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Abstract

This paper deals with the problem of selecting the best population through the sequen-
tial subset selection approach. Based on the modified likelihood ratio of the probability
density function of some invariant sufficient statistics, a sequential subset selection pro-
cedure is proposed. When the procedure terminates, one can assert with a guaranteed
probability P*, that the best population is included in the selected subset and that each
selected population is within some fixed distance from the best population.
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1. Introduction

Consider the problem of selecting the “best” among k populations. Suppose that
observations can be obtained from the k populations sequentially. It is often desirable
to terminate sampling from a population as soon as there is statistical evidence that it
is not the best population, and this population is eliminated from further consideration.
Selection through sequential comparison with elimination provides a significant advantage.
To achieve a certain accuracy, it requires, on the average, substantially fewer samples than

the fixed sample size procedures.

In sequential selection and ranking procedures, contributions have been made to select
the best population by using the indifference zone approach. The simplest formulation of
the indifference zone approach is the situation where one may wish to select only a single
population and guarantee with a prespecified probability that the selected population is
the best population provided some other condition on the parameters is satisfied, usually
an indifference zone. However, in many real situations, it is hard or not always possible
to specify the indifference (preference) zone condition. Thus, a reasonable and useful
approach is to derive a sequential selection procedure to select a small subset containing the
best population. However, it may happen that a poor population may be contained in the
selected subset. Recently, Hsu (1981, 1982) and Hsu and Edwards (1983) studied methods
to derive simultaneous upper confidence intervals for all measures of separation between
the unknown best population and each (non-best) population under the location model.
This motivates us to study selection rules such that, with some prespecified guaranteed
probability, not only the best population is selected, but also, each selected population is

very close to the best population.

In this paper, some sequential subset selection procedures achieving the goal described



above are derived. These procedures are based on an invariant statistic for the parameters
of interest. We consider observations from each pair of k populations and perform a
modified sequential probability ratio test (MSPRT) based on the invariant statistics. This
is done simultaneously for all pairs of populations and if a particular MSPRT terminates,
then an appropriate population is removed from the set of contending populations. This is
continued until only one population belongs to this set or some statistical evidence indicates
that all the populations remaining in this set are within a (small) specified distance from
the unknown best population. At each stage these procedures also provide some statistical
inference about an upper bound on the measure of separation between the unknown best

population and each remaining population.
2. Formulation of the Selection Problem

Let my,..., 7 represent k(k > 2) populations and let X;,, denote the nt* observation
from population 73,7 = 1,...,k. It is assumed that the observations X;,,7 =1,...,k;n =
1,2,... are independently distributed. Suppose that X;,, has distribution function F(z|6;)
depending on some unknown parameter ; for ¢ = 1...k. Let § = (01,...,0;) and let
0 = {8|¢ = (01,...,0k)} be the parameter space. For each ¢ and j, let &;; = 6(0;,0;)
be a measure of separation between 7; and 7; where §(0;,0;) as a function of §; and 0;,
is increasing (decreasing) in 6;(8;) when 6;(0;) is fixed, and satisfies the conditon that
6(0,0) = 6 for all 8. Define §; = 1']11#1{5,,} and 6§ = llél%xk 8;. Population ; is called the
best population if 7; is the unique population such taht §; = §. If more than one population
has this property, one of them is tagged, and considered as the best population. We use

(k) to denote the index of the best population and denote the best population by T(k)-

Suppose that observations from the k populations are taken sequentially. The selection

procedure will depend upon the observations through a sequence of statistics {T;;(n),n >
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1}, which are defined to be functions
(2.1) T,;j(n) =Tn(Xil,...,Xin;le,...,Xjn)

of the first n observations from populations 7; and 7. In a given problem, the function T, is
chosen 5o as to indicate a measure of the separation between the populations in a reasonable
way. Let Tij(n) = (T5(1),...,Tij(n)). We assume that Ti;(n) has a joint probability
density g, (£;;(n)|6;;) depending on the parameters §; and 6; only through 6;; = 6(6;,6;).
Usually, T;;(1), T:;(2), . . ., are chosen so that it is both a sufficient and transitive sequence

and also invariant sufficient for §;; (see Hall, Wijsman and Ghosh (1965)).

We assume that there is no information about the configuration of 0i5’s, 1 < 1,5 <
k,i # j. However, we desire that each selected population should not be far from the best
population. Let §;(z) denote the measure of separation from the population m; to the best
population m(xy. Then, by our definition, 6;(x) < bo. For a prespecified value 6. < 6,
population 7; is said to be good if 6;(r) = 6.« and bad otherwise. Let S denote the selected
subset and C'S(6.) denote the event that (k) € S and §;(x) > b for all m; € S. We desire

a sequential subset selection procedure P such that
(2.2) Pyp{CS(6:)|P} > P* forall § € 0,
where P*(k~1 < P* < 1) is a prespecified probability level.

3. Sequential Selection Procedure P

Let h(-) be a monotonically decreasing function such that h(6;;) = 6;;. Let 6.(< &)
be a prespecified value used to specify the event CS(6,). Then &, = k(&) < h(6.). Let &

be a value such that 6y < §; < h(6.). Consider the likelihood ratio statistics

_ o ((m)l8)
on(F()]a)
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where a < §o and no is some positive integer. Hoel (1971) and Gupta and Huang (1975)
have used the statistics L;j(n,a),n > no, to construct sequential selection procedures
where no is the initial sampling size of the procedures. For simplicity, we assume that

no = 1. We now define a sequential selection procedure P as follows:

Let So = {m1,...,7mk}. For each n > 1, define

(3.2) Sn = {m: € Sp_1|L;ji(n, ) < for all m; € Sp—1 — {mi}}.

1—P*

That is, S, is the set of contending popualtions up to stage n. At stage n, population

m; € Sy is labelled as good if L;;(n,6.) > for all 7; € Sy, — {m;}. Let |S,| denote the

1 P*
size of the set S,. The procedure terminates if either |S,| = 1 or all the populations in

Sy have been labelled as good. In either case, we take S = S,; otherwise, we go to next

stage. The procedure is thus continued.

4. Probability of a Correct Selection

Let gm(t|t(m — 1),6) denote the conditional probability density function of T;;(m)
given T3;(m — 1) = {(m — 1), and let L;j(n,a) be the statistic defined in (3.1). Then, the
statistics L;;j(n,a),n > 1, can be rewritten as:

91(Tii(1)[61) = gm(Tij(m)|Ti(m — 1), &)

(4.1) L) = 2 @ 0e) e gon (T () Ty —1),0)

where ﬁz[ ] =1if n = 1. For each n > 1, let F;(n) denote the o-field generated by
m=

f,;j(n). Then,
Lemma 4.1. {L;;(n, 6;;), Py, Fi;(n),n > 1} forms a nonnegative martingale for 7 # j.
Proof: This lemma can be proved by a direct computation.

Now, let E and Ef(1 <7 <k, # (k)) be the events as defined below:



E ={L;ju)(n, b)) < Tk—_Tl* for all m; € Sp—1 — {m(x)} for all n > 1},
(4.2) ~
Ef = {Liw)(n, b;x)) > -1-’3_:1,17 for some n > 1}.

Then, we have the following lemma:

Lemma 4.2. (a) PQ{Ef} < 1;_1;" for all ¢ # (k),8 € Q.

(b) Pg{E} > P* for all § € 0.
Proof: Part (a) is a consequence of Lemma 4.1 and a lemma of Robbins and Sieg-
mund (1973). For the proof of part (b), we have
Py{E}>1—-Pp{ U Ei}>1— ¥ Pyp{E{} > P*.
g{E} > 0%, S i} T g{Ei}
This completes the proof of this lemma.

Now, for each a < 8, (the value of a is chosen so that the joint probability den-
sity function g, (Ti;(n)|a) is well defined), let A;j(m,a) = {Lij(m,a) < £5%}. In the

following, we also assume that the following condition is satisfied.

4.3 Condition A: r’% A;i(m,b) C r'% A;j(m,a) foralln > 1 for b < a < 6.
m=1 J m=1 J

The implication of (4.3) is that the values of the statistics L;;(n,a) for n > 1, never
exceed the boundary level %,— before that of the statistics L;;(n,b),n > 1 when b < a <

6o. A sufficient condition for (4.3) to hold is that A;;(n,b) C 4;;(n,a) for all n > 1.

For each n > 1,m;,m; € Sp_1,7 # 7, define B;;(n) and D;;(n) as follows:

(4.4) Bij(n) = {a, < 60]L,-j(n,a,) < lk__;* } s
inf B;;(n) if Byj(n) # ¢,
(4.5) D,-]-(n) =
bo if Bij(n) = ¢,



where ¢ denotes the empty set. Also, let D;;(n) = &.

Under Condition A, if D;j(n) < &, then Li;j(n,a) < £5& for all D;j(n) < a < &

and L;j(n,b) > %,— for all b < D;;(n). For each n > 1, if m; € S,_1, define

(4.6) Di(n) = max ( min Dij(m)).

If 73 & Sn—1, let n; = max{m|m; € Sp,_1} and define D;(n) = D;(n;).

By definition of D;(n), for each ¢ = 1,...,k,{D;(n)} is an increasing sequence and

bounded above by ép.

Lemma 4.3. Let Lij(n,a),Sn, D;(n) and the event E be as defined in (3.1), (3.2), (4.6)

and (4.2), respectively. Then, under Condition A,
E C {muk) € S and 8i(ky = Dji(n) for all m; € Sp—1 for all n > 1}.

Proof: Since 6;(x) < 6o for all 7, then, under Condition A, we have

k-1
1— P+

1-—- P+
for all n > 1}

E E{Li(k)(n,(si(k)) < for all m; € Sp,_1 — {ﬂ(k)} for all n > 1}

C{L,-(k) (n,60) < and ;) > D;(x)(n) for all m; € Sp—y — {7r(k)}
C{mx) € S and §;(x) > Djxy(n) for all m; € Sp—q — {7y} for all » > 1}
(4.7) ={m(x) € S and &;(x) > Djxy(n) for all 7; € Sp—q for all n > 1}
C{7mk) € S and §;x) > min D;;(n) for all 7; € Sp,_; for all n > 1}

T;ESn—1

={7r(k) € S and 6;(x) > D;(n) for all m; € S,y for all n > 1}.

An immediate consequence of Lemmas 4.2 and 4.3 is: Under Condition A,

4.8) Pyi{mx) € S and 6;x) > D;(n) for all m; € S, for all n > 1} > P* for § € .
17 (k) (k)
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This result provides a sequential confidence region inference, with confidence level at least
P*, as follows: Simultaneously, at each stage n, the best population is not eliminated and
the separation from each remaining population, say w;, to the unknown best population
is not less than D; (n) for all n > 1. Another consequence of Lemma 4.2 and Lemma 4.3
is that when the selection procedure P terminates, the event CS(6.) is guaranteed with

probability at least P*. We state this result as a theorem as follows:

Theorem 4.1. Let P be the sequential selection procedure defined in Section 3. Also,

suppose that the Condition A in (4.3) holds. Then,
PQ{C'S(5*)|P} > P* for all § € Q,
provided that the procedure P terminates with probability one.
Proof: Note that when the selection procedure P terminates, then either |S| = 1 or all the
populations in S must have been labelled as good at some stage. Let N be the stopping

time of the selection procedure P and when |S| > 2, for each m; € S, let N; denote the

first time that 7; was labelled as good. Then, L;;(N;,6.) > 1"’7_1517 for all n; € Sy, — {m:}.

Under Condition A, by definition of D;;(n), D;;(N;) > 6. for all ; € Sy, — {m;} and thus,
Djxy(N:) > 6. if T(k) € Sn; — {m:}. Also, note that S = Sy and when |S| > 2,N; < N
for all m; € S. Now from (4.7),
E C {mx) € S and &;(x) > Dji(x)(n) for all m; € Sp—y — {m(x)} for all n > 1}
C{rky € S and |S| =1} U {mu) € 5,|S| > 2,6;() > Di()(N:) for all m; € S — {m(y }}
C{mk) € S and |S| =1} U{my) € 5,|8| > 2,8;4) > 6, for all m; € S — {m1)}}
=C5(6,).
Then, by Lemma 4.2, we have, for all § € Q,
PQ{CS(5*)|P} > PQ{E} > P*.
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5. An Illustrative Example: Selecting the Population with the Largest Normal Mean

Let 71,...,mx be k populations and let X;, denote the nt” observation taken from
population 7;. Assume that X;, has normal distribution with an unknown mean 6; and a
common known variance 02 = 1,7 = 1,...,k. Define the measure of separation between
7; and 7; as 6;5 = 0; — 6;. Then, 6o = 0 and § = 0(k) — 0(k_1) where 0(1) <...<Z 0(k) are
the ordered parameters of 6;’s. Thus, the population with the largest mean is considered
as the best population. For a given 6* > 0, m; is said to be good if O(x)y — 0; < 6* and bad

otherwise. For a prespecified probability P*(k~! < P* < 1), we wish to derive a sequential

selection procedure such that
(5.1) Py{m(x) € S and (4 — 0; < 6" for all 7; € S} > P*

for all § € Q.

For each n > 1, define T;;(n) = Sin — Sjn, where S;, = §1Xim' Let 6, = —6* and
m=

let 0 < 6; < 6*. Then,

6 nbd?
logLij(n, 0) = —21-(Si — Sjn) - —‘-ll
and
61 + 6* 5 — 62
log Lij(n,(s*) = 2 _; (S.,_' — Sjn) + 'n(Tl)—

In order to apply the procedure P to this selection problem, we need to make sure

that this procedure terminates with probability one.

Lemma 5.1. For the problem of selecting the population with the largest mean among k
normal populations with a common known variance, the sequential selection procedure P

terminates with probability one if 0 < §; < %.
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Proof: It suffices to show that for any two populations, say 7; and w2, with probability
one, the event H, that either one of them will be eliminated (in comparison with the other)

or both of them are labelled as good, occurs. Without loss of generality, we assume that

01 > 0.

First consider the case that 81 — 85 > %1-. Define Ny = min{n|L12(n,0) > 75 P,,} By

the strong law of large numbers, '}E log L12(n,0) — %1-(01 — 0y — %‘-) > 0 a.e. as n — 00,

while 1 log lk__Pl,, — 0 as n —> co. Hence, Py{N; < oo} =1.

n

Next, consider the case, 0 < 8; — 2 < 3. Define N;; = min{n|L;;(n,6,) > 1 P,,
for 7,5 = 1,2,7 # j, and Ny = max(le,Ngl). By the strong law of large numbers
again, & = log Liz(n,6s) — (01 — 02 + —-;é*-)(és +6*)/2 > 0 a.e. as n — 0o, and & = log
Lai(n,6.) — (82 — 81+ £58) (6, +6%)/2 > 0 a.e. as n — co. Hence, PQ{N,-J- <o} =1

for 4,5 = 1,2,7 # 7 and so, Ppy{N2 < oo} = 1.

Finally, one can observe that {N; < co} U{N2 < oo} C H. Thus, based on the above
discussion, we have, Pg{H} > Pyp{Ny < oo or N3 < oo} = 1 for all § € Q2. Hence the proof

of this lemma is complete.

Now, to guarantee the P*-condition for the event C S (4.), from Theorem 4.1, it suffices

to verify the Condition A given in (4.3). This can be easily verified.
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