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In many contexts in which multivariate linear regression models are applied, some
or all of the independent (predictor) variables are measured with error, and the goal is to
assess the relationship of the dependent variables to the true predictor variables. When this
is the case, it is argued that it is extremely important to determine the reliability matrix A
of the measurement X of the vector of predictors. If A is singular, the slope matrix B is not
identifiable. If A is nonsingular, but nearly singular, B cannot be accurately estimated.
Using A, or an estimate of A, one can construct an estimator of B which is a simple
adjustment of the classical least squares estimator of slope. It is shown that some of the
unpleasant behavior (nonexistence of expected values) of estimators of B stem from similar
behavior of estimates used for A. Also discussed is a useful canonical reliability analysis
of the predictor variables which closely resembles the principal component pre-analyses
of predictors which are advocated for spotting and treating multicollinearity problems in
classical linear regression.
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1. INTRODUCTION

In many applications of multivariate linear regression, some (or all) of the components
of the r—dimensional (row) vector z of predictors are known to be measured with error.
If the goal of investigation is to assess the relationship of the p-dimensional vector Y
of dependent variables to the true predictor z, rather than to the observed predictor X,

then the classical least squares method produces biased estimates. (Cochran, 1968; Fuller,

1987).

Alternative methods of inference are based on multivariate linear errors—in—variables

regression (EIVR) models of the form:
Yi=a+z;B +e;, Xi=z; + fi, 1=1,2,...,n, (1.1)

where the subscript ¢ indexes the observation, f; is the vector of measurement errors for the
true predictor z;, and Y;, X; are the observed vectors of dependent variables and predictor
variables, respectively. The vector e; is a residual error vector for the regression of ¥; on
w,, it may include both errors of measurement for a true (latent) vector y; of dependent

variables, and residuals from the regression of y; on z; (called equation errors in Fuller,

1987).

It is usually assumed that for given zi,...,2,, the vectors €; = (e;, f;) of random
errors are (conditionally) independent and identically distributed (i.i.d.) with common

mean vector 0 and common covariance matrix

N = (Eee Eef>
T\ ZBre Bgr )0

The vectors x1,%32,...,2, of true predictors can be regarded either as fixed unknown
parameters (functional case), or as i.i.d. random vectors with common mean vector y and

covariance matrix X, (structural case).

When all random vectors (e;, and possibly z;) in the model have multivariate normal
distributions, the parameters a, u, B,X;;,X.. of the model are not identifiable without

restrictions. Approaches to estimation must take this fact into account. That is, the normal
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distributions in linear EIVR models play a “worst-case” role in robustness considerations.
For this reason, we will discuss estimation in the model (1.1) under multivariate normality
assumptions on the error vectors ¢;. Further, we will concentrate on the structural case of
the EIVR model (1.1), and assume that the z;’s are normally distributed. Under reasonable
assumptions on the sequence {1, z2, ...} of true predictor vectors in functional linear EIVR,
models, maximum likelihood estimators derived from the corresponding structural EIVR
model are asymptotically efficient in the functional case context as n — co (Gleser, 1983;
Nussbaum, 1984; Bickel and Ritov, 1987). Hence, study of estimation in the structural

case has implications for estimation in the functional case.

To summarize, it is assumed that:
&i = (e;, fi) are i.i.d. MVN (0, Z..),
z; are 1.i.d. MVN (u,3;,),
E1ye-yEn, wl‘, ..., T, are mutually independent. (1.2)

The parameters of the model are a, 1, B, ¥, and ... Our primary interest is in estimation

of the r X p matrix B of slopes.

Identifiability

Let
Zi =Y, X)), 1=12,...,n.

Under the assumptions (1.1), (1.2), the Z; are i.i.d. MVN (7, ¥), where

B . B’EIZB’*'Eee Blzf“:-l_zef
77—(0!+,UB>/~L)’ ¥ = ( szB—{—Efe sz+2ff .

Note that there are 3(p+r)(p +r + 3) free parameters in 7, ¥, and that these parameters
determine the joint distribution of the observed vectors Z,...,Z,. On the other hand,
there are a total of

%(p +r)(p+r+3)+rp+ %r(r +1)
iree parameters in the parameters «, y, B, $;4, Zee of the model (1.1), (1.2). Thus, the
model (1.1), (1.2) is overparameterized, and a minimum of rp + 1r(r + 1) restrictions are

needed to parametrically identify the model.
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It is not difficult to see that B is confounded with the slope matrix © = 2}—} Yse of
the regression of the error vectors e; on the error vectors f;. Indeed, we can represent the

observations Z; in two ways:
Z; = (a,0) + z;(B, I,) + fi(©, I,) + (e; — £i0,0),
and
Z;i = (a+ u(B — 0),0) + (fi + p)(©, ;) + (z; — p)(B, I;) + (ei — £:©,0),

where I, is the r—-dimensional identity matrix. In the second of these two representations,
the (fi + p) play the role of the true predictors z; and © plays the role of B. Since z;, f;
and e; — f;0 are mutually independent, both of the above representations yield the same

common distribution for the Z;’s.

Barring any way of telling z; from f;, it appears necessary to know the value of ©.
Fortunately, in many applications Y; and X; are separately measured, and it is reasonable

to assume that
Yfe=0. (1.3)
In this case, © = 0. Note that (1.3) imposes pr restrictions on the parameters of the model

(1.1), (1.2), leaving Zr(r + 1) further restrictions to be determined.

Note. If © is known and is not equal to zero, we can reduce to the case (1.3) by the

transformation Y; — f’, =Y; — X;0. This yields the representation
Yi=a+z:B+é&, Xi=uzi+fi,
where B=B—0,6; = ¢; — fi©. Note that cov (€&;, f;) = 0, and that the covariance matrix

of &; is Ygz = Yee — O'E5¢0. Estimates of B”, Yz and X, obtained from f’i,Xz- directly
yield estimates of B = B + © and .. = 3z + 0'S,,0.

From dimensionality considerations, it is natural to impose the remaining %r(r +1) re-
strictions on the parameters of the common distribution of the r—dimensional observations

X;. If this approach is followed, it is shown in Section 2 that the reliability matriz
A=33%T0 = (Zos + Z55) 1 00s (1.4)
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plays an important role in the estimation of B. Indeed, regardless of the particular restric-
tions used (as long as they only restrict the parameters of the marginal distribution of the

X,’s), the maximum likelihood estimator ZA?MLE of B has the form
BMLE = A_IBLSE, (1'5)

where Bigz is the classical least squares estimator of the slope matrix of the regression
of Y;on X;,i=1,2,...,n, and A is the maximum likelihood estimator of A (based only
on the X;’s). It is further shown that the expected value, E(B’MLE), of Bypp exists if
and only if the expected value of A~! exists. This result provides an explanation for the
nonexistence of integral moments of BMLE when, as is often the case in EIVR contexts, this
unpleasant property occurs; and further suggests adjustment of Al asa way to obtain

better—behaved estimators of B.

In Section 3, it is shown that the reliability matrix A contains key information about
the accuracy with which one can estimate the slope matrix B. For example, the character-
istic roots and vectors of A serve to identify linear combinations of B which can be most

(or least) accurately estimated.

The results in Sections 2 and 3, indicate the importance of assessing measurement
reliability (in terms of the reliability matrix A) in applications of multivariate linear re-

gression.

2. MAXIMUM LIKELIHOOD ESTIMATION

It follows from (1.1), (1.2) and (1.3) that the vectors Z; = (¥;, X;), i = 1,2,...,n,
of observations are i.i.d. with a common (p + r)-dimensional normal distribution having

mean vector n = (@ + pB, 1) and covariance matrix

U — Yyy Z)YX — BlzzzB + Z)ee Blzzz
EXY z3XX YeeB Yoz +fo )
Consequently, the conditional distribution of Y, given X; is multivariate normal with mean

vector

ElYilXi] = a + pB + (X — p)(Zoz + f5) ' Ee0 B
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and covariance matrix
Yyy.x =Xee + B'Ee2B — B'S14(Z2z + Z55) 1220 B.
From (1.4), A = (3zz + Xf5) ' 8s,. Thus
ElY;|Xi] =€+ X;AB, (2.1)

where

E=a+u(I, - A)B.

Tt follows from (2.1) that the classical least squares estimator Bygg of the slope matrix

for the regression of Y; on X; is an unbiased estimator of
B =AB, (2.2)
rather than of B, and hence is biased unless A = I,.

We have already implicitly assumed that the covariance matrix Sxx = X, + 2 75 of
X; is nonsingular. Let us also assume that the common covariance matrix ¥, of the true

predictors z; is nonsingular, so that A is invertible. Consider the reparameterization

(Cl, [, B’ 21:1:’ 2667 fo) - (67 My ﬁa 2111:’ ZYY'Xa Z"ff) (23)

This reparameterization is one-to—one onto since

a=E—pS5; 5B, B =3} (Ss +Tsp)P
Yee = LYY.-X — ﬂ'szzgj(zm + fo)ﬂ. (2.4)

We can write the density of Z; in terms of the new parameterization as

f(Zi|&, 1, 8,522, Zvy.x, Zf5)

= f(}/iIXia‘fa:BaEYY-X)f(Xill"', Ezz, fo) (25)
Let . .
7 = (?, _) = n_l Z(Y’“Xz) = n_l Z ZZ,
=1 =1



and -

Wyy Wyx . =\ e
W= (e W) =X DE-)

Theorem 2.1. For any parametric restrictions placed on (Z,;, T 7f) sufficient to identify
these parameters, the maximum likelihood estimators f}zx, » 7 of Xizz, X5 are a function
of the data only through Wx x. Further, the maximum likelihood estimator of y is i = X.

When ZAIM is nonsingular, the maximum likelihood estimator of B is
Bus = A Bies = A_1W§§(WXY, (2.6)

where A = (ﬁm + 5 f f)_lﬁu. Finally, maximum likelihood estimators of the remaining

parameters are

&=Y — X[I, + (AN (I, — A)] Bz

and

. 1 _ e a o .
Yee = ; [WYY — WYXWX;(WXY] - B;.snszzxa}(zﬂ? + Eff)BLSE’

when ¥, is nonsingular.

Proof. The representation (2.5), the fact that the reparameterization (2.3) is one-to—one
onto, and the given assumption that restrictions are placed only on ¥,, and & f7 enable
us to find maximum likelihood estimates of y,¥;, and £;s by maximizing the marginal
likelihood of Xj,...,X,. Maximizing first over p yields o = X. It then follows that f)u
and ¥ 75 depend only on Wxx (as does f\) Similarly, maximum likelihood estimators of
€, 8 and Yyy.x are obtained from the conditional likelihood of the Y’s given the X;’s.

Standard theory yields
& = ?— 7B\LSE, B = BLSE = W)?%(WXY,

. 1 B
Yyvy.x = ~ (Wyy — WyxWxxWxy).

The formulas for B,& and 3. follow directly from (2.4) and the definition of A. It is
conceivable that 3;, can be singular; in this case, maximum likelihood estimators of B, a

and Y. do not exist. [J



Examples of restrictions that may be placed on ¥;; and Yfs to identify these pa-
rameters are given in Fuller (1987); see also Fuller and Hidiroglou (1978). It should be
mentioned that Theorem 2.1 allows for more than 1r(r + 1) functionally independent re-
strictions. For example, Theorem 2.1 applies when ¥,, and X5 are assumed to be known,
or known up to a constant multiple. However, most investigators would prefer to impose a

minimal number of restrictions, so that as little a’priori information as possible is required.

It is well known that E(BLSE|WX x) = B. Theorem 2.1 states that A is a function of
the data only through Wx x. Thus, if E(éMLE) exists,

FE [BMLE] =F {E [A_IBLSEIWXX]}
=EB[Ag]=E [A-1A] B. (2.7)

However, it is frequently the case that E(BMLE) fails to exist. From the above analysis and
Fubini’s Theorem, the failure of E(BMLE) to exist must stem from the failure of E(A—l)
to exist. That is

E[Bu.z) exists if and only if E[A™!] exists. (2.8)

When E[By.5] fails to exist, the result (2.8) indicates that A~ should be replaced in (2.6)
with an alternative estimator which has smaller tails in its distribution. An example of
an adjustment of B,z to obtain better moment properties appears in Chapter 2 of Fuller

1987). However, this adjustment is not based on the perspective provided by the result
b
(2.8).

If interest is centered on estimating the slope matrix B of the regression of the de-
pendent variables on the true predictors z;, Theorem 2.1 shows that B can be estimated

in two stages:

(1) Estimate A from data on Xi,..., X,,

(2) Use A to modify the classical least squares estimator E’LSE obtained from the

regression of Y7,...,Y, on Xy,..., X,,.

When r = 1, step (2) is known to psychometricians as the “correction for attenuation” of

Byss (see Fuller, 1987).



3. THE ROLE OF THE RELIABILITY MATRIX A

Note that

(zi, X;) ~ MVN ((#,u), (g:i Yoo ))

Yxx
so that
2| X; ~ MVN (u(I, — A) + z;A, Zz(I, — A)). (3.1)

Thus, A is the matrix of slopes for the regression of the true predictors z; on the observed
predictors X;. From this result, it is apparent that A must be nonsingular in order for
X; to carry information about all elements of z;. Further, the magnitudes of the elements
of A indicate the precision with which X; estimates (predicts) z;, and thus indicates the

precision with which the slope matrix B can be estimated.

This can be seen another way. It follows from (3.1) that
T; = ,u.(IT — A) + XA + s;, (3.2)

where

si ~ MVN(0, £,.(I, — A)

is independent of X;. (The residual s; is also independent of e; since it is a function only

of z; and f;.) Substitute (3.2) into the expression for Y; in (1.1). Thus,
Yi=a+ pu(l, — A)B + X;AB + (e; + s:B). (3.3)

Note that e; + s; B is independent of X;. The equation (3.3) shows that B is the slope
matrix of the regression of ¥; on X;A. The least squares estimator from the regression
of Y; on X;A, it is exists, is known to be the componentwise minimum variance unbiased
estimator of B. For this estimator to exist, the sample cross product matrix A'Wx xA of
the X;A must be nonsingular. Assuming that ¥ x x is nonsingular, A'Wx x A is nonsingular

almost surely if and only if A is nonsingular.

If A is singular, there exists a non—zero vector ¢ for which tA’ = 0. In this case, tB is

not identifiable, and thus cannot be estimated.
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If A is nonsingular, the least squares estimator of the slope matrix of the regression

of Y; on X;A is
(A’WXxA)_lA'WXY = A_IW)?}(WXY = A_IBLSE.

The estimator A~!B.gz of B can only be used when A is known, but its accuracy is
certainly a lower bound to the accuracies of estimators of B (such as those of Theorem

2.1) used when A must be estimated.
For an r X p matrix A with rows ay,...,a,, let
vec(A) = (a1, az,...,ar).
Note that vec(A) is an rp—dimensional row vector. Given Wx x, the conditional covariance
matrix of vec(ELSE) is known to be W)}}( RIvy.x.
Since
EWxx) = (n—r-2)7'T%,

and B is a conditionally (given Wx x) unbiased estimator of AB, it follows that the

unconditional covariance matrix of Vec(A_lBLSE) is

cov | vec (A‘IBLSE)] - (;2) (A'S3% (A ® Byy.x ). (3.4)

n—r-—

A Canonical Analysis

Equation (3.4) shows that the accuracy with which B can be measured (by A~1Byqy,
when A is known and nonsingular) is inversely related to the magnitude of A for fixed
Yxx and Xyy.x. However, Lyy.x also depends upon A. To obtain a more precise nsight
into how the accuracy of estimation of B depends on A, we can make use of the following

canonical analysis.

Since ¥, is assumed to be nonsingular, there exists a nonsingular matrix T such that

Yo =TT, Sj;=TD,T', (3.5)
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where
D, = diag (a1, as,...,a,).
T'Sep(TY ™ =D, (3.6)

Note that
T—li)w(T')_1 =1,

is a simultaneous diagonalization of ¥;; and ¥s. Further,
(3.7)

A= (T YI, + D)™ 'T = (T 1D\T,

where A; = (1+a;)"Y,i=1,... ,f, and Dy=diag(A1,...,Ar). From (8.7), we see that the

columns of (T")™! are eigenvectors of A, with corresponding eigenvalues Ay, ..., A

Let T' be the matrix of orthonormal eigenvectors of X¢¢; thus
(3.8)

K

Yee =T'D, T, D, = diag(wy,... ,Wp)

where wy, ... ,w, are the eigenvalues of T.

Let _

V; = YiT = & + #:A 4 &,
Xi=XT=X,+ f;, (3.9)
where
! A=TBT,

;= ;771
(3.10)

It follows from (1.1), (1.2), (1.3), (3.7), (3.8), (3.9) and (3.10) that

I, 0 0
('%ia gi, fz) ~ MVN (ﬁ'aoao)’ 0 D, 0 ’ (3‘11)
0 0 D,

Repeating our earlier analysis, we find that A can be estimated by

where i = pT™1.
A= D;\'IALSE where
A1.51-: = TBLSEI1
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is the least squares estimator of the slope matrix of the regression of YVionX;,i=1,...,n.

Further, since
EX}? =1+ Dy = -D1+a = D}TI,

Yyv.%5 = Do+ A'A - AT, + Da)_IA
=D, + A'A—-A'DyA,
it follows that
1

cov [Vec(f&)] = (m) {D;l ® (Do + A'A — A'DAA)} . (3.12)

Consider the (j, k)-th element Az of A. From (3.12) the variance of A jk, the corre-

sponding (4, k)-th element of A, is

var(Aji) = (n__i__ﬁ) (A5 (wrc DIEDD f\z'A?k) : (3.13)

The reliability of the k—th element of ¥; is, from (3.9) and (3.11), equal to

r
N A?
= var(Z;A) = ik
= v = — ,
Va.I'( )k ;A?k +wk

while ); is the reliability of the jth element of X;. From (3.13),

A 1 : 1 : A?
it = (==5) (Zon) () [1-n D |2 | o
=1 =

T
i=1 PBRAVH
=1

Thus, if the length of the jth row of A is fixed, and for a given reliability 7, for
the k-th component of the transformed vector ¥ = YT of observations on the dependent
variables, the variance of A jk is a decreasing function of each of the eigenvalues A; of the
reliability matrix A. Note from (3.10) that Aj; is a particular linear combination of the
elements of B obtained from the jth row ¢; of T and the k—th column v, of I'; that is,
Ajr = tjByy. '

Note. When p = 1, so that there is one dependent variable measured, the transformation

Y — Y = YT is trivial (T = £1). The results above show that the variances of the
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estimators A j of the components A of the column vector A = T'B are decreasing functions

of the eigenvalues of A, for fixed A? and fixed reliability 7 of the scalar measurement Y.

A canonical analysis of A (or of A, when A is estimated) can clearly be useful in

multivariate linear EIVR contexts. It is easily shown that
0<A; L1, j5=012,...,m, (3.15)

where A; = 1 indicates that the j—th component of T'X; measures the corresponding
component of T'z; without measurement error, and a value of A; close to zero indicates
that the j—th component of Tz; is poorly measured by the corresponding component of
TX;. If one or more of the eigenvalues \; are close to zero, it will not be possible to estimate
certain linear combinations of the elements of the slope matrix B with accuracy. In such
cases, investigators may want to consider deleting poorly measured predictor variables, or
linear combinations of predictor variables (components of X=X T71), from the study.
Alternatively, other estimators may be considered (such as the ordinary least squares
estimator). One can also try to use instrumental variables for the poorly measured true

predictors to improve the reliabilities.

It is important to note that when r # 1 the eigenvalues \; of A are not the reliabilities
of the components of X;, although they are reliabilities for certain linear combinations of
these components. It is also true that unless r = 1, the j—th diagonal element A jj of A
is not the marginal reliability of the jth component of X;. Marginal reliabilities refer to
individual components measured in isolation. In contrast, A refers to joint measurement

of these components.

4. CONCLUSION

The results in Sections 2 and 3 give considerable justification to the study of the
reliability matrix A of error—prone measurements of predictor vectors in multivariate linear

regression.

Since estimation of A can be done entirely from observations on the predictors, pilot

studies involving these predictors, where possible, are recommended. Such studies, by use
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of the canonical approach of Section 3, can give warning of potential accuracy problems in
estimating B. In particular, near-singularity of A can result in problems very similar to
those of multicollinearity in classical linear regression. Because the “true design matrix”
i: (z; — T)'(z; — T), where T = n~1 Zn: z;, is not directly observable in multivariate linear
EIIVR problems, pilot studies (and z;}cima,tes of A) are the best way to spot such prob-
lems. Failure to study measurement reliability in ddva.nce of experimentation can result in

uselessly inaccurate data, and a waste of valuable experimental resources.
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