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Summary

Let a;,7 > 1, be a sequence of nonnegative numbers. Define a nearest neighbor random
motion )_é = Xo,X1,... on the integers as follows. Initially the weight of each interval
(¢, + 1), ¢ an integer, equals 1. If at time n an interval (7,7 4+ 1) has been crossed exactly
k times by the motion, its weight is 1 4 Zk: a;. Given (Xo,X1,...,Xn) = (10,71, -,%n),
the probability that X, is¢, —1 or ¢, —7——11is proportional to the weights at time n of the
intervals (i, — 1, ¢,) and (i, ¢, +1). We prove that X either visits all integers infinitely
often a.s. or visits a finite number of integers, eventually oscillating between two adjacent

integers, a.s., and that lim,_,. Xn/n = O a.s.. For much more general reinforcement

schemes we prove P(X visits all integers infinitely often) +P(X has finite range) = 1.
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1. Introduction. In this paper we study a class of stochastic processes driven by
simple dynamics which depend on the entire process history. Although these processes are
in general not Markov, we begin our discussion with a comment about Markov processes.
Let w = {w;, —00 < ¢ < 00}, where each w; is a positive number, called the weight of the

interval (¢,7 + 1). An integer valued stochastic process Xo, X1,... which satisfies

(1.1) P(Xn+1 =1, + 1|(X0,X1,.. . ,Xn) = (2.0,2.1,... ,1:,,,))
Wy

n

=1- P(Xn+1 = in - ll(Xo,Xl,...,Xn) = (io,il,...,in)) = m—w——l
tn Tn—

is an integer valued Markov process with stationary transition probabilities p; ; satisfying
Prk—1 > 0, Pek+1 > 0, Prk—1 + Prk+1 = 1, —00 < k < oo. Conversely, any such
Markov process arises from an appropriate w, unique up to multiplication by constants.

This observation is probably due to T. E. Harris.

Now we describe a process which has recently been introduced by Diaconis. This
process is integer valued, and will be designated by Yo, Y1,.... At time n the weight of the
interval (¢,¢ + 1) is one plus the number of those integers k£ < n such that (Yx, Yi+1) is
either (7,7 + 1) or (i + 1,7), that is, the weight of an interval is initially 1 and is increased
(reinforced) by 1 each time it is crossed. If w(n, ) stands for the weight of (7,7 +1) at time
n, then the version of (1.1), in which X is replaced by Y and w_by w(n,-), holds. This
process remembers where it has been and prefers to cross familiar intervals, that is, those
. already often crossed. Diaconis studies this motion by showing it is equivalent to having an
independent Polya’s urn at each integer which directs the motion up or down. de Finetti’s
theorem, applied to each urn, then shows the motion is equivalent to a random walk in
a random environment, and the results of this subject are used. Especially, almost sure
recurrence follows almost immediately. (We will say a sequence of integers is recurrent if
each integer occurs infinitely often in the sequence, and say the sequence has finite range

if only a finite numbers of integers occur.)

Our introduction to this subject came in two talks Diaconis gave at the 1987 Midwest
Probability Conference. His main emphasis was on the limiting distributions for related

walks on finite graphs, distributions related to the limiting distributions of Polya’s urns.
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This work, joint with Coppersmith, is not yet written down. For an exposition of the
method described in the previous paragraph as well as very interesting results about related

processes on trees, see R. Pemantle’s paper [8|.

The present paper considers only integer valued processes. Diaconis’ method can not
be adapted to study many reinforcing schemes other than the one given above, that is,
the one which increases the weight of each interval by 1 (or by the same constant amount)
each time it is crossed. For example, suppose the initial weights of all intervals are 1, and
are increased by 1 only the first time the interval is crossed. The resulting process could be
called fair random walk with partial reflection at the prior maximum and prior minimum,

~ and is not too hard to study directly, but Diaconis’ approach is inapplicable.

We mainly study one dimensional lattice valued reinforcing walks }_é = (Xo,
Xi...), in which the initial weights are all 1, an assumption in force throughout this
paragraph. We prove, for very general reinforcing schemes, that P(;( is recurrent) +P
(;( has finite range) = 1. Under less general schemes, still broad enough to include the
situation where the nonnegative number a) (not depending on ) is added to the weight
of (7,7 + 1) the kth time it is crossed, and also broad enough to cover iid reinforcement,
we prove X, /n — 0 a.s. as n — oo. Parenthetically, we do not find the weak law of large
numbers any easier to prove than the strong law. We also study the analog of gambler’s
ruin problems, and show that as A — oo, the order of magnitude of the probability that
a reinforced walk, started at 1, hits A before it hits zero, can be as large as 1/ VA, but no

larger.

In the final section we present Herman Rubin’s elegant solution of a conjecture we
showed him involving generalized Polya urns. Our treatment is self contained, and this
part of the paper may be read independently of the rest. We then apply this result to

reinforcing walks, and state several open problems.

2. Notation and definitions. We define reinforced random walk (usually just called
walk here, sometimes abbreviated RRW) to be a sequence X = {X;, ¢ > 0} of integer

valued random variables and a matrix [w] = {w(n,j), 0 < n < 00, —00 < j < oo} of
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positive random variables, all defined on the same probability space, such that if G, is the

o-field o({X;, 0<7<n, w(i,j), —00 < J < 00, 0 <7< n}) then the following hold.
i) w(n+1,5)—w(rn,j) >0, with equality if (X, Xr+1) is not either (5,7+1) or (5+1, 5).

ii) P(Xn+1 =7+ ]-IXn = J, .gn) =1- P(Xn+1 =J - lan =7, gn)

)
w(n,j) + w(n,7 — 1)

a.s..

For brevity we often designate this walk by X instead of (;( ,|w]). The random vari-
ables w(0,7), —00 < j < oo, are called the initial weights of X , and we say X is initially
fair if all the initial weights are 1. We say the reinforcement is nonrandomsized if w(n,j)
is measurable with respect to o(Xo,X1,...,Xy,), n > 0, and it is said to be up only
[down only] if w(n,j) = w(n — 1,7) whenever (Xn-1,Xy) is (7 + 1,7) (5,7 +1)]. K
Xn=73+1, Xp41 =Jor Xy, =3, Xpnt1 = J+1, we say the walk crosses (7,7 + 1) between
times n and n + 1, and we say the walk starts at k if Xo = k a.s.. The distribution of
the walk is the distribution of (;( ,{w]). By a reinforcement scheme we mean a rule which,
together with the distribution of (Xo, w(0,%), —00 < k < 00), determines the distribution
of the walk. There is no need to be more precise than this, since when we use the term it

will always be in the context of a specific scheme.

We say a walk is of sequence type if there is a sequence @ = {ak,k > 1} of nonnegative

numbers, called the sequence of the walk, such that if ¢(n,s) is the number of times that

#{(n,5)
(Xo0,X1,...,X,) crosses (7,7 + 1) then w(n,j) = w(0,5) + Y. a; a.s. (almost surely).

=1

That is, the kth time X crosses (5,7 + 1) , the weight of this interval is increased by aj

a.s.. Often in situations like this (and in fact in any situation) we omit a.s..

We say a walk is a Diaconts walk if it is an initially fair sequence type walk, and all

coordinates of the sequence are 1.

Matrices in this paper are always infinite matrices of the form {a;;,—00 < j < 00,1 <
i < oo} = [a]. A walk is said to be of matriz type if there is a matrix of nonnegative

terms [a], called the reinforcing matriz (or just matrix) of the walk, such that w(n,j) =



¢(n,7)
w(0,7) + Y. a;;. Finally, a walk is said to have iid reinforcement if
i=1

w(n,j) = w(0,5) + > z,
{OS‘I:S"J (Xi,Xi+1)=(j,j+1) or (.7+1:.7)}

where Z;,Z2 ... are iid nonnegative random variables and, if n > 0, Z,+; is independent
of Gn, n > 1, the o-field defined in the definition of RRW. We use G, only to stand for
this o-field and use #,, n > 0, only to stand for o(Xo, X1,...,Xy). For most of this
paper we will be working with non-randomized reinforcement, in which case §, equals
Fn, and in which case there are a countable number of disjoint atoms in #, which have
probability totaling 1. (If P(Xo = k) = 1, there are exactly 2" atoms in %, having positive
probability.) Let A stand for one of these atoms and consider the process (Xp4i,7 >
0,w(n + ¢,7),s > 0,—0c0 < j < o0), conditioned on A. This process is itself a RRW.
At most n of the initial weights for this walk may differ from the original initial weights,
namely those of intervals crossed by ;( between times 0 and n on A. If the original walk
was a matrix type walk, so is this conditioned one (not necessarily with the same matrix),

but, if the original walk is a sequence type walk this one may not be sequence type.

Let (;( ,[w]) be a RRW and let T be a stopping time with respect to §,,n > 0, such
that P(T' < o0) = 1. Then (X744,¢ > 0,w(T +1,5),4 > 0,—00 < j < 00) is also a RRW,
although not necessarily matrix type even if ;( is; a finite (random) number of the initial

weights for this walk may differ from those of the original walk.

We use 7 only for inf{k: X < 0}. Here, as elsewhere, inf @ = co. Absolute positive

constants are designated by ¢,C, c;, etc. The indicator function of a set A is written I(A),

and the minimum of « and b is written a A b. If v = (v1,v2,...,v,) is a vector we put
L(v) = n.
3. Recurrence and maximal inequalities. To begin this section we will study

recurrence properties of reinforced random walk. The proof involves an extension of a
martingale argument used by Harris to study recurrence of the Markov processes described
in the first paragraph of this paper, which we briefly recall. First note that if @ and b are
positive, and if ¥ is a random variable which satisfies P(Y = a~!) = a/(a + b), P(Y =
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—b"1) = b/(a + b), then EY = 0. Let X,,Xj,... bg the process described in the first
paragraph of this paper, started at £ > 0. Put f{j) = JZ_:I w,-—l,j > 0, and f(0) = 0. Then
F(Xiar),t > 0, is easily seen to be a nonnegative mart;:ga.le since P(f(Xn+1) — f(Xn) =
wl1%) = 1= P(f(Xat1) — £(Xa) = w74, |%) = wy/(w; + ;1) on {n < 7, X = j}.
Since nonnegative martingales converge a.s., it is easy to conclude that if nlinolo f(n) <
00, P(r < 00) < 1, while if nli_’rr;o f(n) = 00, P(r < o) = 1. See [5], p. 106 for a more
detailed description of this argument. We are going to construct a supermartingale below,

and two facts that will be used are:

(i) If a and b are positive numbers and if P(Z = —b~!) = b/(a+b) and P(Z =d) =
a/(a + b) for some d < a~!, then EZ < 0.
(3.1)

(ii) f Zisasini)and if Y = (a=! — d)I(Z = d) then E(Z+Y) = 0.

Lemma 3.0. Let ;{ be a RRW such that all but perhaps a finite number of the initial
weights w(0,7) equal 1. Then P(Xy = O for some k) +P(F( has finite range, Xx # 0, k >
0) = 1.

Proof. Assume with no loss of generality that Xo > 0. For 0 < n < co define
- k-1
FX(n,k) = F(n,k) = > _w(n,j)™ "k >1,
5=0
=0if £<0.

Put

MX = M, = F(n A1, Xpar),n >0, and
—_ n
HY =Hp=M,+ ) [w(i—1,X_1)"" —w(i, Xioa) (X > Xi_1,i —1<7),n >0,
1=1

where the sum is taken to be zero if n = 0. Then M,,n > 0, is a nonnegative super-
martingale, and H,,n > 0, is a nonnegative martingale. To prove this, first note that
nonnegativity is immediate for My, and that w(: — 1,7) < w(s, j), so that H, > M,. Now
put dy, = M,, — M,,_;. We will show

(3.2) E(dn|Gn_1) <0,n > 1.
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On {n —1 >}, d, =0, so it suffices to prove E(dp|Gn-1) =0on{n—-1<7, Xp_1 =
j—1

J} = Aj,7 > 0. Now, on Aj, M,_1 = Y w(n — 1,5)~!, and none of the intervals
=0

—_

(¢, + 1),¢ < j— 2, can be crossed by X between times n — 1 and n, so w(n — 1,7) =
w(n,1),0 < 1 < 7 —2. Also w(n — 1,7 — 1) = w(n,j — 1) on 4; N {X, = 5+ 1}.
Thus, on A4;, (3.2) follows from the conditional (conditioned on §n_1) version of (3.1)
i) with 2 = My, —Mp_1, b = w(n - 1,5 — 1), a = w(n — 1,7), and d = w(n,j5)~ .
Furthermore, E(Hy, — Hp—1|Gn—1) = 0 on A; by (3.1) ii), and H, = H,_; on {n—1> 7},
so that H,, n > 0, is a martingale. Paranthetically we observe that the decomposition

M, = H, + (M, — H,) is not the Doob decomposition of a supermartingale.

Now observe that H,+1 — Hp, =1 o0n B, = {Xp4+1 > Xp, n <7, w(n,X,) =1}. Be-
ing a nonnegative martingale, H,, converges, so only a finite number of the events B, occur.
Let I' be all intervals (7,7 +1),7 > Xo, such that the initial weighting of (¢,7+1) is 1. Then
B, 2 D, = {n < 7, ;( crosses an interval in I' for the first time between times n and
n +1,}. Thus only a finite number of the events D,, occur, that is, only a finite number
of intervals in T are ever crossed before 7. Since by hypothesis only a finite number of the
intervals (7,7 + 1), ¢+ > Xo, are not in I, the number of distinct intervals crossed by ;(

before 7 is finite, implying the conclusion of Lemma 3.0. O

For later reference, we observe that if the reinforcement is down only then H, =

M,,n > 0, so that M,,,n > 0 is a martingale.

Theorem 3.1. Let X be an initially fair RRW. Then P(;{ is recurrent) + P(?( has finite

range) = 1.
Proof. It suffices to show that for any integer m,
(3.3) P(X; = m for infinitely many 1)
+ P ()? has finite range, X; = m for at most finitely many ¢) = 1.

Since the proof is the same for all m, we do this only for m = 0. An equivalent formulation

of (3.3) for m =0 is

(34) P(X; = 0 for some 7 > n)



+ P(X has finite range, X; # 0 for all i > n) = 1,n = 0,1,2, ...

We have already observed in Section 2 that, for fixed n, {X,ti,7 > 0, w(n +1,5),7 >
0,—00 < j < oo} is itself a RRW.

Since the initial weights for X are by hypothesis all 1, at most n of the weights
w(n,1),—00 < ¢ < oo, can be different from 1. Thus the walk X, ;, ¢ > 1, satisfies the

hypotheses of Lemma 3.0, and (3.4) follows from Lemma 3.0. O

We observe that the hypothesis that X be initially fair in Theorem 3.2 cannot be
entirely dispensed with, since there are initial weights which, without any more reinforce-

ment, give rise to transient Markov chains.

In special cases we can characterize the sample path behavior. If @ = a3,a2,... is a
. oo n
sequence of nonnegative numbers, put ¢(a) = Y (1+ > a;)7 L.

Theorem 3.2.

i) If X is an initially fair sequence type RRW, with reinforcement sequence @, then if

#(a) = oo, X is recurrent a.s., and if ¢(a) < 00, X has finite range a.s..

ii) If}? is an tnitially fair RRW with iid reinforcement with associated variables Z, Z,, ...
= Z then if ¢(2) = 00 a.s., X is a.s. recurrent, and if ¢(E) < 00 a.s., X has finite

range a.s..

ili) In the finite range case of i) and ii) above, there are (random) integers N and j such

that X; € {7,7 +1} ¢«f i+ > N.

Proof of i). We first consider the case ¢(Ti) < 00. Suppose, with no loss of generality, that
P(Xo = j) =1 for some j. For n > j put T, = inf{k: X}, = n}. Then at T,, the weight of
(n —1,n) is 1+ a1, the weight of (n,n + 1) is 1, and the weight of (n + 1,n + 2) is also 1.
Thus, conditioned on {T,, < oo} and on Fr,, the probability that (X1, , X1, +1, X1, +2,--.)
is the vector (n,n + 1,n,...), with odd components n and even components n + 1, equals

the infinite product

[(1+a0:c)) +ao] [l—tlal] [(1+;3 +a2] [l—c:aag] ép > 0,
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J
where a; = 1+ ) a; is the weight of (n,n + 1) when it has been crossed exactly j times,
i=1
and ap = 1. Especially P(Tpy2 < 0|T, < 00) < (1 — p), which implies P(T,, < oo for all
n) = 0, that is, P(sup X; = co0) = 0, so, by Theorem 3.1, P(;( has finite range) = 1.

Next suppose ¢#(a) = oo, and again that P(Xo = j) = 1. For n > j, define vy =
inf{k > 0: Xy = n}, and vi41 =inf{k > v; X =n, Xs#7+1, 0< s <k}, 1> 1. Then

{vo < 00} = {sup X; > n}, and
i>1

{vi < 00, i >0} = {sup X; = n,lim; .o X; = n}.
i>1
Now if n > j, at time v; the weight of (n,n + 1) is 1 and the weight of (n — 1,n) is
2i+1
14+ Y ax = B, since, on {v; < o0}, (n — 1,n) is crossed exactly two times between v;_;

k=1
and v;. Thus
P(viq1 < 0o|v; < 00) = P(Xp;41 =1n — 1|v; < 00) = B;/(1 + B;) so

P(v; < 00,1 >0) = P(vg < oo)ﬁﬂi/(1+,3i) =0.

This implies P(sup X; = n,Hi_.ooXi = n) = 0 for each n > j, and almost identical
t
reasoning yields this result if n = j. Similarly P(sup X; = lim; ,00cX;) = O for each
i>m

m > 0, so by Theorem 3.1, X is recurrent.
The proof of ii) is very similar and is omitted.
The proof of iii) will be given in Section 5. O

Let So,S1,... be ordinary (unreinforced) fair nearest neighbor random walk started

at the positive integer u. Let A be an integer exceeding u. Then it is well known that
. P Sk >A)=pu/A
(3.5) | (@ax Sk 2 A)=n/

(Recall 7 = inf{k:Sx < 0}.) This equality is in fact one of the many ways to prove
recurrence of such unreinforced random walk. If M,,, n > 0, is a nonnegative martingale
started at u, then (see [3], p. 314)

P(sup Mp> ) <pu/XA>0.
0<k<T



For general initially fair RRW only a much weaker inequality holds.

Theorem 3.3. There s a constant C such that if )—( ts an initially fair RRW started at
> 0 then
(3.6) P( sup X > ) <Cu/VA,A>0:

0<k<r
Furthermore, there is a constant ¢ and an tnitsally fair random walk started at p such
that the analog for this walk of the probability appearing in (3.6) ezceeds cu/ \/_ A for each
A > u?

Proof. All constants in this proof are absolute constants not depending on A on u. First we
prove (3.6). Let H,,n > 0, be as in the proof of Lemma 3.0, and let the sets B, D,,n > 0,
and T, also be as in that proof. Note that, since the initial weights for )_é are all 1, T is all
intervals (z,7 + 1), ¢ > u, so

(3.7) . ZI(D ) = s‘i‘érX" —

Since w(n,X,) =1 on Dy, Hpy1 — H, 2> 1 on Dy, so (3.7) implies

(3.8) Z(Hn+1 —H,)*> sup Xp—u
n=0 o<k<r

Put S(H) = [H2 + Z wi1 — Hp)?)? = [u? (I:r,LJ,1 H,)?]*. Then S(H) is the
so-called square functlon of H, and by an 1nequa11ty of Burkholder (Theorem 8 of [1])

(3.9) P(S(H) > A) < Cysup E|H,|/A = Cip/A, X >0,
n>0

the last equality since H is a nonnegative martingale, so that E|H,| = EH, = EHo =
Using (3.8) and (3.9), we get
P(u®+ sup Xk —p> A% < Cip/A, A>0.
o0<k<rT
Thus

P( sup Xi > A%/2) < Cip/A, X > 2u,
0<k<T
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which is easily seen to imply (3.6).

We preface the formal construction of the example showing the second statement in
Theorem 3.3 with a heuristic explanation of what is going on. Suppose we reinforce an
interval by adding M the first time it is crossed downwards and let M get very large.
Then essentially we are contracting that edge after it is crossed downwards. The number
of uncontracted edges between 0 and X; is just about performing simple random walk.
The number of steps this walk takes before hitting zero is 4 + 2(sup;., X; — 1), and the
tail probabilities of the time for simple random walk to hit zero are of order u/ VA

Now we provide the example in detail. Let X be an initially fair matrix type RRW with
matrix [a] started at u > 0, such that if m > p, the sequence an ;,1 > 1, is 0,2™%1,0,0, ...
and if 0 < m < p this sequence is 2™11,0,0,.... That is, reinforce an interval the first

time it is crossed downwards. Note that if ©, = {i > 0: w(n,?) > 1}, then

(3.10) Z w(n,i) ' <

1cO,

[ SRR

Also note that, since the reinforcement is down only, the process MX = M,, n > 0,
constructed in the proof of Lemma 3.0, is a martingale, as was noted just after the proof

of that lemma.

Define no = 0, n; = inf{k > ni_1:|Mr — M,,_,| > 1}, 1 > 1. Ifny <7, 9 is
the first time after n;_; that X crosses an interval of weight 1. Note that on F; = {n; <
7, My,,, > My}, (3.10) implies

(3.11) My,,, — My, = (M

Nit+1

_Mfl|‘+l—1) +(M7I.‘+1—1_Mr],-) = 1+Zw(n,j)—1 < 3/2,
jEY

where ¢ = {j € 0,,:5 > X,;, and m € O,,, X, <m < j}.

A similar formula holds on G; = {n; < 7, M,,,, < M,,}. Inequality (3.10) now

implies

(3.12) 1< My, — My, | <3/2, ifn; <.

i+1

11



It is easily checked that X, and in fact any RRW which reinforces each interval only once,
cannot have finite range with positive probability, and this, together with Theorem 3.1,

implies P(r < oo) = 1. Since M, — M,_; = -1, ) P(r=n;) =1.

1=1
Put Q; = My;ar, J >0, and let N = inf{k:n; = 7}. Then Qo, @1, ... is a martingale,
by the optional sampling theorem, and (3.12) gives

(3.13) 1< |QJ - Qj+1| < 3/2, J < N.

Now on F;, (Xp;,,—1, Xnip,—1 + 1) is the first interval (m,m + 1), such that m ¢ ©,,,
and which is crossed by ;( after ;. Thus, on F;

max X;=1+ max Xj,
0y <ni+1 0<j<mi

while on G;,

max X; = max X;
0<s<ni+1 0<j<n:

so that putting AT = {j:Q,;+1 > Qj, 0 < j < N}, A~ ={7:Q;+1 < Q;, 0 < j < N},

and N and N~ respectively the number of elements in At and A—, we have

(3.14) N=N"+N—,
and

+ .
(3.15) NT™ = ax X — p.

N N
Let S%(Q) = Q2+ X (@i —Qi—1)? = u?+ Y (Qi — Qi—1)? be the square of the square

=1 =1
function for the martingale Q. By (3.13), we see

(3.16) uf+ N < 8%Q) <u?+(3/2)°N.

Shortly, we will establish the existence of a positive constant ¢;, such that

(3.17) P(S%(Q) > 2%) > e1p/A, A > p.

12



Since Qo = u and Qn = 0 we have

~4=QN—Qo= Z(Qi+l - Q)I(ie AT) + Z(Qi+1 -Q)I(ie A),
=0 =0

so (3.13), and the definition of At and A~ imply
3 .
(3.18) SNt —N" >,
Together with right hand side of (3.16), and (3.14), this yields
[u? + (3/2)%u] +[(3/2)* + (3/2)°INT > 5%(Q),
which, together with (3.17), gives
(3.19) P(NT > X% > cau/A, A > p,

where ¢z does not depend on g or A. (Note that to show the existence of a ¢q for
which (3.19) holds it suffices to produce constants c3, c4, €5 such that P(N*t > ¢3\%) >
capt/ A, X > esp.)

Now we prove (3.17). Very roughly, think of @ as a fair random walk, and S?%(Q) as
the number of steps it takes before it hits zero. Now the probability of @ getting to A
before 7 is about /A by gambler’s ruin. Given this event, Q must get to either 0 or 24,
and the number of steps it takes to go from A to O or 2) is on the order of A2. Now the
details are provided. This argument is a routine application of the methods of [2]. Assume
WLOG A > 3u. Put ¢ = inf{k:Qx > A} AN, A={Qy > A} = {Q4 # 0}. Then (3.13)
implies
(3.20) L A(A) Qe < (A+3/2)I(A) < 2MI(A),

and since Qknag, k£ > 0, is a bounded martingale,
EQy = EQo = ,

so, taking expectations in (3.20) yields |

(3.21) - P(4) > p/2).
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Now let ¢ = inf{k > ¢:|Qx — Q4| > A}. Using (3.13) again, we have
(3.22) M (A) < |Qe — Q4lI(A4) < 2XI(A).

Put g; = Q(g+i)ael(A). Then g;,0 < ¢ < 00, is a martingale, and putting e; = g;41 — g,
1 > 0, we have

(o] oo

Zei = Q¢ — Q¢, and 26’2 < Sz(Q).

1=0 1=0
The orthogonality of e;, ¢+ > 0, implies

[= o] o0
(3.23) EQ) " e})=E() )" > A2P(4), while
t=0 1=0
2 2 2 \4
(3.24) E[(Z e?) ] < ceE[(Z e,-) ] < ¢6(20)*P(4),
the first inequality in (3.24) following from a result of Burkholder [1] and the second by the
o0
right hand side of (3.22). Put Z = ) e?. Let P4 and E4 denote conditional probability
=0

and expectation given A. Then (3.23) yields EaZ > A2. By (3.24), E4Z2% < ¢7A%, ¢7 =
2%cg. Thus E2¢7A2ZI(Z > 2¢70%) < EaZ? < ¢7)0%, s0o EAZI(Z > 2¢70%) < )%/2,
implying E4ZI(Z < 2¢7A?) > A?/2, and an easy argument now gives P4(Z > A%/4) > cs,
so that P(Z > A%2/4) > ¢gP(A) > coX/p, using (3.21) for the last inequality, completing
the proof of (3.17).

Now (3.17) has been shown to imply (3.19), which, together with (3.15), shows that
this example has the desired properties. Ol

To conclude this section we prove the following.

Proposition 3.4. Let X be a Diaconis walk, started at 1. Then

E sup X <3.
o<k<r

Proof. Taking expectations on both sides of the equality in (3.2), and summing over

j >0, yields
EM,_1 — EM, = —E{{w(n,Xn_1)"" —w(n — 1, Xp1) [ I(Xn > Xpn_1,n -1 < 7)}.

14



Now if X, > [, Jhax X%, we have w(n, Xp,_1) = 2and w(n—1,X,_1) = 1 under Diaconis
— ——n—

reinforcement, so

. n— n 2 yAn
(3.25) EM,_1—EM, > (1/2)P(n—1<7,X,> max Xj)
0<k<n—1
=(1/2)EI(n-1<71,X, > ogrlgg—le)'

N
Now Y (EM,_1 — EM,) = EMy, — EMy < 1, since EMy = 1 and EMy > 0. Also

n=1
o0
Y In—-1<7,X,> max Xji)= sup Xj— 1. Thus summing (3.25) from n =1 to
n=1 0<k<n-1 o<Lk<r
00, we get
1> (E sup Xp—1)/2,
0<k<r
proving the proposition. (]

4. The strong law. In this section we prove the following theorem.

Theorem 4.0. Let X be an initially farr RRW which is either of sequence type or iid

reinforced. Then

lim X,/n =0 as..

n—oo

First note that if P(X has finite range) = 1 then X, /n — 0 a.s.. Thus, by virtue of
Theorem 3.2, the proof of Theorem 4.0 will be completed upon showing its truth for )_é
satisfying P (;( is recurrent) = 1.

A word about notation in this section. For a while we use P and F to denote probabil-
ity and expectation for whatever walk we are talking about, then, to distinguish between
several walks discussed in the same sentence or equation, superscripts make their appear-

ance on P and E, and towards the end of the section we switch back to just P and E.

If k is an integer, and if no,n1,... = n is a recurrent sequence of integers such that
|ni — ni—1| = 1, > 0, we define 7;(k) = 7,7 > 0, by 79 = inf{s: X; = k}, 7; = inf{s >
7j—1: X; = k},5 > 1, and call (nr41,7n42,...,7r,,) the (¢ + 1)st excursion of n from k,

and classify excursions as up or down from k in the obvious way.

15



Let D(k) = D stand for the collection of all vectors (v1,v2,...,v,) of finite length
which satisfy v1 = k—1,v, = k,v; < k,i <n,and |v; —vi_3| =1,1 <7< n. Thatis, D is
the collection of all possible down excursions. Similarly let U (k) = U be the collection of
all possible up excursions.

- Xk N
For a recurrent walk X, let D = D = ( Dy, Dg,...) be the down excursions, in

order, made by X, and let U = ( U, Usj,...) be the up excursions. Let S be the infinite
sequence, each entry either d or u, such that the jth component of S is d or u depending

on whether the jth excursion is up or down.

The following lemma does not generalize to all (including non-matrix) RRW. The

proof is somewhat long but easy.

Lemma 4.1. Let X be a recurrent matriz type walk ([a]), with constant initial weighting w,

which starts at k. Then X is determined by (S,D,U), and E,B, and U are independent.

Proof. The first statement is immediate. Too see that E is indeper}dent of (1_5, 5) we put
S0 = Wk_1,8 = Wk—_1+ iz: ak_1,j, t > 1,and tog = wg, t; = wr + % a,;, so that s; is the
weight of (k—1,k) afterjtiis interval has been crossed exactly 2: t:i,lzlies and t; is the weight
of (k,k + 1) after it has been crossed exactly 27 times. Then at 7,, the end of the nth
excursion, if 7 of the first n excursions have been up and n — 7 have been down, the weight
of (k,k +1) is t; and the weight of (k — 1,k) is s,—_;, and the probability that the n + 1st
excursion is up is ¢;/(¢; + sn—;) = a(j,n — 7). Thus the probability that the first n entries

in S are, say, all up, given that the first n elements in D, in order, are (dy,..., d,) and

— N n—1
the first » elements in U are (v1,..., uy) is just [] «(7,0), and the probability of any
j=0

other possibility for the first n entries in S could similarly be computed independently of

the first n entries in D and U. Thus § is independent of (1—5, E)

To complete the proof we will show that U is independent of D by showing that given
Uy, Us,... elements of Y and di, dg,... elements of D, there are sequences py,ps ... of
numbers depending only on %y, %s,... and g1, gz, ... of numbers depending on d 4, do,...

such that if v is a vector of length n with each coordinate u or d with z of the entries u
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and y = n — z of these entries d, and if F is the event that the first n coordinates of S are

those of v, then

(4.1) P(The first z up excursions are u1y,..., 5 in order ,

and the first y down excursions are d1, d3,..., dy, in order |F)

The numbers p; are the probabilities a certain matrix type RRW started at £+ 1 has

its first L(TI:,-) coordinates the coordinates of u;.

For 0 < j let w; = {w(j,4) : ¢ > k} be the weighting of the intervals (¢, +1),2 >k,
given as follows. Let 1(j,) be the number of times k w1, w2,..., w j(k+1) crosses (1,1+1),
where k w1, ..., Ej (k + 1) stands for the finite vector starting at k, with first § excursions
all up and exactly (u1,...,u;), and with the first step after ujto(k+1). (Fj=0,it
stands for the vector (k,k + 1).) Put

¥(59)
w(J,1) = w; + Z ai s, J > 1, w(0,7) = w;,

8=1

where the sum is to be taken as zero if ¢(5,7) = 0. Let [6’] be a matrix with entries

b, o = G ety k<1, s >1.

1,8

(What the other entries of [b’] are is irrelevant.) For j > 1 let p; be the probability that
a matrix walk with initial weight w;_; and matrix [6"—1], started at k + 1, has first n;
coordinates equal to 71:_.,', if n; is the number of components of QZJ- (that is, the first n;
states visited by the walk are the coordinates of ?ij). Then if N is a positive integer, given
that 5 of the first N coordinates in § are v and N — j are d, and given that (51,...,
51-) = (u1,..., u;) and that (1_51,. - BN_j) = (21, .. ,EN_J-), and also given that the
N + 1st entry in E is u, that is, given X,,+1 = k + 1, the probability that the N + 1st

excursion is u ;41 is pjy1.

This conditioning is on an atom of #,4+1. We have discussed such conditioning

towards the end of Section 2. Especially, we indicated it was a matrix type walk. The
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w(7,7) and b{, s given above are the initial weights of this walk and those matrix entries of
the walk which have bearing on the probabilities in question. The numbers ¢; are defined
similarly, and similarly the probability of the jth downward excursion being Ej, given that
the first j — 1 excursions are, in order, 21, ceny Ej_l, can be computed to be g; regardless
of what the upward excursions before the jth downward excursion are. This establishes

(4.1). »|:]

Lemma 4.2. Let X satisfy the conditions of Lemma 4.1.

i) The distribution of U depends only on aji,k+1<3, 0<17<o0, wi 1 >k, and
2441 .
Y a,5,0 <1< oo.

s=1

ii) The distribution of D depends only on a;;, 5 <k, 0 <i < oo and w;,i < k.

Proof. We use the notation of Lemma 4.1. Part i) follows from the fact that (3, k)
2641

is always an odd number, so that w(¢,k), equals wx+ Y. aks,t > 0, while the other
s=1
quantities involved in the definition of the probabilities p; depend only on (71:1 TS _'J_,-) ,

wi,t > k,and aj;, k+1<j<o00, 1<1< o0.

Part ii) is similar, but simpler; or, we could solve it by reflecting X about k and using

i). O

Let m > k. If u = (&1,...,&,) € U, let u = (&iys&ins---»Eip)s 0 < m, be those
entries & of u, in order, which satisfy either & € [k,m) or & = m and &_; < m.
Then L(Em) is the number of jumps made by ku between two é.djacent integers in [k, m].
Similarly define, for d = (115725 ++5Un) € B and A < k, d = (v15---,7,), where the
entries are those components of d either in (A, k] or else equal to A and with immediate
predecessor greater than A. Let U™ = {Em:TJ: € U} and D* = {E Ld e D}. Note that
if a vector in Y™ has ¢th component m, the next component must be m — 1. Thus the
distribution of Em = (E:n, E;n, ...) does not involve w;,i > m or a;;, j > m, ¢ >0, and

so the following lemma holds for essentially the same reasons as Lemma 4.2.
Lemma 4.3. Let m > k, and let X satisfy the conditions of Lemma 4.1.
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—m :
i) The distribution of U depends only on wi k < i < m,a;;, k<j<m,1>0,and
2i41 ‘
Z a'k,s,z‘ > 0.

8=1
—A
ii) Let A < k. The distribution of D depends only on wi,A<i<k,anda;; A<j<

k,1>0.
O
The proof of the following lemma is virtually identical to that of Theorem 3.2, and is
omitted. For the matrix [a], put a; = {a;, i > 1}, —00 < j < oo.
Lemma 4.4.

i) If X is @ matric type walk with matriz [a] and P(;( is recurrent) = 1 then ¢(a;) =

00, —00 < J < oo.

ii) If X is a matriz type walk with matriz [a], satisfying ¢(a;) = 00,~00 < j < 00, and

if all but a finite number of the initial weights are 1, then X is recurrent.

Now let 0 < k and let M > k. Define

00
Ta = Y I(X; € (0,M], Xiy1€[0,M],i <7),

=0

so that Tas is the number of jumps X makes in [0, M] before 7. Divide these jumps into

those made in [k, M] and those made in [0, k] by putting

oo
TJ\_;,k = ZI(Xi € [k,M], X;11 € [k, M],i < 1) and
1=0

Tl\_{[,k = ZI(X, S [O,k],X-H.l S [O,k],i < T).
1=0

Define a matrix [a"*] = [a/] associated with the matrix [a] by a;;=aji, § £k, 0>

' ' . ' .
0, a;,; = ax,1, Q,2i =0, ¢ 2 1,8 9541 = @k,2i + Qk,2i41, © > 1.
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Lemma 4.5. Let k > 0, and M > k. Let P and E be probability and ezpectation
associated with the recurrent matriz type walk, started at k, with matriz [a] and initial
weights w = w;,—00 < & < 00, all but a finite number of which are 1. Let P' and E' be

associated with the walk with matriz [d'], all other conditions the same. Then

(4.2) ETar > E'T.

Proof. Our straightforward argument will in fact show

— e _ —

(4.3) P(Twn > y|D,U) > P'(Tas > y|D,U),

which, since (1_5,5) has the same distribution under both P and P’, using Lemma 4.3,
implies (4.2). Let v, be the number of u appearing before the nth d in E We note that ~,
is independent of (B, E), and that if T' = inf{s: 1—5,- has a zero entry}, so that 7 occurs in
the I't* down excursion from k, then, given (B, E), the distribution of T)s is determined
by the distribution of yr. In fact, given (B, _I}),

. .

(4.4) Tr = const. + ZH,-, where

=1

M
0;is L(U; ) and the sum is taken to be zero if 7, equals zero, and the constant is determined

by D. Thus to prove (4.3) it suffices to show
(4-5) (¢ 241D, U) 2 P'(~, 2 5D, V),
which is implied by

(4.6) P(1n > j|D,U,T =n) > P'(ys > j|D,U,T = n)

since I is determined by D. Now ~,, is determined by S, which by Lemma 4.1 is indepen-

dent of (1_5, E) and thus (1_5, E, I'), so to prove (4.6) it suffices to prove

(47) . P(’Yn 2.7) > P’('Yn > J‘)a J20,n>1.
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We prove (4.7) by induction on n. Recall the definitions of s;,t;, and a(j,n — 7) made
in the proof of Lemma 4.1, and let s.,t:, o'(7,n — j) be the analogous quantities for [a'].
Now s; = s}, ¢ > 1, but ¢; > t},7 > 1, so that a(j,n — j) > o/(j,n — j),n >0,0< 7 < n.
That is, given the first n entries in E, the probability that the n + 1°* entry is v under P
is always greater than or equal to the probability of this event under P’. Especially since
{71 > j} is the set where the first j entries of S are u, we have P(y; > j) > P'(y1 > j).
Now suppose (4.7) holds for n = m > 1. We will show it also holds for n = m + 1. We
first note, for § > 0, z > 0,

z—1
(4.8) P(Ym41 > 6+ 2lvm = 6) = [] (6 +i,m) *
rs

z—1

> H a'(6 +1i,m)

1=0
= P,('Ym+1 > 6+ z|'7m = 6)

Furthermore, since a(j,m) < a(j +1,m), 7 >0, m > 0, we have
(4.9) PAms1 26+ 2|9m =6) K P(Ym41 > 6 + zlym = 6 + 1).

Thus

PAm+12¥) =) P(im+1 2> y[vm = 1) P(ym = 1)

™

-
I
o

P(7m+1 > y|'7m = z')P,(')’m = Z)

o,

L]
Il
o

P’('7m+1 > y|’7m = ":)P’('Vm = z)

o,

..
i
o

!

N

Ym+1 > Y),

the second inequality following from (4.8), and the first from (4.9) and the induction
hypothesis in the following manner: Put e; = P(Ym+1 > y|vm = 7). Then by (4.9), e; is
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increasing in :. Thus

i eiP(Ym =1) = i(ei — e;—1)P(vm > 1) + €0 P(ym > 0)

oo
> (e — €in1)P'(Ym > i) + eoP'(ym > 0)
i=1
oo
= Z e: P (ym = 1)
=0
This completes the proof of (4.7) and thus Lemma 4.5. O

Define the matrix [a"] associated with [a] by af; = a;; if j # k and by af ,, , =

0,z > 1,41%,% = Qk,2i—1 + Gk,2i, ¢ > 1.

Lemma 4.6. Let 0 < k < M. Let P and E! be probability and ezpectation associated
with a recurrent matriz type walk, started at M, with matriz [a] and initial weights w, all
of which, except perhaps a finite number, equal 1. Let P2 and E? be associated with the

walk in which everything is the same except that [a”] replaces [a]. Then

ElTy\ > E*T,.

—y

Proof. Let v = inf{s: X; = k}. The distribution of (X;ry, ¢ > 0, w(j,7 Av), —0c0 <
J < o0, ¢ > 0) is identical under P and P2, since the distribution of these variables
involves only quantities the same under P' and P2. Let A be an atom of #,, of the form
{Xo =140,..., Xpn =in, v=n}. Of course 1o = M and 7, = k here. Then as previously
remarked, conditioned on A4, {Xn4i, ¢ >0, w(j,n+1), 1> 0, —00 < j < oo} is a matrix
type walk, and under both P! and P? it has the same initial weights, and starts at k.
Especially note w(n, k) = w(0, k) + ax,1 under both P! and P2. Now if [b] and [b'] are the
respective matrices for these walks, we have b;; = ;-,i, J#k, 1>1, while by ; = agit1
and b;c,i = a',;,i_,_l = bg,; + bi,;—1 if ¢ is odd, = 0 if 7 is even. Thus Lemma 4.6 follows from

Lemma 4.5. O

The next lemma is an easy consequence of Lemma 4.6.

22



Lemma 4.7. Let P and E be probability and expectation assoctated with an insitially fair
matriz type walk started at M > 0. There is an instially fair matriz type walk with up only
reinforcement such that, if P’ and E’ are probability and ezpectation of this walk stated at

M,

ETy > E'Tyg.

Proof. By Lemma 4.3 ii), only the entries of the matrices corresponding to (z,7+ 1), 0 <
t < M, have bearing on this. Thus the result follows from Lemma 4.6, upon changing the

M rows of the matrix corresponding to each of these intervals, one at a time. L

For z = 20,21,..., a sequence of real numbers and (a,b) an interval, put n; =

inf{k:zx < a}, my = inf{k > nyizx > b}, and for 1 > 1, n; = inf{k > m;_1:2; <

a}, m; = inf{k > nj:zr > b}, and let u—(a,b) = sup{i:m; < oo} (supp = 0). Then
v (a,b) is called the number of upcrossings of (a,b) by z. The basic idea of the following

lemma goes back to Neveu {7]. See Dubins [4].

Lemma 4.8. Let v and 0 < a < b be real numbers. Let Z = Zy,Z,,... be a sequence
of integrable raridom variables, which are all bounded below by the same constant, and put

Hn = 0(Zi, 0 <1< mn). Suppose

i) P(Zo =7~) =1,

) P(Z;<a, Ziy1>a)=0, 1>0, and P(Z; > a,Z;+1 <a) =0, ¢ >0,
i) P(Z; <b, Ziy1>b) =0, i >0, and P(Z; > b,Zi11 <b) =0, i >0,
i) E(Zni1|¥n)I(Zn < b) = ZI(Z, < b), n >0,

v) P(Zy € (a,b)) =0,n >0, and

i) nl_LIIgQ Zyn = Zoo exists, and Zy, < a.

Then EuE(a, b) = [(yAa) — EZx]/(b— a).
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Proof. Suppose first that v < a. Let
vy =inf{k: Zx = a} (inf ¢ = o0)
n1 =inf{k > vy: Zx = b},
v; =inf{k > ns_1: Zx = a}, ¢ > 1,
n; =inf{k > v;: Z; = b}, 1 > 1.

By property ii), {vi < oo} = {Z; > a for some ¢}. Let M be a positive integer. Now

f Zy,am = aP(vy < M), and since Zgny,, k > 0, is a martingale, by property 7v)
{01 SM}
and the definition of vy, we have f Ly AM = f Zo =~. Thus

(4.10) / Zym =+ —aP(vy < M).
{vi>M}

For i > 1, Zy; = a on {v; < M}, and Z(y, 1x)an;L(vi < M), k > 0, is a bounded

martingale, so that
/ ZM/\n.' = / ZM/\U,' = a'P(vi < M)'
{vi<M} {vi<M}

Also, since Z,, =bon {n; <o}, [ Zmay, =bP(n: < M), yielding
{ni<M}

(4.11) / ZMan; = aP(v,- < M) — bP(n,; < M)
{vi<M,n:>M}

o0

Now {vy > M} U U {vi < M, n; > M} = {Zpy < a}, using property v). Thus adding
i=1

(4.10) and (4.11) we get

/ Znm =7+ (a—0b) ip(m < M) - ai[P(m < M) — P(viy1 < M)],
{(Zn<a) =1 =

and now letting M approach infinity yields, with the aid of vi), the bounded below property
of Z;, 1 > 0, and the fact that the second sum above equals P(Zps > b), which goes to 0
as M — oo, the equality [ Zo =7+ (a —b) 3. P(ni <o) =7+ (a — b)EuE(a,b).

1=1
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If v > a, let £ = inf{j: X; = a}, and apply the result above to the process X¢4i, ¢ >
0. O

Lemma 4.9. Let P° and E° be associated with an initially fair recurrent RRW of matriz

type, started at M > 1. There is an absolute positive constant C such that

E°r > CM?%.

Proof. We will actually show E°Ty; > CM3. Invoking Lemma 4.7, we assume with no

loss of generality that X under P° has up only reinforcement on (¢, ¢ + 1), 1<i< M.
M-—1
Let u; be short for u{Xj/\r,O<j<oo}(i’i +1). Put U = ) u;. ThenU < Tps < 7, and we
- . i=1
will prove

E°U > CM:3.
Let [a°] be the matrix corresponding to P, and for 1 < n < M —1 let [a"] be the matrix
which satisfies a}; = af; if i ¢ [M —n, M —1],and a}; =0if M —n <1 < M. Let P"
and E™ be probability and expectation associated with the initially fair RRW with matrix
[a™], started at M.

Define
fi,0) =0if j = M~n
M—-n—1
= - Z w(i,e) ,0<j<M—n
a=j
j—1
— Z w(t,e) ' ,M —n < j < co.
a=M-n

Note f*(¢,7) = F(i,M — n) — F(i,5), where F is as in the proof of Lemma 3.0. Let
QF = f*{(¢ A7, Xinr), ¢ > 0. Then under P*, QF, ¢ > 0, satisfies the conditions i) —
vi) required of the process Z in the statement of Lemma 4.8, with (a,b) in this statement
replaced by any of the intervals (A,A + 1), A an integer, 0 < A < n. This is immediate
except for condition iv). The proof of iv) follows with reasoning similar to that which
led to the comment after the proof of Lemma 3.1, since under P™ the reinforcement of
(¢,24+1),0 <¢ < M —1, is up only, and there is no reinforcement of the interval (7,7 + 1)
ifM—-—n<i< M.
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The behavior of U for PM—1! is particularly easy to analyze, since under PM—1 none of
the intervals (z,74+1), 0 <7 < M —1, are reinforced before 7, so that U has exactly the same
distribution under PM—1! that it would for (unreinforced) fair random walk started at M.
We have PM-1(Qlf"' =M ~1) =1and PM-1(QM-1 = 1) =1,and Q¥ 1= X; -1

if ¢ < 7. Thus Lemma 4.8 implies

EM-1y, =4 1<i<M-1,

and so
M-1

(4.12) EM7WU =) i=M(M-1)/2
=1

Now put W,, = w(r,M —n)~!, 1 <n <M — 1. We will prove, for 1 <n < M —1,

€ >0,

(4.13) Erly; = E™u;, 1 <M —n,

(4.14) E™u; — E" ly; = E™1(1-W,), i > M —n, and
(4.15) E" Yupsp— EMupg_p > (671 —1) P (W, <¢).

To prove (4.13) we first note that the distribution of (w(7,17),0 < ¢ < M —n) is the same
under both P™ and P"~!, and use Lemma 4.2 ii), applied to the process Xy Xq+1,---
conditioned on an atom in %,, where 4 = inf{¢: X; = M — n}, in the same manner as the

stopping time v was used in the proof of Lemma 4.6.

This same observation gives the first step in the proof of (4.14), namely

M-n-—-1 M-n-1
(4.16) B Y wlni) ) =B Y w(ni) ).
=0 i=0
M—-n-1
Since Q7 = — Y. w(r,)"L,
i=0
EnQ"rl = —bp
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so for 1 > M — n, Lemma 4.8 implies
(4.17) E"u; =[i — (M — n)] + 6p.

M—n
Now QP! =— > w(r,i)™ 1, s0
i=0

?

E1Qr ! = —§, — E™ tw(r,M —n)"' = -6, — E""'W,,
so for 1 > M — n, Lemma 4.8 gives
(4.18) E" lu; =i — (M — (n —1))] + 6, + E"'W,,
which, together with (4.17), gives (4.14).

Next we prove (4.15). Put y® = Y. w(r,s)" 1. Then it follows from the discus-
0<s<M—n
sion of the next to last paragraph that

(4.19) P*(yp™ >t) = P"1(y" >1),0 <t < co.
Furthermore, w(7,0) = 1, since reinforcement is up only, so we have
(4.20) P* (g™ > 1) =1.

In addition, recalling that W, = w(r, M — n)~!, we have

(4.21) Qr = —y™,Qr = —y" — W,

Now under P", Q% ., 0 < i < oo, upcrosses (0,1) exactly when X;ar, 0 < ¢ < 00,

upcrosses (M — n, M — n + 1), so that, by Lemma 4.8, and (4.21), we have

(4.22) E™upg_n = E™p".

To estimate E™* lups_y, put
~y1 = inf{i: X; = M — n},
§=inf{i >71: X; =M —n+1},
Ny =inf{s > & _1: Xy =M —n}, ¢ >1, and
, E=inf{i >y Xi=M-n+1}, 1> 1.
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2i—1 -1
Let §; = (1 + ) aM_n,k) =w(vi, M —n)~1, ¢ > 1. Then under P"~1, Q,ﬁ.‘l = -6
k=1

on {v; < 7}, and Qg‘_l =0on{& <7} Put A, ={& <1}, Bi ={v: <7< &} We

have
[o 0]

(4.23) ur—n = Y _ I(4).
=1

For ¢+ > 1, put

g.;: = Q’(’L";-ll-.'f)/\f.'/\rI('ﬁ < T)’ 0< j < o0, gi = {g.;:’ ] 2 0}'

Then, under P*~!,g* is a martingale which is bounded above by 0 and below by —M.
Furthermore, under P*~1

g = —6,I(v; < 7),

while )
gé.nr = 0 on A;

= —6; — Y™ on B;.

Now A; U B; = {v; < 7}. Since ¢g; is a martingale under P!,

E™ g = E" gt \ I < 7),

so that
—51;Pn-1(’)',; < T) = / (—5,‘ — 'lﬁ"’)dPn_l = —5,;Pn_1(Bi) — / 'l,bndPn_l,
B; B;
yielding
5¢Pn_1(A-,;) = / ‘l,b"'dPn_l.
B;
Especially,
P 1(A) > e-l/ PprdP i 67 > el
B;
Thus if m = inf{i: 671 > e~1}.
Z Pn—l(Ai) 2 €_1 / ,(pndPn—l — E_l / ‘l,bndPn_l,

{Tm<7}
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while, noting 6; <1, 1> 1, and {& < 7} = {¥:+1 < 7}, we have

m—1
Z Pn_l(Ai) > / ’l/)"’dPn_l — / ¢ndP"'—1.
i=1

L_Jl B; {Tm>1}
=1
Together with the previous inequality and the fact Y™ > w(0,7) > 1, this gives
(s 0]
ZPn—l(Ai) > En—l,(/)n + (E-—l _ 1) / ¢ndPn—1

=1 {'7m<7'}

>E" " + (67! = 1)P* Yy < 7).
Since {ym < 7} = {W,, < €}, this together with (4.22) and (4.23) completes the proof of
(4.15).

Now we conclude the proof of the lemma. Using (4.13) ~ (4.15), we have

M-1
E"'WU—E"U=E""upn—E"up_n+ »  E"}(W,-1)
t=M-n+1
> (e - 1)P" (W, <€)+ (n—1)E" (W, —1).
Using (4.12), we have
M-—1
(4.24) E°U = ) (E™'U - E"U) + EM-'U

n=1
M-—1 M-1

> 1) Y P Wa<e)+ Y (n—1)E"W,
Mt n=1 | n=1

- Z (n—1) + M(M —1)/2
Vs

M-1
> et Z P"_I(Wn <e)+ Z (n — 1)E"_1Wn.
n=1 n=1
Now let M > 12. Then if [ | (not be be confused with a matrix) denotes the
greatest integer function, we have M/4 < [M/3] < (M —1)/2, so that either [M/3] of the
probabilities P*~1(W,, < ) exceed 1/2 or [M/3] of the probabilities P*~1(W,, > ¢) exceed
1/2. In the first case,

M-1
et Y PPHW, <€) > eI M/8, if M > 12,

n=1
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while in the second E™*~'W,, > /2 for at least M/4 integers n, and so, for M > 12

M-1 (M/3]
Y (n—1E"'W, > > (n-—1)e/2
n=1 n=1

> (M/4 - 1)(M/4)e/4 > (M/6)(M]/4)e/4.

Thus taking e = M3 , we get
E°U > M3/%/96, M > 12,
which, together with the fact that E°U > 1, finishes the proof. O

Now we complete the proof of Theorem 4.0. Recall that just after the statement of this
theorem we observed that it is trivial except in the case that ;( is recurrent, an assumption
we make from now on. Let € > 0 and pick M = M(e) so large that CM 3/2 > M /e, where
C is as in the statement of the last lemma. Suppose with no loss of generality that
P(Xo =0) =1. Let vg = inf{s: X; = —kM}, 0 < k < 00, and put

Vkt1—1

b= D I(-kM < X;,Xip1 < ~(k+1)M).

i=uy
k—1
Then v > D ¢;.
i=0
First, suppdse )_f is initially fair sequence type with associated sequence @. Then the
distribution of ¢; conditioned on %,,_, is exactly the distribution of ¢;, for any 7 > 0.
This follows from Lemma 4.3 ii), together with the comment about conditioning made in
Section 2. Thus ¢;, ¢ > 1, are iid. Furthermore Lemma 4.9 and our choice of M give
Evy > M/e. Thus lim_,vk/k > M/e, so vk, > Mk/e for all but finitely many k, that is
X; > —Mk, 0 < ¢ < Mk/e for all but finitely many k, which implies lim; ,  X;/i > —e.

Similarly lim;_,c0 X; /¢ < €. This proves Theorem 4.0 for sequence type walk.

Now we treat the case of iid reinforcement in Theorem 4.0. Let x be a distribution
on (0,00) such that the initially fair walk with iid reinforcement in which the reinforcing

variables have distribution u is recurrent. Another way to construct a RRW with the same
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distribution is as follows. Let [Z] = Z;;, —00 < J < 00, 1 < ¢ < 00, be iid variables
each with distribution x. The initially fair RRW which reinforces (7,5 + 1) by Z; ; the ¢th
time it is crossed has exactly the same distribution as the original walk, so it suffices to
show that this walk satisfies the strong law. Let P and E be probability and expectation
associated with this walk, started at 0. Now conditioned on [Z] = [r], where r is a matrix of
positive numbers for which this conditioning makes sense, the Walk under P is an initially

fair matrix type walk, and so the last lemma implies
E(¢x][2]) = CM3/2.

Thus E¢r > CM3/2, Tt is easily checked that the ¢y are iid and thus the same proof used

in the previous paragraph can be used to prove the strong law here. O

5. Appendix: Herman Rubin’s generalized Polya urn theorem, the proof of
Theorem 3.2 iii), and two open problems. In the classical Polya urn, an urn contains
both red and white balls, one is drawn at random and replaced together with another ball
of the same color, and this procedure is repeated indefinitely. It is easy to show that,
with probability one, infinitely many balls of each color are drawn, regardless of the initial
distribution. Here is a much tougher problem: Is it still true that infinitely many balls of
each color are drawn with probability 1, if now the k** time a red (white) ball is drawn it
is replaced together with k additional red (white) balls? This question is, as will be seen
later, related to the proof of Theorem 3.2 iii). The proof is, as we mentioned earlier, due
to Herman Rubin. Such urn models have been studied by learning theorists (see Luce [6])

but to our knowledge questions of this type have not been addressed.

To state Rubin’s theorem in the generality necessary, we disregard urns and just give
a rule for generating an infinite sequence of letters, each r or w. Let 7 = (ro,71,-..)
and w = (wo,w1,...) be two sequences of nonnegative numbers such that ro > 0 and
wo > 0. Put B = Ek: r; and Wy = Zk: w;. The first entry of the infinite sequence is r with
probability Ro/ (R(:=—iEJ Wo), w withtgx?obability Wo/(Ro + Wo). Given the first n entries
consist of z r’s and y = n — z w’s, in a given order, the probal;ﬁify that the n + 1st entry
is r equals R;/(R; + W), and the probability it is w equals Wy/(R; + Wy). A sequence
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so generated will be called a generalized Polya sequence (corresponding to T and E) Let
pr = P(all but finitely many elements of the sequence are red) and p,, = P(all but finitely

. o0 . o0
many elements of the sequence are white). Put ¢(r) = > R L oo(w)= Y Wt
t=0 1=0

Rubin’s Theorem
i) If () < oo and #(w) < oo then p, > 0, py, >0, and p, + pyp = 1.
ii) If ¢(7) < oo and ¢(w) = oo, p, = 1.

iii) If ¢(7) = oo and ¢é(w) = oo, both p, and p,, equal 0.

Proof. Let Yo, Y7,... be independent exponential random variables such that EY; = R 1
Let Zo,Zy,... be independent exponential random variables which are also independent

k
of the sequence Y;, 7+ > 0, and such that EZ; = Wi_l. Put A = {)Y;, k > 0},
i=0

k
B={> Z;, k>0},and G = AU B. Let £; be the smallest number in G, and in general
1=1

let ¢; be the ** smallest number in G. Define a random sequence of 7’s and w’s, called

the random variable sequence, by making the k** element of the sequence r if {; € 4, w

if &, € B.

The sequence just constructed above has exactly the same distribution as the gener-
alized Polya sequence corresponding to 7 and w. The proof of this relies on the lack of
memory property of the exponential as well as the fact that if U and V are in;lependent
exponentials with expectations u and v respectively, P(U < V) = v~ !/(u=! + v~1) and
P(V <U) =v7!/(u=! + v~1). Thus the probability that the first entry in the random
variable sequence is r is given by P(§; € A) = P(Yo < Zo) = Ro/(Ro + Wp), as it should
be, that is, agreeing with the probabilities defining the generalized Polya sequence. Instead
of giving a proof that the conditional probabilities are also what they should be, to avoid
complicated notation we will just treat a representative case, by calculating the probability
that the fourth component of the random variable sequence is r given H = {the first three
components are rwr} = {1 € A, &2 € B, £3 € A}. On H, the distance o from ¢3 to the
smallest element of A greater than ¢3 is Y2, and conditioned on H, o has the distribu-

tion of Y2. On H, the distance § from &3 to the smallest element of B greater than £3 is
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Zi+&2— €3 = Z1+ Zo— (Y1+Y0), and the lack of memory property of Z; implies that, con-
ditioned on H, B has the distribution of Z;, noting H = {Yp < Zo < Yo + Y1 < Zo + Z1},
so that even given H and the values of Yy, Y;, Zg, B still has the distribution of Z;.
The independence of the random variables {Y;, Z;; ¢ > 0} guarantees that o and 3 are

conditionally independent given H. Thus
P(§4 € AIH) = P(a < ﬂ) = Rz/(Rz + Wl)

This agrees with the relevant conditional probability for the generalized Polya sequence,
and completes our justification that the random variable sequence has the same distribution

as the generalized Polya sequence.

(] o0
The rest of the proof is almost immediate. We note P(}_ Y; <oo) =1if )} R;! <
i=0 i=0

o0 o0 o0 o0
o0, P(}_Yi=00) =1if ) Ri_:l = 00, and that if ) Ri—1 < 00, Y Y; has a density which
i=0 i=0 i=0 i=0

o0 o0 [e o]
is positive on (0,00). Analogs holdfor ) Z;. Finally, we note that p, = P(>. Y; < Y Z;),
1=0 1=0 1=0
o0 o0
and py, = P()_ Z; < ). Y;), and it is easy to use these, together with the remarks just

=0 1=0
made, to finish the proof. Cl

Proof of Theorem 3.2 iii) Let j be an integer, and let T} = inf{k > 0: X} = 5}, and
T; = inf{k > T;_1: Xx = j}, ¢ > 1. Write down a sequence of r’s and w’s by making the
ith entry r if X7,41 = j + 1, and making the ¢** entry w if X7..; = § — 1. This may be
a finite sequence, but the probability we generate an infinite sequence of r and w with an
infinite number of both r and w appearing is less than or equal to the probability the same
event occurs in a generalized Polya sequence, with the corresponding 7 and w depending
slightly on whether Xy equals j, exceeds j, or is smaller than J. For example, if Xo = 7,
both ro and wo equal 1, and both r; and w; equal 1 + f: ajs, ¢ > 1. Essentially this
observation was the basis of Diaconis’ approach to Dia,con“;s= ;einforcement. Now under the
hypothesis of Theorem 3.2 iii), ¢(@) < oo, which implies that ¢(r) < 0o and ¢(w) < oo for
the 7 and w corresponding to the urn that would yield our sequences of r’s and w’s. Now
part i) of Rubin’s Theorem gives that p, + p,, = 1, so the probability of infinitely many r

and infinitely many w equals zero, which translates in our situation to the statement that,
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probability one, both j — 1 and j + 1 are not visited infinitely often. This, together with
the fact that )_(: has finite range with probability one, completes the proof of Theorem 3.2
iii). O

Finally, we mention two questions we have been unable to solve. The first is whether
every reinforced random walk E , as defined in Section 2, satisfies limp 0o Xn/n = 0.
The second is to decide if the two dimensional analog, on the standa\drd two dimensional
lattice, of the reinforced random walk described in the fourth paragraph of the first section
is recurrent. (For this walk each line segment of length 1 connecting lattice points (3, 5)
initially has weight 1, and the weights determine the jump probabilities, so the first jump
our walk makes is equally likely to be in any of the four directions. The first time a
segment is crossed its weight increases to 2, and this is never increased further.) The same
question was asked by Diaconis for the analog of Diaconis reinforcement on the lattice. Qur
question, which involves a simpler reinforcement scheme, should be easier than Diaconis’,
which is also unsettled, but we cannot handle it. Of course, our conjecture is that the walk

is recurrent.

Acknowledgement. The author is indebted to Herman Rubin for permitting his proof
of the generalized Polya urn theorem to be published in the last section of this paper. The

referee’s extensive comments improved the exposition in several places.
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