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I. What is empirical Bayes (EB)?

Empirical Bayes is a term that has many meanings, reflecting different approaches
to solving problems. It can describe a methodology for both estimation and inference,
an important distinction. For the most part, we will be concerned with empirical Bayes
estimation.

The general EB approach can be pictured as:

Classical

Statistics <Emp1r1cal Bayes
Bayes

EB methods sit “in between” classical (Neyman-Pearson) and Bayesian statistics, borrow-
ing pieces from each. Although this is necessarily an oversimplification, it serves to put
things in perspective.

Within EB methodology, the EB approach can be split into two distinct types
<Parametr1c (PEB)
Nonparametric (NPEB)
We will concentrate here on PEB techniques. Techniques of NPEB, while quite powerful,
are more suitable for large sample analyses, and most properties established for NPEB
estimators are large sample properties.

EB can also mean different kinds of inference, but here things get quite involved, as

EB inference can borrow pieces from different approaches.

Methodology : Inference
Classical > Classical
EB ~EB
Bayes — Bayes

Again, this picture is an oversimplification, but illustrates that the modeling (or esti-

mation) methodology can be quite different from the inferential methodology. EB inference
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can be any mix of classical and Bayesian, as can be the inference from any methodology.

" II. Statistical Formulations

The general problem is to make an inference about an unknown parameter 6 based
on observing data zi,...,z, according to a sampling distribution f(z1,...,zx|0).

The assumption of Classical Statistics is that there is a fixed, true value of §. No prior
(subjective) knowledge is available to be used in the estimation or inference process.

In contrast, the Bayes view is that 6 is a random variable whose distribution can be
quantified with prior (subjective) knowledge. This knowledge can be quantified in a prior
distribution, 7(#), and this prior can be updated, using Bayes rule. Using Bayes’ rule, the

prior 7(#) is updated to the posterior distribution using the formula

f(z1,...,2,|0)7(0)
f(z1,...,2,]0)m(0)dO °

where 7(0|z1,...,,) is the posterior distribution. The updated distribution, the posterior

m(0|z1,...,%Z0) = T

distribution for @, is the basis for all inference. .

The EB view is a synthesis, in that § may or may not be random. The Bayes model,
in which a hierarchy is used to model. Prior information, that may be useful, is available.
This information can be quantified with a family of prior distributions, 7 (6|7).

Note that the essential difference between PEB and NPEB formulations is the way
in which 7 is treated. In the PEB model, the functional form of 7 is known, i.e., we
have a parametric family of priors. In contrast, the NPEB approach does not assume the
functional form of 7 is known.

As stated before, NPEB is mainly a large sample technique, since many observations

are needed to estimate the totally unknown .

III. A Simple Example
Observe n Bernoulli trials with success probability p. Let Y = # successes, Y ~

binomial (n, p) with probability mass function

flylp) = <Z> pY(1 — p)™~Y = sampling distribution
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First we consider a simple prior distribution on p:

n(p) = 6p(1 — p),

which is symmetric about % Formally, we can calculate the joint distribution of y and p

as

f(y,p) = f(y|p)7(p)
_ 6<n> prH(1 — vt
Yy
Also, we can obtain m(y), the marginal distribution of y (unconditional on p), and 7 (p|y),

the conditional distribution of p given y, known as the posterior distribution, in the fol-

lowing way.

m(y) =/01 f(y,p)dp

1 n
=/ 6( ) py"'l(l—p)”_y'*'ldp
0 Yy

= 6(”) Lly+2)I(n—y+2) (The beta-binomial distribution)
y I'(n + 4)

and

fly,p) I'(n+4)

= p't1(1 — p)" ¥+l (beta distribution
W) Terarm-yra ¢ )

7(ply) =

The posterior distribution plays a most important part in Bayesian statistics, in that it
summarizes all information available on the parameter. As noted before, it is an “updated”
version of the prior, updated by the data through the use of Bayes rule. In the Bayesian
school, all inference comes from the posterior distribution.

‘A Bayes estimate of p is F(p|y), the mean of the posterior distribution, which is easily

calculated as
y+2

E(ply) = vy

A classical estimate of p, the maximum likelihood estimators 5, is the observed success

rate, y/n:
p=y/n.

3



With some algebra, we have

y+2
E(ply) = !

= (+F2) 2+ (-759) (5):

a weighted average of the classical estimate and the prior mean, with the weights dependent

on the sample size. Note that, in general, a Bayes estimate will be a combination of a
classical and prior estimates, with weights that reflect the quality of information (that is,
variance) of the respective estimators.
If we perform n = 50 Bernoulli trials and observe y = 35 successes, we get a Classical
estimate of p, p = 55 = .7, and a Bayes estimate of p: E(ply) = 23(.7) + & (.5) = .685.
‘We can also form Interval Estlmates for the classical and Bayes estimators. A simple
classical 95% (approx.) confidence interval is given by

1
pt2 <p(n—”)> = .7+ .13 = (.57,.83).

A Bayes credible interval can be computed from 7 (p|y). For y = 35 we have

I'(54)

T(TI(17) P-n"

7 (ply = .35) =

which is the beta (37,17) distribution. Based on this distribution we can calculate a Bayes
95% credible region: (.56, .80).

Note that the inferences from the classical and Bayesian approach are very different.
The 95% Classical Guarantee is that in 95% of all experiments, the procedure p + 2(5(1 —
p)/n) = will cover the true value of p. In any one realization, however, we do not know if
p has been covered. In contrast, the 95% Bayes Guarantee is that the probability is 95%
that p lies between .56 and .80. That is, for the particular data observed, we specify a 95%
coverage probability.

In the PEB approach we start off with a Bayes model, but we specify a family of
priors rather than one prior. We have

Y|p ~ binomial (n, p)

( a) a—1
pla ( )F( )[ ( P)]

4



where the priors are a family of symmetric Beta distributions

Under this model, we have

7(p|Y,a) = Beta (y + a,n —y + a)

yto n R 20 1
E = = -
(ply, ) n+2a <n+2a>p+ (n+2a> (2)

FIGURE 3.1 ABOUT HERE

and

A formal Bayes model requires specifying a value for a, but the PEB model estimates

« from the marginal distribution of Y:

m{yle) = / F(Y|py o) (ple) dp

= beta-binomial distribution

We have a problem with only one observation. We cannot proceed in an EB fashion,
since we cannot estimate a. More data is needed in order to be able to estimate c.

Thus, to use the EB approach we need to be able to estimate parameters in the
marginal distribution. In some way, we must obtain a sample from the marginal distribu-
tion.

The EB approach is most useful in situations where we have simultaneous estimation

problems. Instead of
Y|p ~ binomial (n, p)

pla ~ beta (a, a)
Consider the situation
Y1|p ~ binomial (n, p1) Y2|p2 ~ binomial (n, p2)

p1la ~ beta (a, o) p2|o ~ beta (o, a)



Pictorially, we can visualize the situation as,

We assume that the two problems are tied together by the underlying common dis-
tribution of the p’s, but there are some differences in the pi’s, the parameters of main
interest.

‘Suppose now we observe y; = 35, y2 = 27 according to the model

Y;|pi ~ binomial (n, p;)

pi ~ beta (o, a)

The Bayes estimate of p; is, as before,

_ n Yitay . 20 L
E(pzlyna) - <n+2a) <n+2a) pit <n+2a) <2>

and, marginally, the Y;’s are independent variables with a beta-binomial distribution hav-

ing

Using the method of moments (equating VarY; with its estimate) we obtain & = 15.205,

A n " 2& 1
E(pily1,y2,8) = <n+2&> Pi + <n+2&> <§>

= .622 (%) + (1 — .622) <%)

= .624.

and EB estimates

From the Bayes Model we can also calculate

(y+taj(n—y+a

Var(ply, a) = (n+ la+1)(n + 2a)2 (

from the posterior Beta
(y + a,n — y + o) distribution



and substituting » = 50, y = 35, & = 15.205, the estimated variance is .003 with SD =
.054.

To compare, for y = 35

Estimate SD (posterior)
Classical T .07
Bayes .685 .063
EB .624 .054

Note that the EB estimate gives more weight to the symmetric prior than the Bayes
estimate.
Alternatively, we can construct an EB interval estimate by looking at the posterior

7(ply, &). We have

7(p|y,&) = Beta (y+ &,n —y+ &)
= Beta (50.205,30.205) for y =35

& = 15.205,

giving an approximate 95% Credible region = (.52, .73).

These EB standard errors, and hence EB confidence intervals, are very optimistic.
Obtaining estimates of error (in this naive way) by substituting data-based values, almost
always leads to underestimates of variance. More sophisticated techniques are available,
however, that lead to better, more conservative, error estimates. (For example, Laird and

Louis (1987), Angers (1987). Some other approaches are given in Section VIIL.)

FIGURE 3.2 ABOUT HERE




IV. Some Empirical Bayes Methods in ANOVA
A standard randomized complete block analysis of variance was run to see the effect

of linseed oil or digestibility of food. The data are from Hsu (1982).

Steer Group (Block)

Treatment 1 2 3 4 5 6 Mean
1 865 745 688 799 782 86.8 79.1
2 782 769 678 742 725 76.5 74.4
3 74.7 723 727 763 758 T76.1 74.7
4 729 769 64.7 732 732 73.2 72.4
5 708 735 672 745 T71.5 704 71.3

Here the response is coefficient of digestibility (Y;), and the treatments are 3 kg/day of
hay to which are added increasing amounts of linseed oil meal (approximately 1, 2, 3, 4, 5
kg/animal/day).

In the following analysis we assume that there is no Block X Treatment interaction.

The usual ANOVA model for the.treatment means is

One might be tempted now to hypothesize a common prior on 8;:
0; ~ (0},

(that is, the #;’s have the same underlying distribution) and construct an EB estimator

that uses this information. For example, we can have the model
Y:|0; ~ n(6;,0%)
0;|7% ~ n(0,7%).

Or, more generally,
Yi|0: ~ n(0;,0%)

0;|r,7% ~ n(r,7?)
r ~ uniform (—o0, 00)
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Note that the second formulation can be thought of as “shrinking toward the null hypoth-
esis Ho: 01 =05 =---=05.

Since the experimenter has administered different treatments with the belief that
different digestibility will be the result, shrinkihg toward Ho: 60; = --- = 05, in this case,
does not seem justified. That is, there is no reason to suspect that the diets are equivalent,
so shrinking toward Hp is not justified. It is much better to shrink toward a hypothesis

(sub-model) that you believe is true. For example, consider the hypothesis (sub-model)
Hy: 0; =a+ BX; o, # unspecified,

that is, the response exhibits a linear trend, where X; = amount of linseed oil meal.
This trend seems reasonable, given the experiment, since it is reasonable to suspect that
increasing X; will decrease 0; (linseed oil is difficult to digest!).
We can incorporate this submodel by specifying the Bayes model
Yi|0; ~ n(0;,0%)
b:|e, B ~ n(a + BX;,72).
Yielding the Bayes estimate of 8;
2 o2
E(0|Y;, e, B) = (m) (e +BX:) + <—> Y:.

0'2+T2

Marginally, it can be shown that .
Y; ~ n(a+ fX;, 0% + 72),

As before, we use the marginal distribution of ¥ to estimate the unknown prior
parameters. This is done in two steps.
1. Regressing Y; on X; gives estimates for & and 8. (standard simple linear regression)
2. Standard normal theory gives us an estimate for 02 /(0% +12), details will be presented
later.
Coding X; = 1, we get f; = 79.66 — 1.76X; with r?2 = .87. To summarize, we have the

following:



Estimates of 0;

Treatment 1 2 3 4 5
Y 79.1 744 747 724 713
b; 779 1761 744 726 709
EB 78.0 749 746 725 T1.2

The EB estimate is given by
EB; = .29 0; + .71 ?,;.

Note that even though we are not shrinking very much, the shrinkage is strong enough to
produce a linear trend in the EB estimates — see the graph for linseed = 2 and 3. The

original data are not monotone, but the EB estimates are.

FIGURE 4.1 ABOUT HERE

If we had chosen as our vague prior specification the ‘usual’ ANOVA null hypothesis
Hy: 6y = ---05 (which is obviously not a good choice here, and generally is not a good

choice), the resulting EB estimate of 8; would have been
078Y +.922Y;,
[ grand mean

showing that when the prior specification is incorrect, the EB estimate merely collapses
back to the cell means.

The usual standard errors and confidence intervals can be used with the EB estimates,
and generally the error you will be making is that the intervals will be too wide. For
example, the usual 90% t-interval centered at a;n EB estimate will most often have coverage
probability greater than 90%. There is a small chance that the interval will have coverage
probability less than 90%, but this is slight enough not to cause worry. So attaching the
usual standard errors to the EB estimates is a simple, conservative tactic.

Applying the usual Scheffé procedure, a 90% simultaneous interval for pairwise differ-
ence is

(Y;-Y,)—5.251<0,—0; <(Y:—Y,)+5.251
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that is, with probability 90%, this inequality is specified for all ¢ and j. Using the EB

estimates, we can shorten this interval to
(EB,; — EBJ') —5.066 < 8; —0; < (EB; — EBJ') + 5.066.

Obviously, not earthshaking improvement, but reasonable considering p is small (effec-
tively, p = 3 because of the restrictions). The improvement becomes more substantial as
either p or v increases, with a 20% decrease fn radius a typical reduction for moderately
large p(> 10). (Assuming, of course, that the prior input is approximately correct.) This

topic, of improving on the Scheffé procedure, is treated by Casella and Hwang (1987).

V. Some Other Examples

1. DuMouchel and Harris (1983), investigated interspecies extrapolation of dose-response

experiments. They used the model

Yij = 0ij + €45

0:5 = p+ o + 5 + bij,

'y,-j = observed dose-response slope (log), of species ¢ exposed to environmental agent 7
0;; = true dose-response slopes

@ = overall mean

a; = species-specific effect

v; = agent-specific effect

Note that the model for the data is a standard “cell means” model, while the sub-
model is one of “no interaction.” It is this feature of the submodel that allows for

extrapolation.
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A schematic diagram of the (abridged) data is

Agent
Roofing Coke Diesel
Tar Oven Engine
Species Emissions Emissions Emissions
Human X X 0]
Mice X X X
Hamster X X X

where X = Data Present and O = Data Absent.
The goals of Du Mochel and Harris were to

1. Provide estimates for cells with no data.

Gas
Engine Benzo Cigarette
Emissions Pyrene Smoke
0] o X
X X X
X X X

2. Improve Precision of estimates (using posterior standard deviation (SD))

Both goals were to be accomplished by modeling the data as having common under-

lying structure, and borrowing “ensemble strength” to help improve estimates.

A portion of their results, relating lung cancer risk in humans, is summarized below.

Estimate Posterior
(log slope) SD

Roofing Tar
Orig. Data .50 1.41
Bayes 12 1.02
EB 12 1.01
MLE -.01 . .70
Coke Oven

" Orig. Data 1.48 34
Bayes 1.38 .33
EB 1.38 .33
MLE 1.30 31
Diesel Engine
Bayes —.46 1.45
EB —.46 1.40
MLE —.57 .80

12

Estimates change
a lot because of
high SD of
original estimate

Estimates do not
change much because of
small SD of original estimate

These values are extrapolated
from the analysis. There is no
data on humans exposed

to diesel engine fumes.



2. Rubin (1980) Law School Validity Study
The object is to predict 1st year final grade average (FGA) of law school students

using the equation

FGA = o (LSAT) +8 (UGPA) 47,
where

LSAT = Law School Aptitude Test
UGPA = Undergrad. grade average

The past technique used each of 82 Schools in its own prediction equation, not con-
sidering any data from the other law schools. Rubin uses EB to model the law school
‘ensemble’ and improve estimates
Model:

Bi ~ (Bi,0?) i=1,---,82
Bi ~ n(B,7%)

where
B; = individual least squares (LS) estimates of FGA from each law school.

As before, the Bayes estimate for law school ¢ is the posterior mean

2 o2
1
72 + o2 '3+72+

T
82

EB replaces this with = Z B; /82
1

E(B:5:) =

2 ﬂi
g;

There are complications due to the allowance of unequal variances for each school, details
of which we will not go into here. Rubin uses the EM algorithm to obtain EB estimate
of 62 /(o2 + 72), and then uses these estimates in the above equation. A summary of his

results is
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Validation of predictors on subsequent years data

# times # times
year LS better EB better Ties
1973 32 (39%) 49 (60%) 1
1974 25 (30%) 57 (70%) 0

3. Efron - Thisted (1976)

In this application, the number of unseen species is modeled using EB techniques.
Efron and Thisted give both NPEB and PEB estimates because, surprisingly, in their
model the NPEB estimates can be explicitly calculated. Much of the paper is devoted to
finding nonparametric estimates and assessing accuracy, uses techniques such as Euler’s

transformation and Linear Programming.

Model: Observe species for a specified time, then predict total.

time

|\ 1I
~

~1  observe 0 ’ predict

X;(t),s =1,---,8, is the number of times species ¢ appears in the interval [—1, ]

z;(t) ~ Poisson [A;(1 + )]
Ai ~ G(A)
This model says that the number of observed species X;(t), is a function of both the length

of time observed (t), and a species parameter, A;. The model also specifies a common

distribution of A;, allowing us to extrapolate to unseen species.

NPEB Approach

Define n, = number of species observed exactly z times in [—1,0]. Then it is straightfor-

ward to compute the expected value of n;, 1., as

oo ,—A)Z
Nz = E(nz) = S/ e dG(A),
0

z!

14



where the form of G()) is unspecified. The parameter of interest, however, is not 7., but

rather A(t), where
A(t) = expected number of species observed in (0,¢] but not in [~1,0]

= expected number of new species in next ¢ time units

=S /°° e (1 — e *)dG(N)

Efron and Thisted get NPEB estimate without specifying G. By expanding (1 — e_}‘t) in

a Taylor series and, using the previous expression, for 1., we get
A(t) = nit — nat® + nat® — +- -

suggesting the estimator

A

A(t) = nyt — not® + ngt® — 4. ..

As a constrast, in the PEB approach we specify a form for G(A). A convenient choice is
G(A) ~ Gamma (e, 3). This yields

o= MLE+d) o0 B
£ ZIT(1 - ) ’ 1+ 8

A= 21+~ 1]

Continuing in a standard EB way, the parameters o and v = T-|'B-_ﬂ are estimated from
the marginal distribution of the z’s, which is negative binomial. Efron and Thisted use
maximum likelihood to do this.

The data that Efron and Thisted use is quite interesting. They equate unseen species =
words that Shakespeare knew but did not use. Therefore, A(1) = expected number of new

words that would be found in a volume of Shakespeare equal in size to his known work.

The data, n; =z =1,---,100, are available, and using these data we get

NPEB estimate: A(1) = 11,430
PEB estimate: A(1) = 11,483
Note that the PEB estimate only uses n; explicitly, that is,

A . —nl AN —& _
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where & = —.3954, 4 = .9950 from ML (using all data).

The predictors from the PEB estimator are remarkably good, and are summarized
below.

r = # times species (word) observed

' Frequency 1 2 3 4 5 6 7
Observed 14376 4305 2281 1471 1050 798 633
Predicted 14399 4343 2292 1463 1043 837 638

V1. Empirical Bayes and the Stein Effect

The Stein Effect is 2 phenomenon that shows that, in certain cases, estimates can be
improved by combining problems, and is the theoretical basis for the optimality of EB.
Suppose that we have observations from p independent problems

1 ~ n(01, 1) )
ro ~ n(02, 1)

> independent normal populations.

Ip~ n(op’ 1) /

01 51

The estimation problem is to estimate § = with an estimator § =

where the worth of the estimator 6 is measured by a loss function

p

D (6 —6:)2

1=1

Associated with this loss is a risk function, the expected value of the loss

14
Risk = Ey [Z(&i — 0,;)2:|
1=1
ri

The usual estimate of § is 6¢ = X = , the estimate that corresponds, for

Zp
example, to using the cell means to estimate treatment means in an ANOVA. For this
estimator we have

P
Risk of X = Fy [Z(zi - 0i)2] =p

1=1
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The estimator X possesses many optimality properties, but Stein’s estimator is closer,

on the average. The earliest, and simplest version of the estimator is to estimate 8; with

— 2 .
6=11- pp z; <+— from 7t problem
>z}
1=1
combines

all problems

This estimator satisfies

4
Eq [Z(&; - 0,-)2] <p foralld,

1=1
so it is uniformly better than X.
The calculations for the proof are easiest in the normal case, but the “Stein Phe-

nomenon” is quite extensive, covering many distributions and many loss functions. In

particular, the following cases have been treated (see the references).

Poisson: Peng, Clevinson-Zidek

Neg. Binomial: Tsui

Exponential Families: Hudson, Berger

Discrete Exponential Families: Hwang

Gamma: Berger

Spherically Symmetric Distributions: Brandwein-Strawderman

Convex Loss: Brandwein-Strawderman

Absolute Error Loss: Berger

The EB explanation of Stein’s Estimator gives us some insight into why the estimator

is an improvement. Consider the following sample case.

Model
z; ~ n(8;,1) t=1,...,p
0; ~ n(O,'rz)
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where the single distribution for the 6; serves to the problems together. The posterior

distribution 8;|z; is normal with mean

2

E(ﬂilzi,'rz) =7 T; = <1 — 1 ) ;.

72 41

The marginal distribution of z; is normal,
z; ~ n(,72 + 1), independent

and so it follows that > z? has a chi squared, distribution. That is Zp: zf ~ (1-2 +1) Xf,,
and a calculation shows =1

-9 B 1

i=

3

E

L] U]

Substituting this estimate into E(0;|z;,72) yields

p—2
P

.z}

i=1

E(0;)z;,7%) = | 1— z;, Stein’s Estimator

The typical Risk behavior of Stein’s estimator is pictured below in Figure 6.1.

FIGURE 6.1 ABOUT HERE

We can see that there is good risk improvement if the prior information correct, that
is, if @ is near zero. However, we cannot do worse than usual estimate, since the risk of
Stein’s estimator is always below that of X. This is a real advantage. We are not severely
penalized for a wrong prior guess.

A problem with the early use was that people didn’t realize that choice of place to
shrink (submodel) was very important. The region of risk improvement is quite narrow —

thus if the submodel is wrong, the EB estimator quickly collapses back to usual estimator.
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VII. A General EB ANOVA (Regression) Model

We now look at a more general model of the form
Y; ~ independent n(6;,0%/n;) t=1,...,p
(Y; = observed ANOVA cell means, 0; = true means,
n; = # observations/cell).
For now, assume o2 known, n; = 1. Calculations can be done in a more general case (see,

e.g. Lindley and Smith, 1972 JRSSB or, DuMouchel and Harris, 1983 JASA) given by

y,-=0,-—|—e,- z'=i,...-,p
0; z§ﬂ+6,- t=1,...,p

T _more flexible submodel for 6 ’s.

‘We would like to have the dimension of 8 be as small as possible to obtain greatest
improvement in risk. Also, we want the submodel to have a chance of being true, which is
accomplished by increasing the dimension of 8. Thus, we have opposing goals.

The model can be generalized to the form
Y; = Xi0; + e
0; = 2B + 6

with only an increase in algebraic effort.

Common distributional assumptions are
Ytloz ~ n(0i702)’
0:8 ~ n(z,’:ﬂ,rz)?
Bi ~ uniform (—o0,00),

2

where z; = r X 1 vector of known predictor variables, 7 = unknown, 8 = r X 1 vector of

unknown regression coefficients. Using matrix notation we can write
Y|0 ~ N(8,0%1)
0|8 ~ N(z'B8,7%I)
B ~ uniform R"
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Note: Again, with an increased amount of algebra one can have an even more

complicated covariance structure.

Now
E(0]Y) = formal Bayes estimator of 8, the vector of means
_ / om(0]Y) db
N’
e £r,0) _ 110} ()
T
— 3 — . d- - . f
7(0]Y) m(¥) m(¥) (posterior distribution of 6)

f(Y'|6) = sampling distribution

m(0) = prior distribution = / w(0|8)dB
m(Y) = marginal distribution = / f(Y,0)de.
e

A lengthy calculation shows that w(8]Y") is normal with

2 o2
mean = m (I+ T_2H> Y
2,2 2 -1
covariance matrix = g7 I— g H
0% + 12 02 + 72
where
H=2(2'2)"Z7.
Thus, the Bayes estimator of Y, the posterior mean, is
72 o2 o2
E@Y)=——|I+—H = HY -— — HY).
o) ‘72+"'2<+72 >Y +<1 02+1'2)(Y )

(Note that the quantity HY is easily obtained by regressing Y on Z.) The EB estimate
is obtained by replacing the unknown quantity (1 — ﬁ) by an estimate based on the
marginal (unconditional on 8) distribution of Y. Marginally, Y is singular normal, but the

quadratic form .
Y'(I - H)Y 2
o+ 2 Xp-r
and a standard calculation shows

5 (1)—7'—2)(72 _ o?
Y'(I - HY T 02472’
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so we have an unbiased estimator of 02 /(02 + 72).

An empirical Bayes estimator of 8 can be constructed as

E(8|Y,?) = HY + (1 - %‘—%) (Y — HY).

The modification
B (p—r—2)o?
Y'(I - H)YY

HY + (1 >+(Y—HY),

where (z)* = maximum (0, z), gives a uniform improvement in risk performance.
For unknown o2, and n; # 1, the theory remains essentially unchanged, except that the

algebra gets more difficult. Using a similar development, an empirical Bayes estimator is

E_(p—r—2)s? +
HoV + |1 — ——2+2 Y — HyY
oX + ( Y'(I—Ho)'D(I—Ho)Y> (¥ — HoY)
where
D = diagonal (n1,n2,...,np)
Hy=Z7(Z'D2)"'Z'D
s2 = unbiased estimate of 02 from full model

v = error df.

Example: Growth Curves (Strenio, et al., 1983 Biometrics)

Model: Growth is modeled for each individual as a polynomial in age. A second-stage
model relates individuals using covariates. Strenio, et al. do calculations in general,
using some of the Lindley-Smith calculations. We will just do an example.

Let Y;; = weight of 4t* rat at t** week. Then we have
E(Yat|m1i,mas) = m1i + mai(t — 1)
E(71ilv11,712) = Y11 + Y222
E(7m2i|v21,V22) = Y21 + Y2274

z; = mother’s weight (covariate)
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‘The EB estimate of 7y; is a linear combination of
#1; (from regression of it® rat on time)
and
A11 + A12z; (from regression of 41; on z;).
The EB estimate of 7g; similarly obtained. The growth curve (a line in this case) is thus
a linear combination of the curve for the individual and the curve for the ensemble. Note
that the submodel estimates. 431 and A;2, are based on data that is summed over time,

hence use all of the information.

FIGURE 7.1 ABOUT HERE

VIII. Estimates of Variance
A conservative approach to attaching variance estimates to EB estimates is the fol-

lowing. Many EB (Stein-type) estimators dominate the usual estimators in mean squared

error (MSE) i.e.
MSE(EB estimator) < MSE(Usual estimator).

Since

MSE = Variance + (Bias)?,

EB estimates, which are biased, have smaller variance. Therefore, by using the usual
estimates of variance one is being conservative (i.e., the estimate may be an overestimate,
but not an underestimate). This means that one can just “recenter” the usual interval at
an EB estimate and obtain an interval estimate with higher coverage probability.

While the above approach is reasonable in theory, in practice we would like more. For
example, it should be possible to produce smaller variance estimates, and hence shorter
confidence intervals.

We can dominate the usual simultaneous (Scheffé) procedure by again taking ad-
vantage of the Stein-Effect. However, we cannot dominate componentwise — the usual
one-dimensional confidence interval is admissible (cannot be uniformly dominated).

Componentwise Intervals have been derived by Morris in the following way.
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For the EB Anova Model,
Yi|6; ~ n(0;,0%/n) t=1,...,p
0:|8 ~ n(z18,7%)

B ~ uniform

where Y; = cell means, n obs/cell, and
B=rXx1(r <p) vector of unknown regression coefficients,
the Bayes estimator is
0p, =0; + (1 - B)(Y; —0;), B =0?%/(0®+nr?)

where

b; =23, 8= (2'2)"'2'Y

The EB estimate of B, using similar arguments to the previous ones, is

A2
B=(p-r-2) (V—Iij—Z) %’/Z(Yz —8,)%, v = df for error,

resulting in the EB estimator of 8;,
Opp, = 0; + (1 — B)(v; - 6)).

For the Bayes estimator, ] B;s

a o2
Var(0p;) = 7(1 — B).

Morris (1983) notes that, for the EB estimator, we must also account for increase in
variance due to

i) estimating B

ii) estimating 8
and suggests

o a

2 - A A
Variance (0gB;) = o <1 _2 " rB) + v(B)(Y; — 6;)®
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A 2 A
with v(B) = ————B?
p—r—2
Note: 1. Even in the equal variance model, the EB variance estimates may be unequal.
2. In some coordinates the EB variance estimate will be smaller than the usual
estimate, in others it will be larger.

For the steer data, 6/4/n = 1.24. The EB standard deviations are:

Treatment
1 2 3 4 5
EB St. Dev. 1.23 1.32 1.13 1.13 1.14

[- This cell had the mean that was
furthest from the linear submodel.

We can also use EB methods to improve on the usual methods for simultaneous
intervals in ANOVA. Higher dimensional (> 3) EB confidence sets can be constructed
that dominate the usual Scheffé procedure. Such results again take advantage of the Stein
effect. (Hwang and Casella, 1987)

In particular, recentering a confidence sphere at an EB (Stein) estimator results in a
uniform increase in coverage probability. Reduction of the radius of a confidence set, while
maintaining improved coverage probability, is also possible (Casella and Hwang, 1983).

A confidence set on a vector of means is equivalent to a set of simultaneous intervals.

In particular, the Scheffé method of constructing simultaneous intervals yields:

0; €cY; ts\VpF, t=1,...,p

with probability 1—« simultaneously. Here F, is the upper a cut off from an F' distribution
with p and v degrees of freedom.

Using EB methodology, we can construct simultaneous intervals

0,‘65EB,;:tsV(Y,s), i1=1,...,p

24



with probability 1—« simultaneously, where V (Y, S) < v/pFa. We can also obtain intervals
on contrasts, for example, pairwise differences numbers for steer data presented earlier.

Casella and Hwang (1983), derive an EB confidence function given by

5 a : a )
= _ —_— — —_— <
Ves (1 pFa)- [pFa plog (1 pFa)] ifT < pFoa

a a .
| :(l_f) [pFa—plog(l—T)] if T > pFa
where, T = ) (Y; — é,-)z /82, a= 753 (p — 2). Using this confidence function, intervals of
the form

0; € éEBi + sVEB(T)

can be constructed. These intervals maintain 1 — & confidence while providing a reduction
in length.

In general, confidence statements for EB procedures are in a primitive state. One
reason for this is that the small sample distributions are quite difficult to dea! with and
theoretical properties are hard to verify. This difficulty is gradually being overcome, how-
ever, both with improved analytic techniques and careful use of the computer. Many small
sample properties of EB estimates have been investigated by careful computer studies.

The other reason for the slow development of EB confidence statements, perhaps the
more serious problem, has to do with the meaning of the word confidence. There is no
overall agreement as to whether EB confidence sets should provide frequency confidence
(long-run guarantees), Bayesian confidence (conditional guarantees, given the observed
data), or some mixture of the two. At present, there is no clear solution to this problem,
a problem that has implications in the foundations of statistics.

There is probably no one correct answer to this problem. EB models are extremely
helpful in obtaining good estimators in complicated situations. The ultimate inference, be

it frequency, Bayesian, or some other, can be a matter of choice.

IX. Other Applications
1. Contingency Tables. The usual contingency table can be described by

z;j = observed frequency in cell (3, j),
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where z;; is multinomial with Ez;; = Npij, }_; ;zij =N, }_; . piy =1

A log-linear model for the cell probabilities is

log pij = uo + w1 + uzj  t+ U12i5

T T T
TOW column interaction
effect effect effect

EB methods for contingency tables now place prior distributions on the u’s and esti-

mate unknown prior parameters from the marginal distribution of the z;;’s.

A popular method (Bishop, Feinberg and Holland) is to use a Dirichlet prior. This

can yield estimates of the form
igp = (:J,jj + (1 — (I))ﬁm,

where 7i,, is the maximum likelihood estimator under independence, and & is estimated
from the marginal distribution. Such methods are particularly helpful with large, sparse

tables.

Leonard (1975) uses a Bayesian approach with prior distributions

Uig ~ n(/l'lao'f)s
U255 ~ n(”’Z,ag)a

U125 ~ N(I‘3,0§)s

~ inverse x2.

where, p; uniform (—oo,0), o?

Laird (1978) uses an EB approach with
u1; ~ Uniform (—o0, 00),
ug; ~ Uniform (—o0, o),
w12i; ~ n(0,07),
and o? is then estimated from the marginal distribution. Much computation is involved
in getting estimates.
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2. ANOVA: The case of unequal variances. The usual ANOVA model, with unequal
variances, can be described by
Model: y;; = 0; + €y t=1,...,p
7=1,...,n;
Yi; = Jth observation on ¢tk treatment
0; = 1th treatment mean
2
eij ~n(0,07) -
[ - ~ variance depends on treatment

It 02 = o2, we have an unbalanced ANOVA, since n; # n. Since the observations
having common variances, the previously mentioned methodology applies. In fact, an EB
estimator for this case has already been presented. If we assume, however, that the o? are
totally unknown we run into additional complications.

With the above model, make the Bayesian assumption
0; ~ n(u,7?).
It then follows that the Bayes estimator of §; is

2
A g /ni
B; = bt Py (¥: — )
and marginally, .
2
— g; 2
i % 477
ng
The problem now is that the §; are not marginally identically distributed, so we cannot

2
get an estimate for %"— + 72, based on all the data, as easily as in the equal variance case.

Let S’iz = Sum of squares in ith treatment,
ng
2 =12
S; = Z(yij — )"
j=1

Marginally,
SE~ (of + )X,
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and we use the joint (marginal) distribution of S%,..., Sg to obtain a maximum likelihood

estimate of 72.

One can now estimate 0?/(o? + n;72) by

— 2?2
_(_I%—Y?z if of are known
o; +n;T
vi (p—2)é?

) =5 if or,? are unknown, v; = n; — 1
Vitz (67 +nif?)

Morris (1983) gives generalizations of this. Rubin (1980) also considers this case, and uses

the EM algorithm to obtain estimates.

3. Example: Toxoplasmosis prevalence rates (Efron-Morris, 1975). Toxoplasmosis
rates were estimated in 36 cities in El Salvador, based on sample of 5171 individuals.
Data are prevalence rates adjusted for age distribution in each city, and are binomial.
Also, we have unequal variances result since there are
a) different prevalence rates in each city
and
b) different sample size in each city.

Let X; = adjusted prevalence rate. Assume

X;|0; ~ n (0, o?)

0; ~ N(O, 1‘2)
EB estimate is then
o
o2 + 72 t
T

marginal MLE

FIGURE 9.1 ABOUT HERE

FIGURE 9.2 ABOUT HERE
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Selected Estimates and
Empirical Bayes Estimates of
Toxoplasmosis Prevalence Rates

City X; o; EB;
1 .203 .304 .035
4 .152 115 .075
5 .139 .081 .092
8  .098 .087 .062

13 .035 .056 .028
21 -.034 .073 -.024
25  -.008 .068 -.072
28 -.138 .063 -.106
20 -.156 .077 -.107
31 -.241 .106 -.128
32 -.294 .179 -.083
33 -.296 .064 -.225

Notice how the maximum likelihood estimates with larger variance get shrunk more
— in particular note the change in estimates for cities 1 and 32. City 33 has virtually the
same ML estimate as city 32, but a much smaller variance. Hence it has shrunk very
little. If we had assumed o2 = o2, each estimate (z;) would have been shrunk by an equal,

smaller amount.

4. Example: Estimation of Failure Times (Basu-Rigdon). We have N systems, and
we want to estimate failure rates of these systems. Let Aq,...,An denote the failure rates

(mean # of failures). For each system observe failure times
ety i=1,...,N

(observe until n; failures occur)

Model:

FlE, . th M) = Ape Nt i=1,...N
0(1
7(Ai|e, 0) = ———X;‘_le_o}"’

I'{a)
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The estimates of § and a obtained from marginal distribution, and the authors use a
Newton-Raphson algorithm to obtain ML estimates of § and . Under the Bayes model,

the posterior mean (Bayes estimate) is

n; +a
Ailtn.) =
E(hitn) = 705
ln, ng 0 a
N (tn‘. +0>(tm) * (tn'. +0)(0)
which is a weighted average of
i — MLE of );
and
a

— = prior mean of A;

Note that as t,, increases, the MLE is weighted more. The EB estimate is obtained
by substituting estimate of o and 8 into the above equation. Calculations are also done for

log-normal prior distribution, where the EM algorithm is used to obtain marginal MLEs.
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Selected Operating Times Between Failures or Airconditioning
Equipment in Boeing 720 Aircraft

Plane Number

1 3 5 7 9 11 13
194 90 55 97 359 130 102
15 10 320 51 9 493 209
41 60 56 11 12 14
29 186 104 4 270 57
33 61 220 141 603 54
181 49 239 18 3 32
14 47 142 104 67
24 246 68 2 59
56 176 77 438 134
20 182 80 152
79 33 1 27
84 15 16 14
44 104 106 230
59 35 206 66
29 82 61
118 54 34

25 31

156 216

310 46

76 111

26 39

44 63

23 18

62 191

130 18

208 168

70 24

101
208
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Classical and PEB Point and Interval
Estimates of Failures per 1000 Hours
for Aircraft Airconditioning Data

Plane Total Classical EB

No. Time MLE 95% C.I. Pt.Est. 95% P.I.

1 493 12.17 (4.46,23.67) 10.97 (7.06,15.72)

3 2422 11.97 (8.02,16.71) 11.41 (8.40,15.12)

5 1832 7.64 (4.18,12.13) 9.09 (6.23,12.48)

7 2074  13.02  (8.58,18.37) 11.93  (8.71,15.64)

9 1800 5.00 (2.29,8.76) 7.76 (5.13,10.92)

11 623 3.21 (0.39,8.94) 8.66 (5.32,12.81)

13 1312 1220  (6.97,18.86) 11.30  (7.84,15.38)

5.. Forestry. Predicting Hardwood Tree Volume from Diameter and Height (Green and
Strawderman).

If a tree were a perfect cylinder
Vv =1DH
4
would predict a volume perfectly. A widely used equation is
V = fo + 1 (D*H)

Estimates of [, quite constant throughout literature so authors took
B1 ~ normal (u,0?) with u known and equal to past averages. S, was given a uniform

prior.

Model |
Vi = Boi + B1i(D*H); + &; i=1,...,H = # hardwoods
Boi ~ Uniform (—oo0, 00)
B1i ~ Normal (u,0?), p known
Effectiveness of prediction equations was checked by “holding out” data. Specifically,
the authors were interested in seeing if the EB estimates could predict as well as least
squares but using fewer observations. Roughly speaking, EB estimates using 66% of the

data were as good as least squares using all of the data.
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X. Some References for EB Applications

Allen and Jordan (1982) Biometrics
A Bayesian approach to prediction, more precisely, extrapolation, in regression. Al-
though no EB is done, the model used here can also be used to provide EB estimates.

(normal)

Basu and Rigdon (Technical Report, Dept. of Stat., U. of Missouri, Columbia)
PEB techniques applied to failure time data. Two examples. (Poisson, gamma, log-

normal)

Deely and Lindley (1981 JASA)

They argue that empirical Bayesians are really non-Bayesian, however, their argu-
ments really apply to NPEB rather than PEB. They suggest some methodology remark-
ably similar to PEB, i.e., estimating from the marginal distribution. (normal, poisson,

gamma)

DuMouchel and Harris (1983 JASA)
Apply Bayes and EB models to the problem of combining results from different cancer

studies. Uses linear model-type theory. (normal)

Efron and Morris (1975 JASA)
Uses EB to justify Stein’s estimator. Considers both equal and unequal variance cases.

(normal)

Efron and Thisted (1976 Biometrika)
Uses both parametric and non-parametric EB models to estimate total # of words
known to Shakespeare. Application to estimating total # of species based on counts of

trapped species. PEB model attributed to Fisher. (poisson, gamma, negative binomial)

Green and Strawderman (1985 Forest Science 1986, Canadian Journal of Forest Research)
‘Applications of EB to estimate forest tree volume as a function of diameter and height.

Use a mixture of EB and Bayes techniques. (normal)
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Laird (1978 Biometrika)
EB methods in contingency tables. Applies normal and flat priors to log-linear model

for 2-way tables, uses EM Algorithm to estimate from marginal distribution. (normal)

Rubin (1980 JASA) .
EB prediction of first year Law School GPA. Good discussion of looking for a place

to shrink toward. (normal)

Strenio, et al. (1983 Biometrics)
EB modeling of growth curves — combining curves for individual with group. Models
a la Lindley and Smith (1972 JRSSB), but slightly more general. EM algorithm used for

estimation of unknown covariance matrices. (normal)
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Figure 3.1: Bayes prior and posterior for binomial example.
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Figure 3.2: Empirical Bayes prior and posterior for binomial example.
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Figure 4.1: Estimates of the cell means for the steer data. The line represents the submodel.
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Figure 6.1: Risk functions of usual estimator and Steins estimator of a multivariate normal mean.
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Figure 7.1: Typical growth curve for Strenio, et al. data. Lines pictured are for rat #8.
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Figure 9.1: Estimated toxoplasmosis rates for selected cities — equal variance model.
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Figure 9.2: Estimated toxoplasmosis rates for selected cities — unequal variance model.
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