the risk as being
only about half of p#B. (Again, we have chosen |z|> = 6 to make the comparison because it is
what we “expect” to observe.)

For “intermediate” z, pB(z) and Rsus(x) can be much closer. For instance, if z = |2| (1, 1,

1, 1,1, 1)t//6,

P8 (x) = (14.1) - (7.4)[R(12]*) - |2[*g(|=I?)/6],
Rsnn(x) = (14.1) - (7.4)[2h(|2I") ~ |2*(R*(|2") + 29(|2I*)) /6],

which at z = (1,1,...,1)! become pB = 10.67 and Rszp = 9.78.

Graphs of pB(x) and Rsus(x) for the three cases z = |z|es, z = |z|er, and z = |z]
(1,1,1,1,1,1)!/4/6, are given as functions of |z| in Figure 2. They are labelled py,ps,03 and
R1, Ry, R3, respectively. Note that the R; — —0.7 as |z| — 0, and are always substantially

smaller than the corresponding p; for small |z|.



22

3.3.3 DISCUSSION

The differences between Vsus or Rgsn and VHB or pHB can be partly explained by the
differences between frequentist and Bayesian evaluations of error. For instance, in the example
of Section 3.3.2 IV, the actual frequentist risk at § = (0,0,0,0,0,10)¢ is about 21 (see Berger
(1980), Figure 1), while the posterior Bayes risk for z = (0,0,0,0,0,10)* is about 14. The large
Rsus(x) = 27 for this z is thus partly due to its estimating an inherently larger quantity.

Whether the frequentist risk of 21 or the Bayesian posterior risk of 14 is a better measure
of accuracy when @ is near (0,0,0,0,0,10)" is an issue we will sidestep. Note, however, that
there are arguments both ways. For instance, on the frequentist side one might argue that a
situation of possible nonrobustness w.r.t. the prior has been identified; in particular, the “great”
fit of (21,...,25)" to the prior beliefs about (61, ...,05)* overcomes the “bad” fit of zg to the prior
belief about ¢ (recall that ug = 0 and /Ag = V6.5 = 2.55), so that the Bayesian estimator
will substantially shrink towards p = 0. But one might worry about the bad fit of zg, especially
upon observing that much less shrinkage would result from utilization of a prior for which the 6;
were independent. (An alternative type of “fix” for individual extreme coordinates is discussed
in Berger and Dey (1985) — see also Berger (1985) — based on an idea in Stein (1981).) In
general, a frequentist risk that is substantially larger than pB(z) would cause us to investigate

the robustness of §758

more carefully.

Of course, we are not considering the report of R(6,6%F), but instead the report of Rsns ()
(or Vsus(z)). And we have identified a seemingly systematic problem with the latter: when |||
is small, Rgus or Vzus seem themselves to be too small (even sometimes negative) while if ||z||? is
moderate or large (in certain directions), Rsus or Vsus will be too large (such as in the previously
discussed example in which Rsx5 ((0,0,0,0,0, 10)?) = 27 while the risk function in the vicinity of
(0,0,0,0,0,10)* is no more than 21 and p™2 is only about 14).

Upon reflection, the reason for Rsup or Vsup being “extreme” is clear. Consider Rsrs, for

instance, recalling that

EqRsus(X) = R(0,6%5). (3.16)

Let 6., and @ps be values of @ minimizing and maximizing R(0,6%8). (In the numerical example,
0., = 0 and 0y = (0,0,0,0,0,12)%.) For  in the immediate vicinity of 8,,, it must be the case that
Rsns(z) is generally less than R(8,,,6%5) or (3.16) will not hold when Rsns () is averaged over
all . Similarly, for  in the immediate vicinity of @7, Rsnz(z) must typically exceed R(6y, §75)

for (3.16) to hold. This systematic tendency toward extremes is troubling, especially at the lower
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end. Our opinion is that having errors (or estimated risks) less than VH#B(z) (or pFB(z)) is very
hard to justify, and is the most serious potential failing of Vsue and Rsns.

In conclusion, our preference is to use VHB(z) and p¥B(x) as the estimates of accuracy
with, however, the qualification that if Vsus () or Rsus(a) are much larger, then investigation of
robustness with respect to the prior assumption (in particular w.r.t. the strong implied dependence

of the 6;) should be undertaken.
4. MINIMAXITY OF é§HB

4.1 ANALYTIC SUFFICIENT CONDITIONS
To show that 67 = & 4+ XV logm(z) is minimax, it is sufficient to show that (see (3.13))

Rsun(z) < tr (QX) for all @, (4.1)

since then R(0,67B) = EyRsun(X) < tr (Q3), the minimax risk for the problem. It is straight-

forward to show that (4.1) can be rewritten as

V(QV+/m(z)) <0 for all z, (4.2)

where @ = XQJf, and
P
- 0
Viv(z) =) 52 0i(®)-
i=1 t
When Q = I, (4.2) is the celebrated “superharmonicity” minimax condition of Stein (1981); see
also Zheng (1982), George (1986a,b,c), Haff and Johnson (1986), and Haff (1988).
In general, analytic verification of (4.1) (or (4.2)) can be very difficult, especially for com-
plicated estimators such as §7B. In one circumstance, however, verification is relatively easy.

The following proposition, generalizing results of Stein (1981), Zheng (1982), and George (1986a),

provides the needed tool.
PROPOSITION 4.1. For the situation of Proposition 3.3, 678 is minimaz if
V(QVm(z|p)) <0 for all z and p. (4.3)

(See Section 2.3.2 for definition of m(z|p).)

Proof. Clearly,
YQVm(@) = | 9(@QVm(alw)ri(n)in,
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) ?(QVm(w)) < 0. But it can be easily verified that this implies (4.2), proving the result. O

The great simplification in use of (4.3) is that one can work conditionally on p. Furthermore,
if (4.3) is satisfied, then §7B is minimax regardless of the distribution, 73, chosen for p (subject
to the mild conditions of Section 2.2 and Proposition 3.3). This is startling, not only because of
its generality, but also because it is an instance in which essentially any subjective prior infor-
mation about a parameter (u) can be utilized while maintaining complete frequentist justification

(minimaxity). In the next section we will discuss conditions on 72(3,|¢) under which (4.3) holds.

4.2 MINIMAXITY OF 678 IN THE EXAMPLES
Consider first the scenario of Example 4, in which the first stage prior is Mp(p,£C — ), C

given, and (p,&) has a second stage prior density

w2, €) = 3 ()73 (€| ).
We will choose
Q=3x"'cx™. (4.4)

Minimaxity results for other choices of @ can be given but are of less interest, in that for other Q
the condition (4.3) can only be satisfied by inadmissible estimators. Furthermore, if @ differs sub-
stantially from (4.4), then 678 will not be minimax; basically, minimaxity and Bayesian shrinkage

patterns are compatible only for rather special Q.
Theorem 4.2 If, for all p, 72(£|p) is non-decreasing on (0,00), then (4.3) is satisfied.

Proof. Since (see Section 2.3.1)
W=(X+X2)1=¢1Cc! and @Q=XQ3=cC,

calculation yields

mialu) = K [ 621 exp { ~EILELEZ B racpag
and - bt
(@Vmielw) = & [ {-E+ EHC =]
X exp {_ (:B _ I‘L)tCQ’;l (:l: — ”’) } f_phﬂg(flﬂ,)df.
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Defining a = (z — p)*C~!(z — p)/2, condition (4.3) is equivalent to

P(a) = / (20— p&)¢~(PH2e=e/ex2(¢|p)d€ <0,  forall a > 0.

Letting [to, 00) denote the support of 72(£|p), integration by parts yields
[e o]
$(a) = —2e /o nd ol =2 [ € emy el (45)
to

where 7} denotes the (almost everywhere existing) derivative of 72(¢|u). (Note that the mono-
tonicity condition on 72 ensures that this integration by parts is valid.) But, since 72(¢|p) is
nondecreasing, w5(&|n) > 0, and the right hand side of (4.5) is clearly negative, completing the

proof. O

A natural choice for 72 is 72(£|p) = 1 (on a subset [tg,o0) of (2.8)). This clearly is nonde-

§HB will be minimax. Note that this covers the

creasing, and so (4.3) is satisfied and the resulting
“Special Case” of Example 4 that we have frequently discussed.

In Berger (1980), the second stage prior distribution for £ that was considered was (with p
being given)

72 (€lp) o< £ HPD) on (1, 00),

where any n < (p — 2)/2 could be selected. These are all nondecreasing, but only n = (p — 2)/2
(corresponding to the uniform prior on (1, 00)) yields an admissible estimator. Indeed, it is unlikely
that one would ever want an unbounded increasing 72(¢|p). (Note that, for fixed g, minimaxity
theorems based on hierarchical priors of this type were given in Strawderman (1971) and Berger
(1976a, 1980).)

It might, on the other hand, be desired to use decreasing 72(£|p). Unfortunately, (4.3) cannot

be satisfied for such 72, as the following lemma shows.

LEMMA 4.3.  If there exists t; such that, on (t1,00), 72(£|p) is continuous, nonincreasing and

nonconstant, then (4.3) cannot hold for all z.

Proof. In the proof of Theorem 4.2, it was shown that (4.3) is equivalent to showing that (4.5)
is negative. Now, by the assumptions on 732, there exists an interval (b,c), b > %5, such that
T4 (€|pn) < —e < 0 on (b, c). Clearly

" e/ et (€| u)d < (—¢) /b Cgpirg-elige

to
< (—€)e™Pl2emelb(c — b).
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Thus (see (4.5))
P(a) > _9e—/toy~P/2 2 tolp) + 2ec™P2e=2/b(¢ — p).
0 2

Letting @ — oo in this expression, it becomes clear that (4.5) can be positive. a

Although Lemma 4.3 rules out decreasing priors, a variety of non-monotonic priors will also
satisfy (4.3) for every = and p. For instance, certain 73 which decrease for a while, then increase,
and then either are constant or continue to increase, can be shown to satisfy the condition. Oscillat-
ing priors (that finish on an increase) also might work. We have not attempted to determine which
of these more general priors satisfy the condition, because they do not seem natural in practice.

Although we have presented the results in this section in terms of Example 4, they also apply
to the Example 3 scenario, providing one wants to choose X, = o2 X; then simply set C = 3 in

Example 4, so that ¢2 = (¢ - 1).

4.3 NUMERICAL VERIFICATION OF MINIMAXITY OF 6§78
Because of the special choice of Q and the special nature of 72(€|p) required for the analytic
minimaxity proof in Section 4.2, an alternative general method for verifying minimaxity of §¥5 is
clearly desirable. An obvious method exists: for a given estimator, simply numerically verify (4.1)
or (4.2). In this regard, (3.15) provides the most useful calculational formula for Rzzz, so that the

numerical problem can be rewritten as showing that
A(z) = 2[tr (QX) - p7P(2)] - [z - 67P()]'Q[x — §7P(=)] > 0. (4.6)

(Haff and Johnson (1986) give a related expression.) Thus, simply have a computer minimize A(z),
and check to see if the minimum is nonnegative.

Numerically minimizing A(z) is not necessarily trivial. First of all, calculation of 675 and pHB
will often involve numerical integration, and inaccuracies in the integration can cause instabilities
in the minimization routine. Second, as always in high dimensions, one needs to worry about local
minima. Third, if 67 is minimax, A(z) will converge to its minimum (of zero) as |z| — oo,
so that one has to truncate the minimization algorithm when A(z) gets within ¢ of 0 and || is
large. (Strictly speaking, one has then only shown that §78 is probably e-minimax; a tail-minimaz
argument, as in Berger (1976b), could be employed to complete a proof of minimaxity, but from a

practical perspective this would hardly seem necessary if ¢ were small.)

Ezample 1 (continued). In the notation of Example 4 (continued) in Section 2.3.1, (2.5) holds
and p = 7, 02 = 100, 8% = 100, A = 225, and 7Z(02) = 1. For sum of squares error loss (Q = I
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in (1.1)), the results in Section 4.2 (and Lemma 2.2) show that §7B is minimax. Here, however,
the current 1Q, 67, might be of substantially more importance than the previous IQs, so that Q =
diag.{1,1,1,1,1,1, ¢} (with ¢ > 1) might be deemed to be more reasonable. We will investigate
the minimaxity of 82 for such Q, using the numerical method.

For this example, algebra yields

(100)"*A(z) = 2(Ey — 225E5)(6 + q) + (E} — 2E3)[s* + (¢ — 1)(z7 — T)%]
+ (E2 — 2E4)(T — 100)%(6 + ¢) + 2(E1 E; — 2E5)(27 — T)(T — 100)(q — 1), (4.7)

where s? = ||z — T1||? and the E; are the expectations with respect to 73(c2Z|x) of, respectively,
(100 + 02)~1, (18754 62)~1, (1004 02)~2, (1875 + 02)~2%, and (1875 + 02)~ (100 4+ ¢2)~1. From
(4.7) (and (2.23)) it is not hard to show that A(z) actually depends only on the three quantities
T7, TF = i z;/6, and s*? = ZG:(a:,- — 7*)?, and that these quantities vary independently. The
minimizatil(_)__xi of (4.7) was thus zd=0111e in only three dimensions; IMSL minimization and integration
routines were used throughout.

Figure 3 presents the minimum of A(z)/100, as a function of g. (The accuracy of the minima

is about 0.05.) For ¢ < 1.7, the minimum is zero, indicating that 67 is minimax for such ¢. For

q > 1.7, however, 6B is clearly not minimax. O

The simplicity of the above numerical verification of minimaxity, compared with analytic ver-
ification in general, should arguably make it the preferred technique (unless the analytic technique
simultaneously handles a wide range of useful estimators). This is especially so because analytic
verification is only occassionally possible (and then typically only in simple situations), while the
numerical approach is always available (though not necessarily always doable computationally). A
bonus that is obtained from the numerical method is a bound (the minimum of A(z)) on the degree
of non-minimaxity (since R(6,6) — tr (QX) < —inf A(z)).

Finally, note that minimization of A(z) is considerably simpler than maximization of R(8, §7B)

over 8, since

R(0,6"P) = tr (Q¥) — EsA(X);

the presence of the additional expectation over X, in calculation of R(8,8%P), so complicates the
numerical problem as to make it unmanageable on a routine basis for complicated §7B. Thus the
existence of an unbiased estimator of risk, and the availability of relatively simple expressions for

it, are crucial elements of the numerical method.
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APPENDIX I
(GENERALIZATIONS OF EXAMPLES 3 AND 4
I. Frequently, we consider the case X, = 021, in the examples. An apparently more general case

of considerable interest is that in which correlation among the 6; is allowed, i.e. in which
Z',r = orfrIp + pllt.
It is of interest to note that this case can be reduced to the X, = 021, case by defining
B =p++/pZ1,
where Z ~ A(0,1), and observing that
7(0) = [ 71(6lu,p,02yma(u,p, 02 dusdpdo?
= [ w6l oDy, oy du o
here 7}(0|pn*,02) is Np(p*,021,) and
w3t,oD) = [ mal = Vpe1, p, o)) e ddp.

II. A related apparent generalization (cf. Dickey (1968, 1974)) is that in which the first stage prior,
m1(8|p, X ), is chosen to be Tp(a, p, X, ). Note, however, that this distribution is the mixture of

a normal distribution w.r.t. a gamma distribution:

(8, X)) = / 77(011, X, N)dF3(N),

where 73(0|p, X, A) is Np(p, A713,) and #3(Q) is G(%,2). Therefore, this case can also be
reduced to the canonical form in (2.1) and (2.2), by writing

7(6) = / w101, Z )y (1 Bn)dpd X,

where

%3 ) = [ w2 )omalo)p.
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APPENDIX II

Proof of Lemma 2.2.

Case 1. From Berger (1985, Section 4.6) one obtains that (up to a multiplicative constant)

m(e)= [ " m(alo?)rd(o?)do?,

where m(z|02) is given by (2.29). The exponential part of (2.29) is clearly bounded by 1, so to

establish the finiteness of m(x) it is only necessary to verify that

/ (det W)/[det (y'Wy + A~1)]"222(02)do2 < oo, (A1)
0
For0< o< K,
(det W) < det (X7, (A2)
and
det (¥'Wy + A1) > det (y'(X + KI,)"'y). (A3)

It follows immediately from (A2), (A3), and (2.13) that
K
(det W)L/2[det (y'Wy + AY"V272(62)do? < .
0

For cr,zr > K,
det (W) < det (¢2I,)7 = 0‘2”, A4
P T

and

det (y'Wy+ A1) > det (I('a_zyty + A1

= det (K'o2yty) det (I, +F75A y'y)™)

det (K'o -2yty)H(1+ K,p,

> K(a2) =[] o) (A5)

here {p1,...,pm} are the nonzero eigenvalues of A~(y'y)~!. It follows immediate from (A4),
(A5), and (2.14) that

(det W)/ [det (y*Wy + A7) 212(02)do? < .
K
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Case 2. Using the representation discussed in Section 2.3.1, Example 3 — Case 2, one has

m(a:):/o /0 m(z|\, o2)w2(o2)A™ x5 (N)dAdo?,

where m(z|A,02) is given by (2.29) with A~! replaced by AA~!, and 73 is a Gamma (2, %)
density. Again, the exponential part of m(z|), 02) is bounded by 1, so it suffices to show that

/ / (det W)/2[det (y'Wy + AA=Y)]"12x2(a2 )N 2ry (A)dAdo? < oo.
0 0

For K < 02 < o0, the bounds (A4) and (A5) that were given in Case 1 are still valid, with [] p;

i=1
replaced by A™ [] p;. It then follows immediately, using also (2.14), that
i=1
/ / (det W)/2(det (g*Wy + AA™)]" 222 (62)A™ 2 15(A)dAdo? < oo.
K Jo
For 0 < 02 < K, one needs to replace (A3) by

det (y'Wy+AA™") > det (y(F + KL,)'y)A™ [ o},

=1
where now {pj,...,p} } are the nonzero eigenvalues of A~1(y*(¥ + KI,)"'y)~!. Together with
(A2) and (2.13), this directly implies that

K 00
/ / (det W)/2[det (y'Wy + AA~1)] /212 (02)A™ x4 (A)dAdo? < oo,
0 0

completing the proof.

APPENDIX III

Define m v
hm(v) = > [1 - Hm(E)] )
gm() = 23 [14 {2 (0) = 1) =1} Hn(D)]
where
(mf2-1) , 17"
pm/2 !ﬂ;.!{ev - Z:l l:T}:| if m is even
Ho(v) = B

m—3)/2

-1
( i
v™/2 [r(% +1){e*28(v20) - 1]-= % F—@%’/—%}] if m is odd;
=0
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where @ is the standard normal c.d.f. and the summation in the last expression is defined to be

zero when m = 1.

LEMMA Al.  In the situation of Section 3.3.1, part III, suppose that lz||?/p — 1 as p — .
Then h(||z||*) — 1 and pg(||=]|*) —» (2 - £).

Proof.  The result that h(||z]|*) — 1 follows easily from Lemma 2.1.1 (vi) of Berger (1980). To
show that pg(||||?) — (2—£), note first that it is easy to show that any ||2||? such that llz]|2/p — 1
will give the same limiting result. Hence, for convenience, we will choose ||z||2 = 2n = p — 2. Note

next that (see Berger (1980) for definitions)
vg(v) = [ta(v) — r5(v)]/0
) e L)
which, at v = 2n = p — 2, equals

rn(2n)  (2n—r,)?
2n 2n

(2n)g(2n) = 2

Again, Lemma 2.1.1 (vé) shows that (2n)~r,(2n) — 1 as n — 00, so that we need only show that

(see Berger (1980))

: -2
(2r —ra)® = ain! 4
on " ; (n+ 1)
as n — oo. Stirling’s formula gives
nin! nte~("t1) (n 4 1)(m+3) /21 (1 + o())
(n 40! et (n i ¢ 1)("+’+"x/2_7r(1 +0(%))
Z + 1 +l

= "t2ei(1+4+0 A5
(= D) O~ ) e+ o), (45)

(Within this proof, O(-) and o(-) are to be understood to be uniform in 0 < i < 00.) Now

(1‘5%):(“m7(1-<nin)i’

so, for ¢ < n® where a < 1,

nin! i ntitl
(n+ é)! - (1 N m) e'(1+o(1)). (A6)

Next note that, for 7 < n® where a < %,

log {1~ ——— =i
°g(1 (n+i+1)> " mrirn T



so that (A6) becomes

nin! 12
= g 4 e

Thus, for a < %,

nin! 2
Z(n+z)‘ Eep{ 2nti +1)}(1+°(1))

i
- ;exp {-3= oy,
Finally, if & > 7,
L Ze—ﬂmn) - / &=/ 4y (1 + o(1)

[

) nin!
Jinéo \/_Z (n+1)! \/;

To deal with ¢ > n®, note that for all ¢
(i+1) )i ( i )"
( (n+:+1)/) ~ (n+i+1)

i n+i+1 12
S — P P S—
log(l (n+i+1)) =T T oAt
Together with (A5) these imply that

nin! 32
o <o {006

1 2
Thus, for 3 < a < 3,

and

It is straightforward to check that, for % <a< %,

\}ﬁ > e p{ 2(n+2z+1)}

i=n*

completing the proof.
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