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Abstract

In this paper a hierarchical Bayesian (HB) model is adopted to derive selection pro-
cedures for selecting the best of £ binomial parameters, say the probability of success
corresponding to k different suppliers. This model facilitates the use of prior information
in the analysis for both small and large sample sizes. In addition to computing posterior
probabilities that the i*” supplier is best, this paper presents expressions for deciding how
much better a given supplier is relative to the others. Prior information is assumed to begin
with exchangeability and can be more informative if the experimenter has other knowl-
edge about the suppliers as a group. A robust Bayesian approach is also incorporated. A
numerical example is provided to illustrate the techniques proposed.
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Hierarchical Bayesian Selection Procedures

for the Best Binomial Population
1. Introduction

Suppose there are k suppliers of a particular item and a sample of n; items is taken
from the i** supplier yielding x; the number of successes (or defectives) in the sample.
Then X; has a binomial distribution with parameter 6;, which denotes the true unknown
probability of a success (failure) from the i** supplier. The best supplier is defined to be the
one with largest (smallest) ;. Based on the observed data and prior information available,
we seek procedures which will select a non-empty subset of the k suppliers and assert
with some confidence that the best supplier is amongst those in the selected subset. The
approach in this paper is to present a model which has the capability of incorporating prior
information concerning suppliers as a group into the derivation of selection procedures.
The HB model is one way this can be done easily and with useful results. This application
to binomial data parallels and further extends the ideas contained in the normal means
problem considered by Berger and Deely (1988) and the Poisson rates described in Smith

and Deely (1997). In particular we show how this model can
e accommodate unequal and small sample sizes;

e incorporate the practitioner’s knowledge of suppliers as a group into the selection

procedures;

e provide easily computable answers to the practical question of which supplier is best

by how much.

The general problem of selecting the best binomial population has received consid-

erable attention in the literature but mainly from a non-Bayesian approach. Pioneering



papers by Sobel and Huyett (1957) and Gupta and Sobel (1960) dealt with selecting the
best and selecting a subset containing the best binomial population respectively. Later,
Gupta, Huang and Huang (1976) studied a conditional subset selection rule and a related
test of homogeneity. Further treatment with new results were also presented in Gupta and
McDonald (1986). A good discussion of these and other non-Bayesian papers can be found

in books by Gibbons, Olkin and Sobel (1977) and Gupta and Panchapakesan (1979).

Empirical Bayes approach to statistical inference was started by Robbins (1956). Later
Deely (1965) and Deely and Gupta (1968) developed empirical Bayes procedures for general
selection problems including among them the binomial case with independent 8;’s, each
with a beta prior with unknown parameters. Bratcher and Bland (1975) considered a naive
Bayesian approach in which the 6;’s are independent with known but perhaps different beta
priors. They considered various multiple comparisons based on computing the posterior
probabilities of each population being best and used numerical integration to calculate
these. Gupta and Liang (1986) and Gupta, Liang and Rau (1994) derived non-parametric
empirical Bayes procedures for selecting the best binomial population under the assumption
that 64,...,0;, are independent each with an unknown non-parametric prior distribution.
Also later Yang (1987) applied their model but adopted the so called PP* criterion, which
had been previously introduced for a general selection problem by Gupta and Yang (1985).
This criterion, in an effort to relate the Bayesian criterion to the classical P* condition,
states that the Bayes P* procedure selects the smallest subset for which the posterior
probability that the subset contains the best is at least P*. Subset selection procedures

for binomial models based on a class of priors were obtained by Gupta and Liao (1993).

In addition there have been other relevant papers dealing with estimation as opposed

to selection for the binomial case. Albert (1984) considers the simultaneous estimation of



k binomial probabilities and develops empirical Bayes estimators under an exchangeable
hierarchical model. Leonard (1972) also considers this problem but uses a logit transforma-
tion to bring the problem into a multivariate normal context. A lot acceptance problem
was considered by Eaves (1980) in which n items are drawn from each of k lots under
binomial sampling. An exchangeable hierarchical model is assumed and the predictive

distribution for the next lot is computed when all items from all lots are good.

A related problem, that of allocating the observations to the various suppliers con-
strained by the fact that the total is fixed, has also received some attention in the literature.
Brooks (1987) deals with a Bayesian approach for k¥ = 2, while Brittain and Schlesselman
(1982) discuss this case from a frequentist viewpoint when trying to estimate p; — ps or
p1/p2. These problems will not be discussed in any detail but some suggestions about

allocation will be made in Section 3.

Thus it appears that the literature to date has largely ignored the situation in which
prior information about the group of suppliers as opposed to suppliers individually is avail-
able. Whereas it has been recognized that such prior information is useful in various other
problems (see for example Berger (1985), Chapter 3), the application to the important
practical binomial selection problem has been ignored. Furthermore the selection proce-
dures derived so far for binomial populations have not addressed the issue of “by how
much” is the best supplier “best” (see Smith and Deely (1997) for a description of this
concept in Poisson context). It is the purpose of this paper to address both of these defi-
ciencies. A more thorough discussion is contained in Section 3 after having presented the
mathematical details of the model in Section 2. Examples illustrating various aspects of
the model are given in Section 4 with concluding remarks and suggestions for further work

given in Section 5.



2. Mathematical details, the prior distribution and selection criteria

Let z = (z1, ..., xx) be the vector of observations from the k suppliers, z; conditional

on #; having the binomial distribution

f(l)zwz) = (ZZ> 0:31(1 — Hi)ni—wi,
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and let 6 = (01,03, ...,0;) be the vector of unknown parameters for which we want to
select that supplier with largest ;. The prior distribution 7(8) on 8 will be obtained
via the hierarchical Bayesian structure (see Berger (1985), Section 4.6) in which (@) is
given as a mixture of a conditional prior with hyperparameters 8 and n and a hyperprior

distribution on these parameters; that is,

ﬂ@://ﬂmmmmmwm.

Conditional upon the hyperparameters 3, n, the components of 8 are assumed to be i.i.d.

with a common beta distribution given by

I'(1/n) g1 _py St
G g %

(2.1) r(0d6m) = =
where 0 < 8 < 1,7 > 0; thus
n(18,m) = TT 7(6318,7).

This particular form of the beta distribution will be convenient for the numerical compu-
tations and elicitation of prior information. These topics will be discussed more fully in

the next section. Special note is taken here that

(2-2) B = E(6:|8,n) and (1 - B)B(n/(n+1)) = Var (6:|6,n) = o”



We will use the following notation for the beta distribution:

g(yla,b) = B(a, b)y* (1 — y)> !
B(a,b) =T(a+b)/(I'(a)L'(b))
(o, = [ glola, b

The form of hyperpriors on 8 and 7 will be discussed in Section 3 in the context of various

types of prior information.

Under the notation and assumptions above, it follows that the conditional distribution

of @ given z, 8 and 7 is given by

(24) n(0la, B,1) = T w(6:lz:, B,)
where 0 4
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Then the posterior distribution of 8 given the data z can be written as

(2.6) r(6lz) = /0 N /0 w(aw,n>%@é;lhl<ﬁ>h2<n>dﬁdn.

In fact we will not require the precise form of 7(6|z) since decisions about which supplier
or subset of suppliers should be selected will be based on easily computed expectations

taken with respect to this posterior. We now develop two such criteria.



C1. Posterior probability of selecting the best.

Let

Pj(b) = P(OJ > bl; for all 1 # jlg),

where b > 1. It will be noted that P;(1) is just the posterior probability that 6; is largest
and the usual PP* selection criterion of Gupta and Yang is obtained by putting in the
selected subset the smallest number of suppliers for which the sum of their corresponding
P;(1)’s is at least P*. We have suggested here a stronger criterion for selection purposes;
one that allows the practitioner to express a quantity b, i.e. how superior does the best
have to be, and a probability P* to be attained by the selected subset. Of course for b > 1
it is no longer true that X P;(b) = 1 and in fact it may be that for a given b > 1 no supplier
is better than the othérs by amount b with sufficiently high probability. The experimenter
can easily take another look and perhaps lower b or the probability requirement. In any
case we believe the P;(b)’s provide a useful criterion for selecting one or more suppliers
and gives the experimenter the interpretation which relates to the practical problem. In
particular the quantity P;(b) can be most useful in the case in which two suppliers seem to
be better than the rest and a comparison of just the two is required. Here the calculation
of, say Pi2(b), as a function of “b” can be very useful in deciding the extent to which

supplier 1 is really better than supplier 2.

Using (2.1) and letting A;(b) = {6 : 6; > b6; for all i # j}, the expression for P;(b)

can be derived as follows:



f(z|B,n)
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noting that the terms in brackets are equal, a; and b; being defined earlier. Thus evaluation

h1(B)hz(n)dpBdn

/ HG9/blaz, )9 (051a;, b;)d8;

of each P;(b) requires only a three dimensional numerical integration for all choices of h;

and ho, provided the incomplete beta function is available.

C2. Expected number of future successes.

Another useful criterion for selection purposes is obtained by considering future ob-
servations. Suppose n future observations are to be taken from any one of the suppliers.
Let the total number of successes be denoted by Y and compute E(Y;|z) for each supplier
t=1,...,k, where E is the expectation taken with respect to the distribution of Y condi-
tional on z, i.e. the Bayesian predictive distribution. Then the supplier with largest F(Y;)

is called best. Calculation for F(Y;|z) is easily obtained as

B(¥lz) = [ Bz 0)n(0ie)dd: = nB(oil).

Thus ranking suppliers on the basis of largest expectation of the number of successes in
n future items is equivalent to ranking them on the basis of their posterior means based on
the present data z. An expression for E(6;|z) involves only a two dimensional integration

and is given by:

e BOR= [ [ [ e (2)] Lo sphataiasar

using (2.4), (2.5) and noting that the mean of g(6;|a;, b;) is a;/(a; + b;).

Using this Criterion to rank the suppliers, various selection procedures can be defined.

Here we discuss two as follows:



(i) put the ** supplier in the selected subset if and only if E(6;]z) > ¢, or

(ii) select a subset of “r” suppliers corresponding to the “r” largest F(6;|z) values;

(1P

the values “c” and “r” being specified by the decision maker.

The procedure in (i) assures the decision maker that ALL of the suppliers thus selected
will have the expected number of successes at least as large as “n ¢” whereas the procedure
in (ii) assures the decision maker that the expected number of successes for that group
of selected suppliers is larger than that for any other subset of “r” suppliers. Further
amplification of this point will be made in Section 5. We now turn our attention to
hyperpriors h; and hs and discuss how they are influenced by the various types of prior

information available.

3. Prior information and elicitation for A1 and ho

There are two main advantages of the hierarchical structure. Firstly, it provides
a realistic Bayesian model which can easily accommodate the type of prior information
which is likely to be available; secondly, it provides a more precise model for what is
commonly called “parametric empirical Bayes” (see Morris (1983)). In the particular
application we make to supplier’s data, it is clear that there is some prior information
concerning the suppliers as a group, e.g. approximately where their quality is likely to
be and what sort of variability amongst the 6;’s can be expected. But if this kind of
information is unavailable, then it is still realistic to treat the 6;’s as exchangeable with
non-informative hyperpriors. Both of these ideas are covered in the HB model. This
type of prior information is to be contrasted to those Bayesian models which assume the
f;’s are independent with known but perhaps different distributions. This approach is

generally quite unrealistic and therefore has limited application. On the other hand it is



- sometimes argued that a prior distribution on the 6;’s exists but is unknown. When this
prior is assumed to be in some parametric family, it is then suggested that repetitions of
the process may yield estimates of these parameters. Acting as though these estimates
were the true unknown parameter values, one can then use the Bayes procedures, since
the prior is then “known” and hence the expression “parametric empirical Bayes”. What
estimators are sensible in this context is generally answered by embedding the unknowns
ina lzirger truly Bayesian model, hence the incorporation of hyperpriors and the expression
Bayes empirical Bayes, (see Deely and Lindley (1981)). Often such truly Bayesian models
yield complicated numerical problems related to the form of the posterior distribution, but
recent developments of the Gibbs sampler and other related Markov chain Monte Carlo
methods (see Smith and Roberts (1993)) have generally overcome these problems. In any
case the particular problem treated in this paper does not involve such complications since

P;(b) in (2.7) and E(6;|z) in (2.8) are easily computed.

We now discuss the choices for Ay and hs and their relationship to the form of the

prior information available.
Case 1 : Hierarchial Bayesian

It is quite possible that in some cases decision makers will have enough prior informa-
tion to specify precise values for 8 and 7 in 7(6|8, n); that is, a particular beta distribution
as a prior distribution for 64, ..., 60, can be determined. However we believe a more realis-
tic and more frequently encountered situation involves prior information about the group
of suppliers as opposed to individual suppliers. The hierarchical model facilitates this kind
of prior information via the introduction of the hyperpriors. Specifically we consider how
to use prior information which arises from eliciting answers from the practitioner to the

following questions:
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(1) Where do you expect the average of the ;s to lie; i.e. can you specify an interval,

.say (Br, Bu), within which you are confident that the average of the 8;’s will lie?

(2) How variable do you consider the 6;’s to be; that is, can you specify a value, say 6,

such that all of the 8;’s will be at least this large with some specified confidence.

Answering the first question will determine k() as a member of the beta distribution
whose mean is taken as the midpoint of the interval (81, 8,. This choice is influenced by
convenience but it is consistent with the elicited information while also allowing a small
probability that the mean of the ;’s is outside the interval specified by the experimenter.

Computation of h;(f8|z) could be used to assess the experimenters original judgment.

We will use the answer to the second question in conjunction with the answer to the
first question to determine a region in the (8,7n) plane which satisfies both. This will
take the form of computing an upper boundary for n , say u(8), as a function of 8. The

hyperprior on 7 conditional on 8 will be taken as uniform on the interval (0, u(g3)).
Case 2 : Robust Bayesian

In this situation we want to use prior information that may not be good enough
to precisely specify the hyperprior distributions. In particular suppose that the elicited
information about the 6,’s provides only intervals on 8 and 7 with respective probabilities.
This means that we know only that the hyperpriors belong to a certain “quantile” family
of distributions denoted by H. Our technique in this context is to compute maximum and
minimum values of the given criterion function over H. If the difference between these two
values is small, we can then confidently make a “robust” decision whereas if the difference is
large we will know that the elicited information is too weak and hence contributes nothing

beyond a purely noninformative analysis. The numerical technique used to perform these

11



calculations are given in Section 4 in the context of a numerical example. Further details of
this approach can be found in Deely and Johnson (1997) where the normal means problem

in analyzed using this Robust Bayesian technique.

To obtain this type of information, consider the questions asked in Case 2 above.
However, instead of using a specific hyperprior over the whole interval [0, 1] for 8, we can
elicit intervals for 8, say I, I» and I3, with respective probabilities pi, p2, p3. Similarly we
can elicit intervals J; and J» for n with probabilities ¢; and g». Thus we have obtained six
rectangles ih the (B,n) plane in which rectangle I; x J; has probability p;q;. This in turn
defines the quantile family H which contains the hyperprior h(3,7n) and the calculations

of the minimum and the maximum of the criterion function over H can proceed.
Case 3 : Non informative Hierarchical Bayesian

In the situation in which practically nothing is known a priori about the suppliers with
respect to 8, one reasonable starting point is to assume that 64, . . ., 0 are exchangeable but
not independent random variables. The reason being that knowledge of the one 6; helps
in determining another. Of course any prior distribution obtained via a mixture implies
exchangeability; in particular the structure given in Section 2 insures exchangeability for
any choice of h(f3, n’). Consistent with the absence of prior information is the assumption
of non-informative hyperpriors. Since 0 < 8 < 1 we can take a non-informative choice for

h1 as the uniform distribution.

For hy we use the fact that conditional on 8 the variance as given in (2.2) is bounded
by B(1 — B) and take the hyperprior for the variance conditional on § as uniform on the

interval [0, 8(1 — B)]. This then induces the hyperprior on 7 as

12



1
ha(n) = W,0<ﬂ<007

i.e. n and 8 are independent.

It could be suggested that a simple non-informative choice for hy would be ha(n) = 1.
However this distribution induces an improper posterior distribution in the special case in

which the n components of the data vector z are either all 0 or all n; forall: =1,2,...,k.

4. Numerical Examples

In this Section we illustrate the suggested techniques as they apply to the criteria
functions. Herein we use just one hypothetical set of binomial data but analyze it for
each of the three cases for prior information described in Section 3 and for the two criteria

functions defined in Section 2.

Suppose then that the data given below has been observed.

X 21 19 14 12
n 23 21 18 19
sample p 0.913 0.905 0.778 0.632

For this data it is clear that Supplier 1 seems to be best, so we will compute the
relevant values of the criteria functions for this supplier; namely we will compute P (b)
and Py4(b) and E[6;|.X] as defined in Section 2. Clearly, there are many other computations
that could be made but we will focus on just these to illustrate the main ideas.The Tables
below summarize the various scenarios with Tables 1 and 2 dealing with Criterion 1 and

Criterion 2 respectively.
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Table 1

Probability Supplier 1 is best by an amount “b”

b
1.000 1.050 1.100
Case 1 0.510 0.220 0.070
Pi(6) | Case 2 0.497 (0.411) | 0.294 (0.057) | 0.155 (0.003)
Case 3 0.498 0.269 0.137
Case 1 0.960 0.870 0.740
Pr.(b) | Case 2 0.973 (0.814) | 0.935 (0.525) | 0.855 (0.195)
Case 3 0.989 0.978 0.946

Table 2

Predictive values and Posterior Means

Case 1 Case 2 Case 3

E[Y|X] 20.7 19.1 (15.6) 20.9

E(6,|X) .0900 0.908(.742) .0910
E[Y3|X] 18.7 19 (15.5) 19.0

E(0;|X) 0.892 0.903 (.739) 0.904
EY;3|X] 14.9 16 (12.8) 14.0

E(031X) 0.828 0.877 (.711) 0.779
E[Y4|X] 14.4 16 (12.4) 12.1

E(04X) 0.757 0.852 (.655) 0.635

For Case 1 we imagined that the elicited answers to the two questions posed in Section
3 were: (1) an interval for 8 being [0.7, 0.9] with 95% confidence and from (2) the boundary
for n being a line from “0” at 8 = 0.65 to “0.3” for 8 =0.95. Furthermore the answer
in (1) fixed the hyperprior on 8 as a beta with parameters “a” =48 and “b” =12 and
the hyperprior on 7 conditional on 8 was taken to be a restricted beta on the calculated

interval with mean at the midpoint of the interval.
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For Case 2 we used the answers above but interpreted them less rigidly and came up
with the regions (as defined in section 3) and respective probabilities as: for 3, intervals
[0.65, 0.7] , [0.7, 0.9], [0.9, 0.95] with respective probabilities of 0.1, 0.8, 0.1; and for 7,
intervals [0, 0.07], [0.07, 1] with respective probabilities of 0.8 and 0.2. The noninformative

Case 3 is as given in Section 3. and P4 (b) and F[6;|X]

Several features of these Tables should be noted. Firstly, by looking at the data it is
clear that Supplier 1 is not very much different from Supplier 2 and hence the value of P;
(b) is close to 0.5. But when comparing Supplier 1 to Supplier 4 a very different result
obtains, namely we are quite certain that supplier 1 is better than Supplier 4 and in fact
we are 74% certain (Case 1) that Supplier 1 is 10% better (b= 1.1) than Supplier 4. The

noninformative analysis gives an even better picture.

These ideas are supported by the results in Table 2. Here the predictive values for
Suppliers 1 and 2 are very close whereas there is considerable difference between Suppliers
1 and 4. It can also be observed from Table 2 that the hierarchical model has brought
about the expected “shrinkage” effect. This can be seen vividly by examining the posterior

means reported in Table 2.

It does appear from the data presented here as a hypothetical example and the imag-
ined elicited prior information necessary for Case 2 does not indicate that very strong
statements can be made in the Robust Bayesian scenario. This situation can arise however
if the elicited information is not good enough when compared to the data obtained. In
any practical situation, this would result in further elicitation or an acceptance that strong

inferences are not possible.
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5. Remarks, discussion and conclusions

(i) Test of hypothesis

There may be some situations in which a decision maker is concerned in the first
instance about testing the equality of the supplier’s quality, i.e. test Hg : 01 = ... = 0.
Whereas we feel that this is not in general the ultimate goal of the experimenter, it is
quite easy to incorporate this situation into the model by simply incorporating a prior
probability v that Hy is true (i.e. P(Hj is true) = P(n = 0) = v) and then computing the

posterior probability of Hy which is given by:

= E]

where f(z) and f(z)|8,n) are given in (2.5) and

Zz) Bﬁwz(l _ B)N—-Zm,hl(ﬂ)dﬁ

z

£(z]0) = /0 (@B, 0m@Bas = [ fi (

o =1
Then each P; should be multiplied by (1 —+*) to obtain the posterior probability that §; is
largest since p; as given in (2.7) is conditional upon Hy false, i.e. > 0. One could simply
compute the Bayes factor, BF = f(z|0)/f(z), as evidence for believing Hy. We point out
however that the model of Deely and Zimmer (1987) seems more appropriate for testing

the equality of supplier’s quality.

(ii) Comparisons and possible extensions

It is clear that the HB model offers a much wider class of models than the naive
Bayesian or the empirical Bayesian approaches which have been reported in the literature
thus far. In the first instance, the HB model allows through the hyperpriors h; and ho
the facility to use prior information about the suppliers as a group whereas the naive

models have no place for such information. We believe that this prior information begins

16



with an assumption of at least exchangeability, but more informative models are also
possible as we have shown in the examples in Section 4. One could argue that some
approximations of the P;’s or E(6;|z)’s might be close enough and not require numerical
integration. There has been some work in this direction (see Albert and Gupta (1985) and
Leonard (1972)) but since the numerical integrations required herein are relatively easy,
such approximations would appear to be unnecessary. Secondly, we point out that only a
very simple hierarchical model was used in this paper. It is clear that there is scope for
richer models. For example, one could replace 8 in (2.1) with y;1 81 +ys282 where y;1, y;o are
known “regressors” for i = 1,...,k and 8 = (B, B2) is a vector of unknown “regression”
coefficients with hyperprior h;(8). This model would incorporate various descriptions of
changes in 0; as well as the naive Bayesian model in which each 6; is assumed independent
with a known beta distribution possibly with different parameters. This latter case would

be modeled by taking h; and ho as point distributions at (1, 1) and 1 respectively and

then solving for y;; and y;2 to obtain the given known beta parameters.

Another possible extension of the HB model would involve covering partial exchange-
ability particularly relevant when k is large. In this paper we have discussed analysis when
k is small and have tacitly assumed all £ binomial probabilities are exchangeable. It may
be the case that, in a large group of suppliers, exchangeability is only tenable within sub-
groups and from subgroup to subgroup there may be exchangeability only in their means.
Of course this fact may not be recognizable until after observing the data. The H B model
should be enriched to allow the possibility of partial exchangeability being indicated by

the data and then proceeding with the selection problem.

Finally it should be noted that the HB model has no difficulty with either small

or variable sample sizes whereas naive empirical Bayes procedures require large sample

17



sizes to imply their optimality properties. In addition these models cannot give practical
answers to allocation of small samples amongst suppliers. In contrast the formulas for
P;(b) or E(f;|z) developed herein can be used to generate a matrix of possibilities over
a grid of varying small samples. The experimenter is then given tangible information
by which a satisfactory design can be selected. There has been very little work done in
this area. Recently, Yang (1988), has given sufficient conditions for P;(1) < P;(1) as a
function of z; and ;. He showed that if z; — 2; > max(0,n; — n;) then P;(1) > P;(1).
Although this condition is useful, it does not completely partition the (z;,z;) space and
in fact when n; —n; is large there are many possibilities for z; and z; which do not satisfy
Yang’s condition. In particular the region where (z;/n;) = (z;/n;) (or nearly so) does
not in general satisfy this condition. Our numerical results seem to indicate that over this
region the smaller sample size gives the larger P;(1); but this remains to be demonstrated

theoretically.

(iii) Differences in selection criteria

It has been proposed in this paper that either the P;(b)’s or the E(6;|z)’s be used for
selection purposes. Which to use will depend on the requirements of the practical situation.
If a decision is to be made, say contracting with the selected suppliers for delivery of items
over a period of time, then P;(b) should be used for either selecting the best or selecting
the smallest subset for which the posterior probability that the largest (by amount b) 6;
is in the selected subset is at least P*, i.e. the PP* rule. If, however, a decision for the
short term is to be made, say which machine to use for the next n items, then F(0;|z) is
more appropriate. To select a subset using this criterion, the requirement could be either
to insure that the expected number of successes is at least N* (i.e. take ¢ = N*/n in

Section 2 (ii)) or to maximize the expected number of successes from a fixed number r of

18



the k£ suppliers, r < k.

L(S,0) = ko — 3 O

where S, ranges over subsets of size r. However the procedure which insures the expected
number of successes is at least N* has not yet been shown to be a Bayes procedure in the

decision theoretic sense.
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