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ABSTRACT

We investigate the convergence rates of a sequence of monotone empirical Bayes tests
for the two—action decision problems involving uniform distributions. It is found that the
sequence of monotone empirical Bayes tests under study is asymptotically optimal, and the
order of associated convergence rate is O(8(n)), where 8(n) is such that n=1/2 < g(n) <
(lnn/n) 1/2 and n is the number of accumulated past experience at hand.
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1. Introduction

Let X be arandom variable having uniform distribution with pdf f(z|6) = §—11 (0,0)(z),
6 > 0. Consider the following testing: Ho : 8 > 0, against H; : 8 < 0y, where 0 is a
known positive constant. For each ¢ = 0,1, let 7 denote the action deciding in favor of H;.

For the parameter § and action ¢, the loss function L(0,7) is defined as
(1.1) L(0,7) = (1 —)(80 — 0)I(0,6,)(0) + (0 — 00)I16,,00) (6)-

In (1.1), the first item is the loss due to taking action 0 when 8 < 6, and the second item
is the loss of taking action 1 when 8 > 8. It is assumed that @ is the value of a random

variable © having a-prior-distribution - G.

For a decision rule d, let d(z) be the probability of taking action 0 when X = z is
observed. Let D be the class of all decision rules. For each d € D, let r(G,d) denote
the associated Bayes risk. Then r(G) = diélzf) r(G,d) is the minimum Bayes risk among all

decision rules in the class D. A decision rule, say dg, such that r(G,dg) = r(G) is called

a Bayes rule.

Based on the statistical model described above, the Bayes risk associated with the

decision rule d is:

(1.2) "G, d) = / :)[oo — o(x)|d(z) f(z)dz + C,

*1

(1.3) @) = [ reinnac) = [~ Jdc0),

z

— F(z)

(1.4) olz) = Elole) = *53 ™ + =,



F(z) = f; f(y)dy is the marginal accumulated distribution function of X, and
oo oo

(1.5) C = / / (0 — 00) f(=|0)dG(0)dz.
=0 J 8=max(fg,z)

We only consider those priors such that f0°° 0dG(0) < oo to insure that the Bayes risk
is always finite. Note that C is a constant, which is independent of the decision rule d.

Thus, from (1.2), a nonrandomized Bayes rule, denoted by dg, is clearly given by

_ 1 if ‘P(z) > 001
(1.6) do(z) = {0 otherwise.

Definition 1.1. A decision rule d is said to be monotone if 0 < z < y then d(z) < d(y).

Since the class of -uniform distributions {f(z|6)|0.> 0} has monotone likelihood ratio
in z, the posterior mean ¢(z) is a nondecreasing function of z. Thus, from (1.6), one
can see that the Bayes rule dg is a monotone decision rule. Recall that the class of all

monotone decision rules is essentially complete; see Berger (1985).

When the prior distribution G is unknown, it is not possible to apply the Bayes rule
for the decision problem at hand. In this situation, an empirical Bayes approach will be
used. Although Gupta and Hsiao (1983) have studied the above decision problem via an
empirical Bayes approach, however, the empirical Bayes decision rule they proposed is not
monotone. Later, Van Houwelingen (1987) proposed a monotone empirical Bayes test for
this decision problem. He derived an empirical Bayes test from a monotone empirical Bayes
estimator for the unknown ¢(z), based on the observed sampling spacings. The empirical
Bayes test was proved to possess the monotone property. Van Houwelingen (1987) has also

studied some asymptotic properties of the proposed test.

The usefulness of empirical Bayes decision rules in practical applications clearly de-

pends on the convergence rates with which the risks for the successive decision problems
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approach the minimum Bayes risk. In this paper, a sequence of monotone empirical Bayes
decision rules {d},} is proposed for the above described two-action decision problem. We
investigate the asymptotic optimality property of {d}}. It is found that the order of the
convergence rates of {d},} is O(8(n)) where n is the number of accumulated past experience

at hand, and 8(n) is such that n=1/2 < 8(n) < (Inn/n)Y/2,

2. A Monotone Empirical Bayes Decision Rule

For each j =1,...,n, let (X;,©;) be a pair of random variables, where X is observ-
able but ©; is not. Conditional on ©; = #, X; has a uniform distribution with pdf f(z|6).
It is assumed that ©;,5 = 1,...,n, are independently distributed with common unknown
prior distribution G. Therefore, X1, ..., X, are 7id with pdf f(z). Let X, = (X1,...,Xy)

denote the n past observations and let X, = X denote the present random observation.

Let {an} be a sequence of decreasing positive numbers such that lim a, = O.
n—oo

For each n = 1,2,..., we partition the half line (0,00) into equal length subintervals

(Cn,m>Cn,m+1], where Cp, yy = may,m =0,1,2,.... Define
1 =»
fa(Crm) = — B Iicppmy,Capml(X5)sm = 1,2,
n J:]_
and
1 n
Fo(z) = - X I(o,z](Xj),z > 0.
n J=]_

Note that F,,(Cp m) =

'3

fn(Cn,i),m - 1,2,... .

=1

Since f(z) is decreasing in z (see (1.3)), thus the marginal distribution function F (z) of
the random variable X is a concave function. However, for each n, the empirical frequency
function f,(Cr,m) may not be decreasing in m and therefore the function F, (Cn,m) may

not be concave. Following Van Houwelingen (1987), we let {F;(Cp )} be the least—
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concave majorant of {Fy,(Cr,m)} and let

f,’:(t) — F; (Cn,m) — F; (Cn,m—l)

1€ (Cyppm_y.C _12,...
Com —Comr FE(Cnm-1,Crm],m =1,

(2.1) .
Fi(z) = / £ ()dt, forz>o.
0

From Barlow, et. al. (1972), fx(t) is a nonincreasing function of . Now, define

(2:2) oaln) = )

+z,z >0,
where -g = 0. By the definition @}, (z) = ¢}, (Cn,m) if £ € (Cn,m—1,Cn,m]-

We use @}, (z) to estimate the posterior mean o(z), and propose the following decision

rule d;;:

« 1 if pf(z) > 6o
2. d = n ’
(2.3) n() { 0 otherwise.

By the nonincreasing property of the function f;(z), one can see that the function
© (z) is nondecreasing in z, and therefore d}, is a monotone decision rule. Also, it should

be noted that the past data X, is implicitly contained in the subscript n.

3. Asymptotic Optimality of {d}}

For an empirical Bayes decision rule d,, with dy(z) = d(z, X1,...,X,) being a func-
tion of the current observation z and the past data Xj,...,X,, let r(G,d,) denote the

associated Bayes risk and E[r(G, d,)] the associated overall expected Bayes risk. Then,

(G, dp) = / :(eo — o(2))dn(2) f(2)dz + C, and
E[r(G,d,)] = /;:)(00 — p(z))E[dp(2)]f(z)dz + C,

where C is given in (1.5) and the expectation E[d,(z)] is taken with respect to X,. Since
r(G) is the minimum Bayes risk, thus, (G, d,) —7(G) > 0 and hence E[r(G,d,)]-r(G) >0,
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for all » > 1. Van Houwelingen (1987) has investigated the asymptotic properties of
an empirical Bayes test, say d¥, and shown that r(G,d¥) — r(G) = Opy(n=/2). The
nonnegative difference E[r(G,d, )] — r(G) has been used as a measure of the optimality
of the decision rule d,, in many other empirical Bayes problems. For examples, see Johns
and Van Ryzin (1971,1972). In this paper, we are concerned only with the difference

E[r(G,d,)] — r(G).

Definition 3.1. A sequence of empirical Bayes decision rules {d,} is said to be asymptoti-
cally optimal in E at least of order 8, relative to the prior distribution G if E[r(G,d,)] -
r(G) < O(B.) as n — oo, where {8,} is a sequence of positive numbers such that

lim 8, =0.

n—o0

It should be noted that E[r(G,d,)] —r(G) < O(By) implies r(G,d,) — r(G) < Oy(By).
However, in general, the converse is not true. In the following, we investigate the asymp-
totic optimality of the sequence of the proposed empirical Bayes decision rules {d}}. Our

evaluation is based on the following assumptions Al and A2.
Assumption Al. limp(z) < 6y and lim p(z) > fo.
z}0 zT6o

Let Co = inf{z > 0|p(z) > bp}. By the nondecreasing property of ©(z) and Assump-

tion A1, 0 < Cy < bo.

Assumption A2. There exist positive numbers, say 0 < m < M, and an open interval
(C1,C2) C (0,00) such that Co € (01,02),f; %dG(H) >m(z—y)foral C; <y<z<C,
andf;%dG(H) <M (z—y)forall 0 <y <z <.

For each fixed positive integer n, consider the function h(z) = z — e“’”‘4, z > 0. Then

h(z) is strictly increasing in z,h(0) = —1 and k(1) = 1 — e™™ > 0. Thus, there is a

unique solution of the equation h(z) = 0 in the interval (0,1). We denote this solution



by zo(n). Furthermore, h(n~1/%) = n—1/4 _ ¢~1 which is less than zero as n > 81;
also, h((Inn/n)'/4) > 0 as n > 3. Hence, by the increasing property of the function

h(z),n~1/* < zo(n) < (Inn/n)Y/* for n > 81, which implies zo(n) — 0 as n — co.
The following theorem is our main result.

Theorem 3.1. Let {d}} be the sequence of empirical Bayes decision rules constructed in
Section 2, at which the sequence of positive numbers {a,} is chosen such that a, =
zo(n)(202)/4 for sufficiently large n. Then, under Assumption A, E[r(G,d})] — 7(G) <

O(a2) as n — oo.

The proof of this theorem is given in the next section.
4. Proof of Theorem 3.1

In this section, we first give some useful preliminary results to present a concise proof

of Theorem 3.1.

By the nondecreasing property of ¢(z) and the definition of Co, the Bayes rule dg

can be written as

dG(z) — {1 if z 2 Co,

0 otherwise.

Therefore, from (2.2) and (2.3), we obtain

(4.1) E[r(G,d})] —r(G)

Co 00

- / (b0 — P(D)Pes(a) 2 00} (a)dz + [ (ole) = 00) P} (2) < o} (e)ds
Co 00

=/ H(z)P{p, (z) > 6o}dz +/C [ H(z)|P{p;.(z) < Oo}dz

where H(z) = (0o — ©(z))f(z) = (6o — z)f(z) — 1+ F(z),z € (0,00). H(x) is decreasing
in z for z € (0,0). By Assumption A2, f(z) is continuous on the interval (0,680). Thus,
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F(z) and H(z) are continuous on (0,85). Hence, H(Co) = 0 by the definition of Cy and

the continuity property of H(z) on (0,0o).

Lemma 4.1. For 0 < y < z < 00,H(y) — H(z) < M(z — y)(0o — y); also, for C; < y <
z < Cq,m(z — y)(6o — =) < H(y) — H(z), where the constants 0 < m < M are given in

Assumption A2.

Proof: By Assumption A2 and the decreasing property of f(z), for 0 < y < = < 0o, H(y) —
H(z) < (6o ~ I (¥) — 1(2)] = (9o — 1) [ 14G(6) < M(z — ) (60 — ).

Similarly, for C1 < y < z < Cq,H(y) — H(z) > (00 — z)[f(y) — f(z)] = (6o —

z) [ 1dG(60) > m(z — 3) (0 — ).

Thus, the proof of the lemma is complete. Ll

Let oy, = zo(n)(202)}/* be the positive number defined in Section 3. For each =,
define
An:{y|0§ySCO,0SH(y) San}, Ay = iann,

(4.2)
Br ={y|Co <y < 00,0 > H(y) > —an}, bp =supBy.

Since a, = o(1), by Assumption A2, for sufficiently large n, C1 < a, < b, <
Cq, H(an) = ap and H(b,) = —a,. By noting that H(Cp) = 0, from (4.2) and Lemma

4.1, following some simple algebraic computation, we have the following lemma.

Lemma 4.2. As n sufficiently large, under Assumptions A1 and A2, we have,
a) —“—M(gf:_an) <Co—-an< ;z‘(??i_co_), and

b) #G ey < bn — Co < w5y

1

c 2
Lemma 4.3. Let p(ylc) = ye~“% for y > ¢~ 7, where ¢ > 0. Then p(y|c) is decreasing in y

1

fory>c 2.



Proof: Straightforward computation will yield the result. The detail is omitted here. [

For each z € (0,Co),z € (Cp,j—1,Chr,j] for some j = 1,2,... . By (2.1) and (2.2),

following some computation, we have

P{pn(z) = 6o}
=P{1 - F;(Cr,;) + f2(Cn,)(Cr,; — b0) > 0}
=P{F(Cr,;)(Cn,j—1 — 00) — F1(Cr,j—1)(Ch,; — b0) > —an}
=P{(6o — Cnj)[Fr(Cn,j~1) = F(Cn,j-1)] = (00 — Cn,j—1)[F5(Cn,j) — F(Cn,)]
> on[(8o — Cn j)[F(Ch,j) = F(Cnj-1)leg’ —[1— F(Cn,)]l}
(4.3) <P{(60 — Cn,j)[F;(Cr,j—1) = F(Cr,j-1)] = (60 — Cr,j—1)[F; (Cn,j) — F(Ch,;)]

> o H(Cr,j)}

<P{(80 — Cr ) [F2(Cngr) — F(Crj_r)] > 22 Cnily
4 P{(8 — Crj_1) 2 (Cng) — F(Cuy)] < —22HCri)y
§2P{§up |[Fp(Cryi) = F(Cryi)| > %}
1>1 0
anH(Chp,j)

<2P{sup|Fa(Cns) — F(Cny)] > 22010
i>1 0

}
(Since F(z) is concave and {F,, (Cy,)} is the least concave majorant of

{Fn(Chn,)}, see Barlow, et. al. (1972))

H(C,, ;
<2P{sup |Fy(z) — F(z)| > “—"-—("—’J)}
z2>0 200

_na?,x'*’(cn i)
<2ce 205

where the last inequality is obtained due to Lemma 2.1 of Schuster (1969) and ¢ is a

positive constant independent of the distribution function F, see Schuster (1969).
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Also, for z € (Co,00),z € (Cn,j—1,Chn,j] for some j > 1. Now
(4.9 P{(2) < b0}
=P{p} (z) < 0p,max(X1,...,Xp) < Cpj-1}
+ P{p, (z) < o,max(X1,...,X,) > Cpn j—1}
where
(45)  P{ph(z) < omax(Xs, .., Xn) < Cny_1} < [F(Cny_1)I" < [FEO)I",
and

P{p; (z) < g, max(X1,...,Xp) > Crj—1} < P{1-F,(z) — fn(z)(0o — =) < O0}.

Analogous to (4.3), we can obtain

P{1 - Fy(z) — f(z)(fo — z) < 0}
an|H(Crnyj-1)|
200

<2P{sup |F(¢) - F(z)| 2 22 =1l
z2>0

(4.6) <2P{sup |[F;(Chr,i) — F(Cn;)| = }
i>1

- 200 }

_ na%Hz(C’n 1-_1)

<2ce 203
For each n, let a, and b, be those defined in (4.2). Also, let m, and M, be the
integers such that mpa, < ap, < (my + 1)@y, and (M, — 1)a, < b, < Mpa,.
Co
Lemma 4.4. Under Assumptions Al and A2, [ H(z)P{p}(z) > bo}dz < O(al).
0

Proof : Note that
Co

A H(z)P{py,(z) > Oo}dz
(4.7) _ /0 " H(2)P{e (z) > fo}dz + /ma H(2)P{p (z) > bo}de
Co
+ H(z)P{py(z) > bo}dz
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where,
H(z)P{py(z) > bo}dz

Co
< / anP{pi(z) > b}z (0< H(z) < a for z € (an, Co))

(4.8)

<ay (CO - an)
% by L
<—72"r emma 4.2),
- m(0o — Co) ( y )
=0(a3),
(4.9)
[ H@PEE) 2 to)ds
= [ 1) - B Plee) 2 0odds+ [ Hlen)Plwi(e) 2 Go}ds
My, Oty . Mp Oy
< / ) M(a, — z)(00 — z)dz + / " apdz (by Lemma 4.1 and the definition of a,)
Mp Gy my,Qy,
< O(eq),
and
My Qp
[ B@P(i) > o}
0
My Cn,j % C"’vj "
=% | [ () - HCw)IPleie) 2 boddo+ [ H(Cas)PLei(o) 2 bo}ds
J= Cn,j—l Cn,j— 1
m cn,.‘f _Mﬂ-—)
<y [/ 2M(Cp,; — z)(00 — z)ce 2% dz
j=1 Chn,j—1
Cn,j _ na%HZ(Cn 1~)
(4.10)  + / 2¢H(Ch, ;)e 295 dz] (by 4.3)
Cn,j-—l
my, [ [Cnii _ran Cn,j _nag
<¥ l/ 2May,0ce 2% dz + / 2caze 2% dz]
j=1 Cn,j—l Cn,j—l

(by the fact that H(Cy ;) > o, and Lemma 4.3 for n sufficiently large)

4
_hay

=0(ape 265 )
=O(afb).
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Therefore from (4.7)-(4.10), the proof of the lemma is complete.
6o

Lemma 4.5. Under Assumptions Al and A2, [[—H(z)|P{p}(z) < 6o}dz < O(c?).
Co

Proof: From (4.4) and (4.5),

c°[—H(z)1P{so:;(z) < Bo}dz

6o fo
</, [~H(@)IF(@)]"dz+ | [—H()]P{1 - Fy,(z) — fa(<) (0 — 2) < O}dz,

where
6o
; [—H(z)][F(60)]"dz = O([F(60)]") = O(exp(—ntn(F(60))~")),

and where F(0p) < 1 by Assumption Al.

Thus, it suffices to consider the asymptotic behavior of

)
; [—H(z)]P{1 — F}(z) — f%(z) (8o — z) < O}dz.

Analogous to Lemma 4.4, we have

6o
; [~ H(2)]P{1 - F, (z) — fn()(00 — =) < O}dz
bn
= ; [—H(z)]P{1 — F, (z) — fa(z)(60o — =) < O}dz

M, a,
i /,, [~H(2)|P{1 - F;;(z) - £ (2) (60 ~ 2) < 0}dz

n

bo
+[7 FEEIPL- Fi@) - £(@)(00 ) < 0}

where
bn
- H@IPO - Fi(o) - £1(0)(00 - ) < 0}de < Ofad)
[ E@PE - Fi@) - 1@ - ) < 0}z < 0(a)
and

6o
[ FHEIPG - Fi(@) - f2(2) 00 o) < 0}z < O(ad).
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Hence, we complete the proof of this lemma.

Now, Theorem 3.1 is a direct consequence of Lemma 4.4 and Lemma 4.5.
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