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Abstract

This paper deals with the problem of selecting good negative binomial populations
as compared with a standard or a control. The main results are based on the use of the
empirical Bayes approach. First we derive the monotone empirical Bayes estimators of the
concerned parameters. Based on these estimators, we construct monotone empirical Bayes
selection rules. Asymptotic optimality properties of the monotone empirical Bayes esti-
mators and the monotone empirical Bayes selection rules are investigated. The respective
convergence rates for the estimation problem and for the selection problem are studied,

under some conditions.
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1. Introduction

The empirical Bayes approach in statistical decision theory is appropriate when one
is confronted repeatedly and independently with the same decision problem. In such
instances, it is reasonable to formulate the component problem in the sequence as Bayes
decision problems with respect to an unknown prior distribution on the parameter space,
and then use the accumulated observations to improve the decision rule at each stage.
This approach is due to Robbins (1956, 1964). During the last twenty-five years, empirical
Bayes methods have been studied extensively. Many such empirical Bayes rules have
been shown to be asymptotically optimal in the sense that the risk for the nth decision
problem converges to the minimum Bayes risk which would have been obtained if the prior
distribution was known and the Bayes rule with respect to this prior distribution was used.

Empirical Bayes rules have been derived for subset selection goals by Deely (1965).
Recently, Gupta and Hsiao (1983) and Gupta and Leu (1989) have studied empirical |
Bayes rules for selecting good populations with respect to a standard or a control with
the underlying distributions being uniformly distributed. Gupta and Liang (1986, 1988)
studied empirical Bayes rules for selecting binomial populations better than a standard
or a control and for selecting the best among several binomial populations. In the above-
mentioned papers, the authors have assumed that the form of the prior distribution is
completely unknown. Hence, those approaches are referred to as nonparametric empirical
Bayes. Gupta and Liang (1989a, 1989b) have also studied some other empirical Bayes
selection rules, in which they assumed that the form of the prior distributions is known
but the distributions depend on certain unknown hyperparameters. This approach is

therefore referred to as parametric empirical Bayes. For a general formulation of multiple



statistical decision procedures using empirical Bayes approach, reference should be made
to Gupta and Liang (1987).

In this paper, we are concerned with the problem of selecting good negative binomial
populations with respect to a standard or a control through the nonparametric empirical
Bayes approach. The framework of the empirical Bayes selection problem is formulated
in Section 2. Monotone empirical Bayes selection rules are proposed in Section 3. The
monotone empirical Bayes selection rules are derived based on certain monotone empirical
Bayes estimators of the posterior means of the concerned parameters which are also derived
in Section 3. Asymptotic optimality properties of the monotone empirical Bayes estimators
and the monotone empirical Bayes selection rules are studied in Section 4 and Section 5,

respectively.

2. Formulation of the Empirical Bayes Approach

Consider k + 1 independent negative binomial populations n;, ¢ = 0,1,...,k. For
each ¢, 1 = 0,1,...,k, let p; denote the probability of success for each independent trial
from 7; and let X; denote the number of successes before attaining the rth failure. Then,
conditional on p;, X;|p; has a negative binomial distribution with probability function

fi(z|pi) of the form

z+r—1\ , :
S G R ST (2.1)
Let my be the control population. For each i = 1,...,k, population «; is said to be good

if p; > po and to be bad if p; < py, where the control parameter py is either known or

unknown. Our goal is to derive empirical Bayes rules to select all good populations and



exclude all bad populations. When the control parameter py is known, the empirical Bayes

framework can be formulated as follows:

(1)

(2)

(3)

(4)

(3)

Let @ = {plp = (p1,...,px), pi € (0,1)for: =1,...,k} be the parameter space. For

each p € (1, define A(p) = {i|[p; > po} and B(p) = {é|p: < po}. That is, A(p)(B(p))

is the set of indices of good (bad) populations. Let G(p) = l_kll Gi(p:) be the prior

i=

distribution on the parameter space (2, where G;(-) are unknown for all s = 1,... k.

Let A = {ala C {1,2,...,k}} be the action space. When action a is taken, it means

that population ; is selected as good if tea and excluded as bad if 7 ¢ a.

For each (fixed) parameter p and action a, the loss function L(p, a) is defined as:
Lp= Y Gi-m)+ Y (o —p), (2.2)

i€A(P)\a i€a\A(D)

where the first summation is the loss due to not selecting good populations and the

second summation is the loss due to selecting bad populations.

Foreach:, 1 =1,...,k, let (X;ij, Pij), 1 =1,2,...,n, be independent random vectors

associated with population 7;, where X;; is observable but P;; is not. P;; has prior

distribution G;. Conditional on P;; = p;j, X;;|pi; has a negative binomial distribution

with parameters r and p;;. Let the jth stage observations be denoted by Xj. That

is, X; = (Xu1j, X2j,...,Xkj). From the assumptions, X1, Xs,... X, are mutually

independent and identically distributed.

Let X = (Xi,...,Xk) denote the present observation. Conditional on p, X has a

joint probability function f(z|p) = l_k[l fi(zi|p;), where z = (z1,...,z).

Finally, since we are interested in Bayes rules, we can restrict our attention to the

nonrandomized selection rules.



(6) Let D = {d|d: X — A, being measurable} be the set of nonrandomized selection
rules, where X is the sample space of X. For each d € D, let r(G,d) denote the
associated Bayes risk. Then r(G) = dig]f-') r(G, d) is the minimum Bayes risk and a rule,
say dg, is called a Bayes selection rule if r(G,dg) = r(G).

When pg is unknown, the indices in the associated notations should begin at 0 instead
of at 1. In the sequel, (0) will be used to show this additional fact.
We now consider decision rules dn(z) = dn(z; X1,...,X,). Let 7(G,dn) denote the
overall Bayes risk associated with the selection rule dn(z). That is,
r(G,da)= ) E / L(p, dn(2)) f(z|p)dG(p) (23)
et g

where the expectation E is taken with respect to (X1,...,X5).

Definition 2.1. A sequence of selection rules {d,(z)}s2, is said to be asymptotically
optimal (a.0.) relative to the prior distribution G if r(G,d,) — r(G) as n — co.

For constructing a sequenc;, of a.o. empirical Bayes rules, we first need to find the min-
imum Bayes risk and the associated Bayes rule dg. From (2.2), the Bayes risk associated

with the selection rule d is:

Y. X [po—wi(z)lf(z)+C if po is known,
TEX icd(T)

2, X lpo(zo) — wi(z:))f(z) + C  if po is unknown,
TEX icd(z)

r(G,d) = (2.4)
k

where f(z) = I[ fi(zi), m = 0(1) if po is unknown (known), fi(z;) = fol fi(zi|p)dGi(p) =

Bzihi(e:), Blzi) = (%777, ki) = [y p(1 = p)"dGi(p), pi(a:) = HEED. (note that

k
0<wpi(zi)<1),and C= % 3 [(pi — po)l(p,,1)(pi)f(z|p)dG(p).
-:I:'EX i=1q



Note that in (2.4), C is a constant and does not affect the determination of the Bayes

rule. Thus, the nonrandomized Bayes selection rule dg can be obtained as follows:

da(z) = {ilAic(z) < 0}, (2.5)
where
_ _ | po—pi(x:) if po is known,
AzG(.ﬁf) - {900(%'0) — i(z;) if pp is unknown. (2.6)

Now, for each i = (0),1,...,k, based on the past data X;1,..., X;,, and the present

observation z;, let @in(z:) = @in(zi; Xi1,...,Xin) be an estimator of ;(z;), and let
_ _J po — pin(zi) if po is known, ‘
Ain(z) = { Yon(Zo) — @in(z;) if pp is unknown. (2.7)

We then define an empirical Bayes selection rule d,(z) as follows:
dn(z) = {ilAsn(z) < 0}, (2:8)

If pin(z) =, wi(z) forallz = 0,1,2,... and ¢ = (0),1,..., k, then Ay, (z) N Aic(z)
for all z € X. Therefore, from Corollary 2 of Robbins (1964), it follows that r(G,d,) —
r(G) as n — oco. So, the sequence of empirical Bayes selection rules {dn(z)} defined
in (2.8) is asymptotically optimal. Hence, we have only to find sequences of estimators

{pin(2)}, i =(0),1,...,k, possessing the above mentioned convergence property.

3. The Proposed Empirical Bayes Selection Rules
Before we proceed to construct empirical Bayes estimators {¢in(z)}, we describe some
properties of the Bayes selection rule dg defined in (2.5) and (2.6).
Definition 3.1. Let ¢,y € X such that z; <y; for i = (0),1,...,k.

a) When po is known, a selection rule d is said to be monotone if d(z) C d(y).



b) When po is unknown, a selection rule d is said to be monotone if the following two
conditions are satisfied: (b1) If zo = yo, then d(z) C d(y). (b2) If zo < yo and z; = y;
forall i =1,...,k, then d(z) 2 d(y).

Note that for each z = (0),1,..., %, ¢i(z) = %"E——I)—ll is increasing in z. Also, note that
@i(z) is the posterior mean of p; given X; = z, and the Bayes estimator of p; given X; = z
for squared error loss. By the monotone property of ¢;(z), i = (0),1,...,k, the Bayes
selection rule dg is a monotone selection rule for both cases, where the control parameter
po is either known or unknown.

Under the squared error loss, the problem of estimating the probabiltiy of success in
a negative binomial distribution is a monotone estimation problem. From Berger (1985),
for a monotone estimation problem, the class of monotone estimators form an essentially
complete class. Also, under the linear loss given in (2.2), the concerned selection problem is
a monotone decision problem. Again, from Berger (1985), the class of monotone selection
rules form an essentially complete class. Now, one can see that if the estimators p;,(z), i =
(0),1,...,k, are monotone, then the empirical Bayes selection rule given in (2.7) and (2.8)

is also monotone. From these considerations, it is reasonable to require that the concerned

estimators {¢in(z)} possess the above-mentioned monotone property.

Proposed Monotone Empirical Bayes Selection Rules

Let F;(z) denote the marginal distribution function of the random variable X;. Then,

F(z) =Y fiy) = Y Aw)hi(y), 2 =0,1,2,... . (3.1)

The form of (3.1) will be used to construct our empirical Bayes estimators.



For each : = (0),1,...,k, and z = 0,1,2,... based on the past data X;i,..., X;n, let

fin(z) = %ZI{z}(Xij)a (3.2)
hin(.’l}) = %TE.‘(—E:;—) (3.3)

In view of the decreasing property of the function h;(y), it is desirable that the
corresponding estimator possess the same property. To meet this requirement, we let

{h%.(2)} 22, be the antitonic regression of {hin(2)}32, with weight {#(z)}5,. Then, let

FL(2) =) fuly), (3.4)

where
in(y) = Bhi(y)y=0,1,2.... (3.5)

Note that h,(z) is nonincreasing in z, and h},(z) = 0 if ¢ > max(X;1,...,Xin). By

?

the decreasing property of the function h;(z), from Barlow, et al (1972),

Fin(2) 2 Fin(z) and sup |Fj (z) — Fi(z)| < sup|Fin(z) — Fi(z)| (3.6)
z20 - z2>0

n (=]
where Fin(z) = 1 2:1 I, (Xi5) = Eo B(y)hin(y)-
= y=

Let N;, = max(Xi1,...,Xin) — 1. Foreach = 0,1,2,..., N;,, define

pin(z) = h—h% (3.7)

Note that 0 < ¢ia(z) < 1for £ =0,1,...,N;,. However, ¢;,(z) does not possess the

monotone property. A smoothed version of ¢;,(z) is given as follows: Let
max pin(y) if & < Nin,

Phle) = S (3:8)

gofn(N,-n) ifz > Nin.



From (3.8), it is easy to see that ¢ (z) possesses the monotone property. Now, for

each z € X, define

* | po— i (xi) if po is known,
Ain(z) = {goa‘n(wo) — ¥ (z;) if pp is unknown. (3.9)

We then propose a monotone empirical Bayes selection rule, say d, as follows:
d.(z) = {i|Af,(z) < 0}. (3.10)

Asymptotic Optimality of the Selection Rules {d}}

As mentioned above, to prove the asymptotic optimality of the sequence of empirical
Bayes selection rules {d},}, it suffices to prove that ¢? (z) £, wi(z) forallz =0,1,2,...,
and ¢ = (0),1,...,k. For each z = 0,1,2,..., let ¢ be a number such that 0 < t <
min(p;(z),1 — @i(z)). We need to prove that P{|o¥,(z) — ¢i(z)] > t} —» 0 as n — oo.

Now,

P{lein(z) — pi(z)| > t}
=P{ps(z) — ¢i(z) < —t,Nin 2 2} + P{p},(2) — wi(z) > t,Nir, > z}

+ P{lgta(e) = pi(®)] > t, Niw < a}. (3.11)

By the definition of Njn, P{|¢},(z) — wi(z)] > t, Nip, < z} < [Fi(z)]™ which tends to
0 as n — oo.
Note by its definition, ¢},(z) > @in(z). Also, note that A%,(z) > 0 as z < Ny, + 1.

Let p(z,t) = f‘}‘_’g)l) - tﬂé’(”j)l) and ¢(z,t) = 18 ”’;(12{‘(’). Then p(z,t) > 0 since t is such




that 0 <t < pi(z). From (3.1), (3.4) - (3.7), letting Ai(z,n) = Ff,(z) — F;(z), we have

P{ph(a) - ¢i(z) < —t and Niy > 2}

< P{hly(z +1) - Bu(@)lpile) — 1] < 0}

= P{F}(z +1) = F3(@)[1 + ple, )] + Fia(z — Dp(e, t) < 0} (3.12)
= P{Ai(z +1,n) — Ai(z,n)[1 + p(z, )] + Ai(z — 1,n)p(z, 1) < —q(z, 1)}

< 3P{sup [Fi,(y) ~ Fi(v)] 2 'm?ﬁTt)t)]}

< 3P{2§; [Fin(y) = Fi(y)| 2 %}

which tends to zero as n tends to infinity, by the Glivenko-Cantelli Theorem. Similarly,

P{pin(z) — pi(z) >t and Nin > z}

= P{pin(y) — pi(z) > t for some y < z and N;, > z}

< P{pin(y) — ¢i(y) > t for some y < z, 7, (y) > 0} (3.13)
S P{fa(y+1)- fii(y)%(':)_l)[%(y) +t] > 0 for some y < z}
By +1)

= P{lFL(y +1) - Fi,(y)] - [Fin(y) — Fio(y — 1)] 0 [pi(y) + ] > 0 for some y < z}

fi(y +1) — Fi(w) 23R i) + 1]
< 3P{sup|F},(y) — Fi(y)| = min y
v20 v<se 31+ EaEloi(y) + 4]

?

which tends to zero as n tends to infinity.
Based on the above discussions, we have shown that ¢}, (z) £, pi(z) for each z =
0,1,... and each ¢ = (0),1,...,k. Therefore, the sequence of empirical Bayes selection

rules {d}} is asymptotically optimal.



4. Asymptotic Optimality of the Monotone Estimators
In this section, we study the asymptotic optimality property of the estimators ¢}, (z).
It is known that under the squared error loss, ¢;(z) is the Bayes estimator of p; given
X; = z. The associated Bayes risk is R;(G;) = E[(P; — vi(X:))?]. Let %;(-) be any

estimator of p; with the associated Bayes risk R;(G;, ;). Then
Ri(Gi, i) — Ri(G:) = E[(%:(X:) — 0i(X:))?]. (41)

Let {¢in(z; Xi1,...,Xin) = ¥in(z)} be a sequence of empirical Bayes estimators based

on (z; Xi1,...,Xin)-

Definition 4.1.

a) A sequence of empirical Bayes estimators {1;,,}22 , is asymptotically optimal relative
to the prior distribution G; if Ri(Gi, ¢in) — Ri(G:) as n — oo.

b) A sequence of empirical Bayes estimators {1, }32, is asymptotically optimal of order
ay, relative to the prior distribution G; if Ri(Gi, %in) — Ri(Gi) < O(ay) as n — oo,
where {a,} is a sequence of positive values such that nli)moo a, =0.

From Section 3, ¢},(z) £, pi(z) for all = 0,1,2,.... Thus, {¢},}22, is asymp-
totically optimal. However, the usefulness of empirical Bayes estimators in practical ap-
plications clearly depends on the convergence rates with which the risks for the successive

estimation problems approach the optimal Bayes risk. Hence in the following, we study

the convergence rates of the sequence of empirical Bayes estimators {¢7, }.

For 0 < e < 1, let A;(e) = {z|fi(z) < e}, Bi(e) = {z|fi(z) > €}

Assumption A: Al. There exist ¢;¢(0,1] and a positive constant ¢; such that P(4;(¢)) <
cie for all € € (0,1). A2. There exists a positive integer N; such that f;(z) is decreasing

in z for z > N;.



Remark 4.1.: An example where Assumption A holds is given in Lin (1972).

Theorem 4.1. Let {¢%,}52, be the sequence of empirical Bayes estimators defined
in (3.8). Then, under Assumption A, R;(Gi, ¢},) — Ri(G;) < O(n~t/(2+1)),
The proof of Theorem 4.1 can be obtained based on the following arguments.

For the empirical Bayes estimator ¢},, straight computation leads to

0 < Ri(Gi, ¢in) — Ri(Gi)

= Y El(¢h(2) — ei(z))*|Xi = z]fi(z) (42)
zeAi(6,)
+ Y Elph(z) — wi(@)?)X; = z)fi(z),
z€B;(6n)
where 6, = n~% and o; = ﬁ

Lemma 4.1. Under Assumption A,

D Ellph(2) — ¢i(2))1Xi = a]fi(z) < O(n~4/H),
z€A;(5,)

Proof: Note that 0 < ¢f,(z), ¢i(z) < 1. Thus, by the definition of 4;(6,) and Assumption

Al

Y Elph() - pi(@)IX: = alfi(e) < P(Ai(5a)) < ein™% = O(n=4/C+9). O
z€A;(6n)

Now, for each z € B;(6y), by letting I;»(z) = 1(0) if fin(z) > (=)0, we obtain

El(¢in(z) — ¢i())*|X; = 2] (4.3)

= E[(¢ia(2) — 9i(2)* Lin(2)|X: = 2] + E[(}a(2) = ¢i(2))*(1 = Lin(2))|X; = ],

Lemma 4.2. For z € B;(6,),

E[(pia(z) = 0i(2))’(1 — Lin(2))|X: = 2] < O(n~"/CF4),



Proof: E[(¢ia(2) = ¢i(2))*(1 = Lin())|X: = ]
< P{fin(z) - fi(z) < - fi(2)}
< exp{—2nf?(z)} (by Theorem 1 of Hoeffding (1963))
< exp{—2n62} (since z € B;(6,))
< O(n~t/@+)), 0

Next, a straight computation leads to:
E[(pin(z) — ¢i(2))* Iin(2)|X; = 2]
pi(z)
= / 2sP{p;,(z) — pi(z) < —s, fin(z) > 0}ds (4.4)
0
1—i(z)
[ 2Pl @) — pi(e) > 5, inla) > O}
0
Lemma 4.3. a) For z € B;(6,), and s € (0, ¢;(z)),

P{pin(z) — pi(z) < —s and fin(2) > 0} < 3d; exp{—2n[3(1q_5:;(i), s))]z}

fi(z+1)  sB(z+1)
fi(z) B(z)

for some positive constant d;, where p(z,s) =

B(z+1) fi(z)
2 o) > 0.

> 0 and ¢(z,s) =

b) For = € Bi(6y), [, (@) 2sP{p}y(2) — pi(z) < —s and fia(z) > 0}ds < O(n~%/(2H1))
and the upper bound is independent of z for all z € B;(6,).

Proof: a) First, it is trivial that p(z,s) > 0 and ¢(z,s) > 0. Next, from the definitions
of f(z) and hi,(z) and that fin(z) > 0, it follows that ff,(z) > 0 and A%, (c) > 0.
Also, ¢},(z) = pin(z), by the definition of ¢}, (z). Then, following (3.12), we obtain: For

z € Bi(6,) and s € (0, p:(2)),

* q(z,s)
P{pi.(z) — pi(z) < —s and fin(z) > 0} < 3P{31§)>|Fm(y) — Fi(y)| = m}

< 34, exp{—zn[éﬁq—fﬂ—s)}m,



where the last inequality follows from Lemma 2.1 of Schuster (1969).
b) By using the fact that 0 < h—'h(%l < 1 and ﬂ;é%;l < r for all z > 0, we have

1+ p(x,s) £ 1+ 7. Then, from the result of part a) of this Lemma, we obtain

wi(z)
| 25P(6tn(@) — i(2) < = fnla) > 0}

vi(z) sfi(z B(z+1)
< / 6d; sexp{—z—”[%l }ds
0

1+r)?f) 1
= 1954 FErD) i)

< 13.5d:(1 + r)2 (s1nce z € B;(6,)) and therefore, fi(z) > 8,)

_ O(n—t.-/(2+t-'))_
Note this upper bound is independent of = € B;(8,). O
By Assumption A2, fi(z) is decreasing in z for all z > N;. In the following, we only
consider the case where n is large enough such that §, = n” T < fi(y) for all y < N;.
Thus as z € B;i(6,), then fi(y) > §é, for all y < z (this holds true for either z < N; or

z > N;). Therefore, analogous to (3.13), we obtain: For s € (0,1 — ¢;(z)),

Plpin(2) — ¢i(2) > s, fin(z) > 0}

< 3P{sup |F7,(y) - Fi(y)| 2 —min H(y)}
y>0 y<z

< 3d; exp{—2n[- m<inH(y)]2} (by Lemma 2.1 of Schuster (1969)), (4.5)
ysz
where
—sfW) S _ —sfily) _ _—sb
.H = y) < z < n . ; > 6n < 0- 4.6
W= 3[1+ 24y = 3[1+7] T 3[1+47] (since fi(y) 2 én) (4.6)

Lemma 4.4. For n sufficiently large, and = € B;(6,),

—pi(z)
/ 25P{p},(z) — ¢i(z) > s, fin(z) > 0}ds < O(n~ 4/ +t))y,
0



Proof: From (4.5) and (4.6), for n sufficiently large, as ¢ € B;(6,),

1—pi(z)
/0 25P{pta(2) = i(2) > 5, fin(z) > 0}ds

1—-pi(z) N2 52
< d; ——2_14
< /0 6sd; exp{ 51+ )2 }ds

= O(n—t»'/(2+ti))_ [l
From Lemmas 4.2, 4.3, 4.4 and (4.4), we have: For z € B;(6,),
E[(pla(2) — 9i(2))’1X: = €] < O(n~H/CF1),
This upper bound is independent of z € B;(6,). Therefore, we conclude that

Y Eleh(e) - 0i(@)?|Xi = alfi(z) < O(n~4/C+t), (4.7)
zE€B;(6y)

Then, Lemma 4.1, (4.2) and (4.7) together complete the proof of Theorem 4.1.

5. Asymptotic Optimality of the Empirical Bayes Selection Rules

Let {d,}52,; be a sequence of empirical Bayes selection rules relative to the prior
distribution G. Let (G, d,) denote the expected Bayes risk of the selection rule d,,. Since
the Bayes rule dg achieves the minimum Bayes risk 7(G), r(G,d,) — r(G) > 0 for all
n =1,2,.... Thus, the nonnegative difference r(G,d, ) — r(G) is used as a measure of the

optimality of the sequence of empirical Bayes selection rules {d,}.

Definition 5.1. The sequence of empirical Bayes selection rules {d,, }52; is asymptotically
optimal of order a;, relative to the prior distribution G if 7(G,d,) — r(G) < O(ay) as
n — oo, where {a,} is a sequence of positive numbers such that lim o, = 0.

n—00

In the following, we evaluate the asymptotic behavior of the sequence of empirical

Bayes rules {d}} according to whether the control parameter py is known or unknown.



Convergence Rates of {d*} for py Known Case

Foreachi=1,...,k, let S; = {z]|pi(z) < po} and T; = {z|pi(z) > po}. Define

 [minT, T+,
_ Jmax §; if S;# ¢,
mi = { 1 i Si= (5.2)

By the increasing property of ¢;(x) with respect to the variable z = 0,1,...,m; < M;;
also m; < M; if T; # ¢. Furthermore, z < m; iff ;(z) < po and y > M; iff p;(y) > po.
Note that when T; = ¢, it means that in terms of its quality, the population =; is
bad. Also, for S; = ¢, it means that in terms of its quality population 7; is as good as
the control. We exclude these extreme cases, in the following, and study the asymptotic

behavior of the sequence of empirical Bayes selection rules {d*} under Assumption B.

Assumption B: T; £ and S; # ¢ foralli=1,...,k.

Now, for the empirical Bayes selection rule d¥, we have
k
0< T’(G, d:z) - T(G) = ZDz(Ga d:)7 (53)
=1
where

Di(G,d,) = Z[Po = @i(@)|P{pi(z) > po}fi(2) + Y lpi(z) — pol P{pin(e) < po} fi(2).

r=M;
(5.4)
By the nondecreasing property of the estimator ¢},, we have
{ P{gi,(x) > po} < P{p},(ms) > po} for all ¢ < m;, and 5
P{oi(y) <po} < P{oj(M;) <po} forally> M;. '

Thus, from (5.4) and (5.5),

Di(G’ d:) < P{So;kn(ml) 2 pO}bil + P{Sorn(Ml) < pO}bi2a (56)



where b;; = 2 [po — wi(z)]fi(z), and biza = Y [pi(z) — po]fi(z) and 0 < b;1, bz < 1.
=0 z=M;

Now,

P{pin(Mi) <po}

= P{pi(M;) < po, Nin < M;} + P{p},(M;) < po, Nin > M;} (5.7)

< [Fi(M)]"™ + P{oin(Mi) < po, Nin 2 M}

Analogous to Lemma 4.3. a), we can obtain

P{(P::n(Mz) < Po and Nin > Mz}

< P{hfn(Mi + 1) < hfn(Mi)po and N;, > M,'}

* A( i,pO)

P{sup |F* (y) — F; M

<3 {zggl in(y) — Fi(y)| > T ﬂﬂzﬁ;)po]}

< 3d; exp{—-z-nA2(Mi,P0)/ n4 Pt (ﬂ(;\;)l)polz}, (5.8)

where A(M;,po) = fi( M; +1) — fi(Mi)%T—;lpo > 0.

: A : 2A2(M=':P ) 1
From (5.7) and (5.8), by letting 7;; = min (9[1+p§,ML',T)1)opo]2 , €n F.'(M.'))’ we have

P{pin(M;) < po} < O(exp(—Tirn)). (5.9)
Also,

P{pi(mi) > po}
= P{p;.(m:i) > po, Nin < m;} + P{pi,(m:) > po, Nin > m;}

< [Fi(ma)]™ + P{pi.(mi) > po, Nin > m;} (5.10)



Analogous to (3.13), we obtain

P{pi,(m;) > po, Nin 2> m;}

= P{pin(y) > po for some y < m;, N;n > m;}

< 3P{sup |F* (z) — Fiy(z)| > min AW, o)l
< SPlewplFi() - (o) > min S )
2
< 3d;exp § —— yng;lnl ;y+1; , (5.11)
By P
where A(y,po) = fi(y +1) — fi(y) ﬂl(gy(;')l)po Note that A(y,pg) < 0 for all y < m;.
: e Tl 2 . A (y,po)|® 1
Thus, by letting 7;2 = min <9 ynsllnn. { [T+ B, 1o } ,én F,-(m;))’ we have
P{pin(mi) 2 po} < Oexp{—rirn}). (5.12)
Let 7; = min(71, Ti2), and 7 = min(7y,..., 7). Note that 7 > 0, since 7; > 0 for each
t=1,...,k. From the above results the following theorem follows:

Theorem 5.1. Under Assumption B, we have:
a) Di(G,d;) < O(exp(—min)) for each ¢ =1...k, and

b) r(G,d}) — r(G) < O(exp(—1n)).

Convergence Rates of {d*} for po Unknown Case

When the parameter pg is unknown, the convergence rates of the sequence of empirical
Bayes selection rules {d} }S2 , is evaluated under Assumption A. Without loss of generality,
in this section, we assume that ¢; = ¢ > 0,and t; =t € (0,1} for all ¢ =0,1,...,k, where
the parameters ¢;, t;, ¢ =0,1...k are given in Assumption Al.

Foreach: =1,...,k,let ¥(z,,z;) = pi(zi) —po(zo) and let S; = {(z0, z:)|¥(z0,z:) <

0}, Ti = {(zo,z:i)|¥(z0,2:) > 0}, Ein = {(z0,2i)|[t0(20,2:)| < en} and Ef, = {(z0,z:)|



|¥(z0,i)| > €n} whereen, > 0. Also, let Iy = T;NE;jp, I; = TyNES, NA(6n)NAi(6n), I3 =
TiﬂEfnﬂAo((sn)ﬂBi(&n),L; = TiﬂEfnﬂBo(5n)ﬂAi(6n),I5 = TiﬂEfnﬂBo(5n)ﬂBi(5n), Ji =

SiNEipn,Jo = 5;N Ezcn N Ao(6n) N A,-(én), J3 =5;N Efn N A0(5n) N B,~(6n), Jy =5;:0 E; N

Bo(5n) N Ai(ﬁn) and Js = S; N Efn N Bo(én) N Bi(6n). Let

{ Qi(zo,z:) = [pi(zi) — po(20)|P{p},(z:) < pon(®0)} fi(zi) fo(zo)
Ri(zo, ;) = [po(z0) — wi(z:)|P{p}.(zi) = ¢5,.(z0)} fi(z:i) fo(zo)

and let the summations Y Q:(xo, ;) and Y Ri(zo,z;) be denoted by Qi(zo,z;i,I;) and
I; Jj

Ri(zo, i, Jj), respectively. Thus,

k
0<r(G,dy)—r(G) =) Di(G,d}) (5.13)

where D} (G, d") = f:lQ,-(xo,:z:i,Ij) + fle,-(xo,x,-,Jj).

Gaeful exsmination loads o the ;;llowing results: Qi(wo,i,11) < O(en), Ri(zo, z:,
J1) € O(en), Qi(zg,zi, I2) < O(%), Ri(zo,zi, J2) < O(82), Qi(wo, 24, I3) < O(6L), Ri(wo,
z;, I3) < O(8L), Qi(zo,zi, Is) < O(8L) and Ri(wo, zi, Jo) < O(8}).

Now, for (zo,z;) € T; N Ef, N Bo(6x) N Bi(6n), fi(zi) 2 6n, fo(zo) > b5, and e, <

vi(zi) — po(zo) < 1. Thus,

P{ipl,(21) < 93n(20)}
= P{{pa(@:) — @il20)] — [oha(20) — wo(z0)] < polo) = pi(z:)}  (5.14)
< Plpia(@s) — pilw:) < =2} + P{ehaleo) — ol@0) > S}
Now,
P{pta(e:) = pi(zi) < =)

= P{pi.(z:) — pi(zi) < —%n,fz‘n(wi) = 0} + P{pin(z:i) — pi(zi) < —%n,fin(:vi) > 0},



where
Ploi(zi) — pi(zi) < —%z, fin(zi) = 0} < P{fin(z:) = 0} < exp{—2né2}

( since z; € B;(6y); and see Lemma 4.2),

and
* €n
P{pia(ei) — ¢i(2:) < ==, fin(2:) > 0}
B(zi+1) 2 ¢2
< 3d: -
< 3d; exp{ 801+ r)2ﬂ2(:c,-)n6"6"}
nel§?
< O(exp{— 1_8(—1+—)2}) (The proof is analogous to that of Lemma 4.3.a).
Therefore,
. En naz 62

Next, under Assumption A2, along the line of (4.5) and the argument given there, for

n sufficiently large, we have

nel§?

18(1 4 r)? D (5.16)

P{ipia(0) = ¢ole0) > 51} < Ofexp{—ggr" 2

Note that the convergence rates obtained at (5.15) and (5.16) are independent of

(z0,2:) € T; N EZ, N By(6,) N Bi(6y). Therefore, from (5.14)

nel §2
Z Qi($0,$i) < O(GXP{_ 18(1 + 1")2 }) (5]‘7)
TiNE{, NBo(8,)NB;(8,)
Similarly, we can also conclude that
nel§?
Z Rz(:BOaxz) = O(CXp{ 18(1 n T')2 }) (5 18)

f nEfnnBO(én)nBl'(én)

By letting 6, = [ﬂ(lz%] = and en = 6%, based on the preceding discussions

we have the following theorem.



Theorem 5.2. Under Assumption A, we have
a) D}G,dr) < O(8%) for i =1,...,k, and

b) r(G,dy) —r(G) < O(&7,).
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