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Robust Bayesian Analysis and Optimal Experimental Designs

In Normal Linear Models with Many Parameters — I

Abstract

In a treatment of Bayesian robustness issues in regression problems, we work out the
effects of changing the prior and/or the loss function in the canonical normal linear model
where Y ~ N(X§,0%I) and (6, 0?) is assigned a prior 7(§,0?) belonging to a suitable class
I'. The decision problems include estimation of § under quadratic loss, estimation of the
mean of the response variable under a quadratic or a piecewise linear loss, testing a hypoth-
esis about @ etc. Two different classes of priors are considered: conjugate priors and their
mixtures, and priors m such that L < m < U where L < U are two fixed lower and upper
envelopes. While conjugate priors and their mixtures are attractive from a mathematical
viewpoint, priors between a lower and an upper envelope demonstrate highly appealing
stability properties over repeated sampling, as has been considered desirable by leading
researchers in the area (Berger (1984), L. Brown’s discussion on Berger (1984)). A wide
variety of results are proved borrowing techniques from several branches of mathematics,
such as the theory of moments, analytic geometry, large sample theory, and probability
inequalities for convex sets such as generalizations of the Brunn-Minkowski theorem. Some

of the obtained results include:

a closed form characterization (Theorems 2.1, 4.2, 6.1) of the set of Bayes estimates of
0px1 under the loss (§ — a)'Q(6 — a) where @ is an arbitrary known p.d. matrix where

the family of priors is
Ty = {n(8,0%): §~N(yo’S), H<T<ThpeC
for a suitable convex set C, o2 > 0 is known},
or Ty = {n(8,0%): L(g,0%) <7 < kL(8,0%),k > 1,
L = L1(8l6®) - Ly(c*), where L, is N(u,0?%) and
L, is an inverse gamma density}.
Under I';, the set of Bayes estimates is, in general, not a convex set unless C' contains

only one point, for example, if p = 2 and C is a circle, then it is proved that the set
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of Bayes estimates is a limacon of Pascal. Under I'y, the Bayes estimates always form

an ellipsoid;

=2

explicit formulae (Theorems 2.1, 4.1, Corollary 6.2) for ranges of posterior measures,

such as the diameter in L, norm of the set of Bayes estimators of §;

16

complete characterization (Theorem 2.3, and results leading to Example 15) of the
joint set of posterior means and posterior variances of a linear combination ¢'g; under
T'2, such a characterization is intimately connected with the solution of the Markov-

Krein-Stieltjes moment problem:;

=9

ranges of posterior probabilities of suitable subsets of the parameter space (Theorems

2.5, 2.6, 6.3);

|®

asymptotic behavior of the diameter of the set of Bayes estimates as the sample size

n — oo (Examples 2, 18);

f general results (Theorems 3.1, 3.2, and results leading to Examples 9 and 10) (normal
linear model setup not assumed) showing the effect of enlarging a family I' of priors

by considering mixtures of priors in I'.

Only very simple examples are given to illustrate the theory but the results derived
apply to trigonometric and polynomial regressions, one and two way ANOVA, and other

linear models.



1. Introduction

In a statistical decision problem in the Bayesian framework, formally one has three
components or inputs: a model or the likelihood function ¢, a prior distribution « for the
parameters 8, and a loss function L. Under fixed ¢, m, and L, one computes the Bayes
action by minimizing, over the action space, the (posterior) expected loss of the different
possible actions. In a formal Bayes framework, this is the action that will be taken after

observing the data generated by the experiment.

It is quite apparent, howevef, that the optimal Bayes action is guaranteed to be Bayes
or optimal only under the assumed £, 7, and L, while evidently the assumed model, prior,
and the loss are each at best only approximately valid. Therefore, given the inherent
approximate nature of these inputs, it is important that we attempt to find out the effect
of “reasonable” deviations from the assumed inputs in the framework of a clearly stated
theory, a framework that is conceptually applicable to a large number of statistical decision
problems. Huber (1964, 1967, 1973, 1977) and Hampel (1971, 1974, 1975) were among the
foremost statisticians to have formulated a precisely stated and well understood general
theory of robust statistics, mainly in terms of deviations from the assumed likelihood
function . Since their monumental works, attention has focussed on robustness with
respect to the other inputs of a statistical decision problem; Berger (1984), in a pioneering
article, revived general interest in the very important question of robustness with respect
to the prior. Robustness with respect to the loss was addressed in the excellent articles of
Hwang (1985), and Brown and Hwang (1988). While a comprehensive study of decision-
theoretic robustness under simultaneous variation in 4, w, and L is the ideal goal from
the decision theory viewpoint, in this article we address the problem of robustness with
respect to the prior, in the spirit of Berger (1984), Berger and Berliner (1986), Berger and
Sivaganesan (1986), DeRobertis and Hartigan (1981), Leamer (1978, 1982), and Polachek
(1984), etc. Other very important references in the field of robustness with respect to the
prior include Berger (1987), Berger and Berliner (1984), Berger and Delampady (1988),
O’Hagan and Berger (1988), Edwards, Lindman, and Savage (1963), Goldstein (1980),
Good and Crook (1987), Hartigan (1969), Hill (1980), Kadane and Chuang (1987), Kudo



(1967), Lindley and Smith (1972), Potzelberger (1988), Wolfenson and Fine (1982) etc. We
hope that the statistical ideas and the mathematical techniques of this article would provide
insight into the more comprehensive problem of decision theoretic robustness. Some of the
ideas in this article and in the companion article DasGupta and Studden (1988a) are also

being pursued by Jameson Burt and Leon Gleser.

Consider the usual regression setup where Y nx1 ~ N(X§,0I), where §,x1 and o?
are unknown parameters and X,x, is the design matrix of the independent variables. To
keep notations simple, assume for the moment that o2 is known. The canonical normal
problem where Y ~ N(,02%,) where £y is a known matrix is covered by our setup.
Typically, in regression problems, interest lies in prediction and in testing a hypothesis
about or estimating the vector of regression coefficients § or a known linear combination
¢'0 of the regression coefficients. One reason for interest in linear combinations is that the
expected value of the response variable corresponding to a particular combination of the
independent variables is a linear combination of the regression coefficients. In the robust
Bayesian framework, one has a class I" of prior distributions for the unknown parameter ;
the typical questions of interest would then be: ‘how different can Bayesian measures be
as the prior 7 ranges over I'? For example, if one wants to estimate the vector of regression
coefficients §, and assumes a quadratic loss L(8,q) = (6§ — a)'Q(8 — a) where Q is a fixed

positive definite matrix, then the Bayes estimate for any prior 7 in I is the posterior mean
b, = B(OIY). (L.1)

As 7 ranges over I', the estimates 0, form a set $ in the p-dimensional euclidean space R?
(if T is a convex class of priors, then S is automatically a convex set in RP; even otherwise,
S is often convex). Intuitively, one would say that robustness in the Bayes estimate is
present if S is a “small” set in R?; evidently, there are many possible ways of defining the
size of a set. Among others, one can consider such intuitive measures as the euclidean

diameter of S, namely,

D= sup |lu—ulb, (1.2)
u,0€S

Az/sdg. (1.3)
4

or its Lebesgue measure A



(1.2) seems to be more acceptable because it says how different two Bayes estimates can
be. Note that in problems with a single parameter, (1.2) and (1.3) would usually be
equivalent measures of variation with respect to the prior. Therefore, for estimating a
one-dimensional parametric function (), such as a linear combination ¢'@, the choice of
an index measuring the variation in the estimates is more clear; typically, one considers

the range of the estimates namely,

R = sup B@(O)|Y) — inf BG@IY). (14)
el ™

The range can also be used when the primary interest is in finding the posterior probability
of a set. Such calculations when the class I' is the e-contaminated class of Huber (1973)

were previously done in Berger and Sivaganesan (1986).

In the context of estimating a parametric function ¥ (@), another very important quan-
tity of interest is the posterior expected loss of the suggested Bayes action. For ordinary
squared error loss, this is just the posterior variance of ¥(8). The idea here is that one
would like to have an assurance of small losses for all plausible priors, because if the pos-
terior expected losses change in a big range then one doesn’t feel confident taking that
action. Of special interest is the two-dimensional set of posterior variances versus poste-
rior means; such a set immediately shows the range of the posterior expected loss for each
possible value of the Bayes estimate and also helps identifying the priors in I" for which
the extremal values of the posterior expected losses are attained when the posterior mean

is fixed. Later in the article, we show examples illustrating this fact.

At this stage, we give a brief exposition of the type of classes I' considered in the
present article. Conceptually, one starts with a subjectively elicited prior 7y, and would
like to be robust for all priors 7 in a ‘neighborhood’ of 7g; neighborhoods could be specified
in any of several possible ways, for example by a metric d on equivalence classes of ‘the

class of nonnegative measures on R?. Thus I" could be described as
I'= {n: d(7r0,7r) < e}, (1.5)

where € is a (possibly small) specified number. A metric d that has been proposed in the
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literature (see DeRobertis (1978)) is

m(0)

)= g3 o e (e @

where 7, 7' are two nonnegative densities on the parameter space. Perhaps a more natural

appeal of the class I' induced by this metric is that T" is the convex cone of nonnegative
functions given by

I'={am a>0, m(f) < n(d) < kmo(9)}, (L.7)

for some fixed number £ > 0. T can be restricted to only infinitely differentiable priors
between my and kmp without changing any of the results in this article. The class T
described above models the prior as lying between two bands; the band is wider and more
priors are allowed for larger values of k. Another very attractive feature of this class is that
when the likelihood function £ is combined with the prior , the set of resulting posteriors
is again a class of the form (1.7). This stability in the set of posteriors over repeated
sampling allows one to quickly judge the effect of additional samples on the collection of
possible opinions about the parameter § (see L. Brown’s discussion on Berger (1984) for
an account of this). Another very reassuring stability property enjoyed by this class is that
as 7 ranges over I'; the set of prior means is often an ellipse and gets translated into a new
ellipse with every additional observation. This is one of the classes of priors considered in

this article.

Conjugate priors, on the other hand, are very attractive because of their mathematical
convenience, and indeed in many problems give a rich enough class of priors for an honest
robustness check. Conjugate priors, by definition, have the first stability property described

above. A second class of priors considered in this article is
I'={m: =wisa N(g,0’%) density, p € C, ¥; <X <o}, (1.8)

where 3, and Y5 are arbitrary nnd matrices such that ¥; < ¥9 and C is a suitable convex
set in R?. We will often let C be a singleton set, implying that we feel sure about the
location of the prior, but let ¥ vary, implying that we do not feel confident about the

spread of the prior. At other times, we will let C' be a nonempty convex neighborhood of
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a fixed pyo in RP, like a circle or an ellipse or a rectangle. In such cases, characterization
of the set S of all Bayes estimates of § and evaluation of its diameter D in Ls-norm give
rise to interesting geometric problems. A surprising result contained in this article is that
if C is an ellipse, the set S often is a trisectrix or a cardioid, and therefore is not convez.
Classes similar to (1.8) have earlier been studied by Leamer (1978, 1982), and Polachek
(1984).

A common feature of both of the classes (1.7) and (1.8) is that they only allow priors
with similar tail behavior. For example, if in (1.7) one takes g to be a normal prior, then
a t-type tail cannot be accommodated by staying within the class (1.7). Similarly, a t-type
prior cannot be accommodated by the class (1.8). Workers in the area, however, emphasize
the need for taking priors with different tails, because frequently one feels unsure about
the rate at which the prior density tends to zero. Keeping this in mind, we have also
considered mixtures of the priors described in (1.8). For example, arbitrary mixtures of all
normal priors with a fixed mean g include all completely monotone densities with mean y;
in particular, any elliptically symmetric ¢-prior with a mean g can be generated by taking
such normal mixtures. Not surprisingly, completely arbitrary mixtures of normal priors
often lead to an overly conservative big class of priors and we find here that robustness

may be unattainable with respect to such a big class of priors.

In this context, optimal design problems arise very naturally. It is quite possible that
the diameter D of the set S of Bayes estimates (or other similar measures of variation) will
tend to be big for poor choices of the design matrix X, whereas satisfactory robustness
obtains for an optimal choice. One should thus make every effort to use the optimal design
that gives the best robustness with respect to the prior; clearly, however, designing merely
to get the most robust results can potentially lead to a collection of statistical procedures
which give mostly similar answers (i.e., are robust), but have other undesirable properties.
A more sensible formulation of the optimal design problem would be to impose robustness
as a secondary constraint, with the primary goal being near Bayesness with respect to

a fixed elicited prior. Such constrained optimal design problems have been addressed in

DasGupta and Studden (1988a).



In Section 2, we work out the diameter D of the p-dimensional set S of Bayes estimates
and the range of Bayes estimates of an arbitrary linear combination ¢'d, when I' is the
class (1.8). We also completely characterize the joint set of posterior means and posterior
variances for estimating any linear combination ¢'d. In some interesting special cases, we
work out the ranges of the posterior probabilities of sets of general interest. To give the
reader an easy grasp of the main results, we start with the case when o2 is known. In
section 3, we take the mixtures of priors in (1.8) discussed before in order to accommodate
priors with thicker tails. We explicitly show the effect of this enlargement in the class
of priors on the variations of Bayesian measures. For example, we give a result showing
in which cases the joint set of pbsterior means and variances of ¢'§ does not increase in
size even if arbitrary mixtures of the original normal priors are taken. Section 4 contains
results for the case when the prior mean g4 in (1.8) is unknown and varies in a convex
set in RP. The extremal problems here lead to very interesting geometric problems and a
highly unanticipated finding is that even if y changes in a convex set, the posterior means

may not change in a convex set. In section 5, we have briefly pointed out without proof
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which of the results for the known o case generalize to the case when ¢ is unknown and
a suitable prior for o2 is used, and which of the results do not or may not. In section 6, we
consider the “density-band” class defined in (1.7); here too we have been able to completely
characterize the set S and find an expression for its diameter. Ranges of Bayes estimates of
¢'d are also worked out. The problem of characterizing the joint set of posterior means and
variances gets especially interesting here, because points on the upper and lower boundary
of this set are related to the extremal values of the first two moments in the Markov-Krein
moment problem. It also turns that a common standardized set of means and variances
generates the prior as well as the posterior set in a very simple way, thereby making it
necessary to find only this standardized set of means and variances. We also work out

the ranges of posterior probabilities of arbitrary sets. Section 7 contains some concluding

remarks and discussion.



2. Normal priors, known 2.

‘In this section we work out the variations in different Bayesian measures under the
assumptions of a known error variance o2 and a class of normal priors, as described in
(1.8). The priors considered in this section were first proposed by Leamer (1978, 1982),
and Polachek (1984). The very interesting idea of explicitly describing sets of posterior

means originated with these articles.

Theorem 2.1. Let Y, x1 ~ N(X8,02I), where § € R? is unknown and 02 > 0 is known.
Let 4 have a N(y,02X) distribution where g € RP is fixed and ©; < ¥ < X in the sense
that ¥ — ¥; and ¥2 — ¥ are nnd; here ¥y, X, are arbitrary nnd matrices with ¥; < ¥,.

Suppose it is desired to estimate § under the loss

L(8,a) = (§ — a)'Q(4 — a),

where @) is a known p.d. matrix. Then, the set of all Bayes estimates of § constitute a

p-dimensional ellipsoid

S=16: 0 Rutw)(h— A7 @~ (Rp+w) < L2200 oy

where A; = (X'X + £71)71, A = 4382 and y = X'(Y — Xp) . Moreover, the Euclidean
diameter of S, defined as

D = sup |lu—vll (2.2)
U,VES .

is equal to \/Q’(Az — A1)v - Amax, Where Apax is the maximum eigenvalue of (Ay — Ay).

Proof: The ellipsoid S has previously been derived in Leamer (1978, 1982) and Polachek
(1984). We sketch the proof here for the sake of completeness and also because our proof
is different from the earlier ones given in the literature and makes a very interesting use of

the Householder transformation of numerical analysis.

First observe that irrespective of @, the Bayes estimate under the prior N(y,o%%) of

g is its posterior mean



T

=BQY =y)=(X'X +37) 7 (X'y+37"p)

= Ay + 4, (2:3)
where A = (X'X 4+ £71)~! and v is as in the statement of the theorem. Standard results
in matrix theory imply that A; < A < A;. We will prove that the set of all vectors Ay

(where A; < A < Ay) form an ellipsoid from which it will follow directly that the Bayes

estimates form the ellipsoid stated in the theorem.

Define Sy = {Ay, A; < A < Ay}, and

v(Ag — Ayl

Si={8 (§—Av)(A2 —A1)7Hg—Ay) < 1

. (2.4)

First note that there exist an orthogonal matrix P such that P (Az—;AllP' is a diagonal
matrix D and an orthogonal matrix @ such that QDzPy = (a 00...0)' = w (say), where

« is non-zero if v is non-zero.
Clearly
Ay=(A—R)y+ Ay
= P'P(A —A)P'Py + Ay
= P'D3D"*P(A—RK)P'D"*D%Py+ Av
= P'D7Q'QD~*P(A— A)P'D"*Q'QD*Py + Ay
= P'D*Q'Cw + Av, (2.5)
where C = QD_%P(A — K)P’D—%Q’ and w is as deﬁned before.

Now observe that

A.Z"‘A]_ —_ Az—Al’
<A-AKL
2 SA-As 2

& -D<PA-MNP' <D

M<A<L<A s -—

& -I<D 3PA-MNP'D:<I
& -I<QD *P(A—NP'D2Q' <I
& -I<CKLLI (2.6)
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Hence, if we can show that the set
Sy={Cw: -I<C<I}
is a sphere, then it will follow from (2.5) that Sy is an ellipsoid. Without loss of any
generality, we assume that o = 1 which makes w the first unit vector (1 0 0...0)'. Since
Sy is convex, it will suffice to show that any vector e of euclidean norm 1 can be written
in the form
e =Cu,
for some ~I < C < I.
This can be done by using the well known Householder transformation

C= I—zggla

where a; = /152 and a; = ;—:{—, where e1,...,e, are the coordinates of ¢; since a'a =1,
it follows that —I < C' < I. Note e; can be assumed to be smaller than 1, for ife; = 1
then C' can be chosen to be I. This proves that the set of Bayes estimates S is the ellipsoid

stated in the theorem.

That the euclidean diameter of S is equal to

\/QI(A2 - Al )'QAmax

follows from the above ellipsoid representation of S.

Corollary 2.2. (a) For any Ljyx, where rank (L) = k < p, the set of Bayes estimates of
L@ form the ellipsoid

S; ={w: (v — L(Ay+ ) (L(Az — A1)L") " (u — L(Av + p))

v'(A2 — Ay, _

(b) For any p-dimensional vector ¢, the Bayes estimates of ¢'§ form the interval

¢'(Ay+p) - %\/v’(Az — A1)y - ¢'(Az — Ay)e

<u

<d(Av+p)+ %\/ v'(A2 — A1)y ¢'(Aa — Ay)c (2.8)

11



Proof: (a) Follows from the facts that E(LY[Y = y) = LE(d]Y = y), that the Bayes
estimates of § form the ellipsoid (2.1) and that the image of an ellipsoid under a lin-
ear transformation is also an ellipsoid (see Johnson and Wichern (1982), pp. 219-220).

(b) Follows from (a) on taking L = ¢'; if ¢ = 0, the result is trivial.

In regression problems, probably of more interest is the problem of predicting &k fu-
ture values of the response variable Y corresponding to the vectors of predictor variables
Zo1,Z02,---,ZTok- Since the problem of predicting (Yi,...,Y%) under squared error loss is

equivalent to estimating (EY3,...,EY}%) under squared error loss, and since
(EY:...EY:) = L6,

where

Lixp = (Zo1- .. Zox),

we have the result that the set of Bayes predictors of (Y1, ...,Y)) under squared error loss,

under the prior modelling of Theorem 2.1, is the ellipsoid (2.7).

Example 1. Consider a simple linear regression model
yi = 0o + b1z +¢€;, 1<i<nm,

where the independent variable z assumes values in the interval [—1,1] and ¢; are iid
N(0,1). Suppose the joint distribution of § = (6, 81)" is N(0,%), where I < ¥ < 5I;
this implies that the variances of 8y and 8; are between 1 and 5 and the correlation is
between :i:-g—. Thus a substantial amount of variation is allowed in the variances and the
correlation. Suppose now n = 20 observations are taken and 10 of these are taken at
X =1 and another 10 at X = —1 (this design is used just as an artifact, but note that
this design has many standard optimum properties). Let §; = (X'X)™1 X' y denote the
usual least squares estimate of §. Typically, for é 1 near zero good (Bayesian) robustness is
anticipated. Let us take §, = (3.15 3.15)"; this choice roughly corresponds to the value of
: Q’Lé 1 equal to its marginal mean plus one marginal standard deviation under the marginal

distribution of Y induced by the worst prior covariance matrix (which will be 5I under

12



our modelling). Our choice of Q r thus is not a value chosen conveniently near zero so good
robustness will automatically be obtained. Now, using Theorem (2.1), one has that the

set of Bayes estimates of § is the circle
(6p — 3.06)% + (6; — 3.06)% < .0072,

with center at (3.06, 3.06) and radius .085. Thus, in particular, the estimates of each
regression coefficient vary in the range 3.06 £ .085. Note that on the other hand the
standard error of the least squares estimates is .2236, more than 2.6 times the half-width
of the interval of Bayes estimates. This indicates that encouraging Bayesian robustness
can be obtained in very reasonable situations with just a moderate sample size. The circle

1s plotted in Figure 1.

Example 2. Ordinarily, it will be desirable that the diameter of the set of Bayes estimates
converges to zero (for “all” values of y) as n — co. We work out a simple example below

where this is the case (the same result is true in much more generality).

Let again ¥y = I and £y = kI and consider the simple linear regression model with
the same design (i.e. 50% of the observations taken at each of X = 1 and X = —1); thus
X'X = nl. Then straightforward computation gives

2 _ (11— %)23/’XX'3/
C (n 1P (n+ )P

(2.9)

Under the prior N(Q,kI), un = X'y is marginally distributed as N(Q, (n + n?k)I). Thus
2 (1- %)2@’7;@11

C(n+1p(n+ 1)’
(1- %)2nkWn

= 1)1 %), (2.10)
where W,, ~ x2(p).
D <VEQ1 - %)\/nw": (2.11)

Now for any fixed € > 0,

oo > E(—\/I:T)

13



S

>3 P s )
- P2
- f:P(\/_W’: > e), (2.12)

3
I
[

which implies by the Borel-Cantelli lemma that P(limsup ———EL":;V > €) = 0, and therefore on
VW,

n

a set of probability 1, —“’ZV" < e after a finite stage (depending on €), implying that
converges to zero almost surely under the marginal distribution of ¥ induced by the prior

N(Q,kI). It follows from (2.11) that the diameter of the set of Bayes estimates goes to

zero. As mentioned before the result is true in more generality.

As mentioned in section 1, of special interest in regression problems are parametric
functions ¢'@ where ¢ is an arbitrary non random vector. The range of the posterior means
of ¢'§ was given in Corollary 2.2. We now work out, for a given linear combination ¢'6,
the joint set of posterior mean and posterior variance as the prior ranges in the class (1.8).
A complete description of this set would enable the reader to immediately figure out the
range of posterior variances for any fixed value of the posterior mean and also to quickly
find answers to questions such as for which value of the mean the posterior variance (or
the range of the posterior variance) is maximized. The following theorem describes this

two dimensional set.

Theorem 2.3. Let ¢px1 be an arbitrary but fixed vector. Under the setup of Theorem
2.1, the set
S(e) = {(E(']Y = y), Var ('9]Y = y))}

is a two-dimensional ellipse

{u: (v —wo) D™ (u —uo) < A%} (2.13)

where

(v'Ac+c'u
- (FF2E), s



_ (v (A2 =AMy 0% (A2 — Ar)y
D= ( 049'(1\2 — Ad)e (2.15)

and
_ (A2 —Ag)e

A2
4

(2.16)

Note D! exists unless v and ¢ are linearly dependent.

Proof: Since the posterior distribution of § under the prior N(g,02%) is N(Av + g, 02A),

(B0 () - (e (8) e

It was effectively proved in Theorem 2.1 that for any vector ¢, the set of points {A¢,A; <
A < As} form the ellipsoid

clearly,

8 (0-K)(hs — ) (g - Ko < SR 205y (218)

Consequently, on letting Loy, = (a';'c,), it follows that the set of points {LA¢, A; < A <

A2} form the two-dimensional ellipse

16:(6 ~ LRe) (L(As — AL (¢ — LRg) < E02 7 Rukey (2.19)

provided v and ¢ are linearly independent (which will be true with a marginal probability
of 1 for any prior in the class (1.8)). The result now follows from (2.17) and (2.19) on
noting that wo = LA¢c + (910/5) and D = L(Ay — Ay)L'.

Example 3. In the setup of example 1, with ¢ = (0 1)’ (i.e., for estimating the slope of

the regression line), the ellipse S(c) is
0.1326(u; —3.06)% +1052.6316(uz —.0485)% — 16.7084(u1 — 3.06)(uz —.0485) < .0005 (2.20)

Below we give the minimum and the maximum posterior variance for a few selected values

of the posterior mean. The whole ellipse is plotted in Figure 2.
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Mean Variance

2.98 0476 .0481

3 0476 .0485
3.02 .0476 .0488
3.04 0477 .0490
3.06 0478 .0492
3.08 .0480 .0493
3.10 .0482 .0494
3.12 .0485 .0494
3.14 .0489 .0493

The range of the posterior variance is maximized for a posterior mean of 3.06 (the midpoint
of the range of means), this maximum range being approximately .0492 — .0478 = .0014.
Another very important reason for the interest in the two dimensional set S(c) is that
a complete characterization of the joint set of posterior means and posterior variances
enables us to find the ranges of other quantities of posterior interest, for example, the
posterior quantiles of ¢'§. The posterior quantiles, apart from giving one an idea of the
spread of the posterior distribution, are important also because they are in fact the Bayes

estimates of ¢'8 with respect to the family of losses

L(6,a) =ko(a—0)if6 <a
=k1(0 —a)if 0 > q; (2.21)
(the Bayes estimate under this loss is the posterior Hﬁfﬁth quantile of ¢'8). In our problem,

under the family of priors (1.8), the posterior distribution of ¢’ is normal, and hence the

ath posterior quantile of ¢’ as the prior ranges over the class (1.8) forms the set of numbers

Qo = {E(OY =y) + 24 - /Var 4]Y =y}
= {u1 + zov/uz: u = (u1 u2)' € S(c)}, (2.22)
where z, is the ath quantile of a N(0,1) distribution. Since a characterization of the set

S(c) is available, finding the infimum and the supremum of the set of real numbers @, is

an easy one variable optimization problem. The following theorem makes this formal.
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Theorem 2.4. Let u = (u; u2)' belong to the ellipse (u —uo)' D™ (u —uo) < A?; suppose

2
D = ( 01 p0’120‘2)
- )
Poyios g,

where p? < 1. Then, for z > 0(z < 0),

uo = (%o1 %o2)’, and

u1 + 2/ uz (2.23)

max ,
(U—Uo)' D=1 (U—Uo)<A?

u1 — uo1)?
=, _nax uy + 24| {woz + Pz_j(ul — u01)(+)02\/(1 — p?)(A? — (s —uor)? )}

|u1—u01|SA0'1 0']2_

and

U1 + 2/ ug (2.24)

min
(U—Uo)' D=1 (U~Uo)<A?

. U —_— 2
= min |uwts {uoz+pZ—f(u1—um)(:)az\/(l—w)(Aﬁ—-—(1 v

|u1—-u01|5A0'1 0'%

Proof: First note that obviously the minimum and the maximum of u; + z,/uz are
attained by points on the boundary of the ellipse. The proof of (2.23) follows on noting
that if (u1,u2)" is on the boundary of the ellipse (u — uo)' D™ (u — uo) < A2, then

o Uy — Uy )?
uz=u02+pf(u1—u01)i02\/(1—02)(A2_( - o2 o1) )s
1

and that u; varies in the interval |u; — uo1| < Aoy. The proof of (2.24) is similar.

Theorem 2.4 thus shows that finding the maximum and the minimum of any posterior
quantile is a single variable optimization problem for any arbitrary linear combination
c'g. In general, closed form expressions for the maximum in (2.23) (and the minimum in
(2.24)) are complicated, but in any particular case finding the numerical values is an easy

computing exercise.

Example 4. Again consider the situation of example 2; also let ¢ = (0 1)'. The ranges of
several posterior quantiles for this case are listed below. The maximums and the minimums

were calculated on a Casio fx-7000G graphics calculator.
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Posterior quantile

a Za min max
.25 —.67 2.8301 2.9948
1/3 —.44 2.8805 3.0457
2/3 44 3.0730 3.2408
75 .67 3.1232 3.2918

Interestingly, for each a, the length of the interval of posterior quantiles is approximately
.17, which is also the approximate length of the interval of posterior means (and hence
posterior median); this suggests that roughly the same amount of robustness may be
achieved for quite different loss functions, like the quadratic loss of Theorem 2.1 and the
piecewise linear loss in (2.21). All of these observations in the robustness study are made

convenient and possible by the explicit elliptical representation of the set S(c).

Finally, we now show a result on the ranges of posterior probabilities of spheres cen-
tered at the prior mean y. Such spheres S = {§: ||§ — u|| < k} are of intrinsic interest
because practitioners are very often interested in the probability (or the likelihood) that
the unknown parameter § lies in a “small” neighborhood of the apriori guess y. To the best
of our knowledge, this is the first time that the classical Anderson-type theorems on proba-
bility contents of symmetric sets have been used in a Bayesian context. For the techniques
to go through, we need to assume that the design matrix X and the prior variance covari-
ance matrices % are such that for any ¥ and ¥* in the class of prior covariance matrices,
(X'X +571) and (X' X + £*71) commute. The condition, though apparently restrictive,

is satisfied in some common cases. Examples are given after the following theorem.

Theorem 2.5. Let
Y ~ N(X6,0°I)

g ~ N(H) 022),
where y,0? are fixed, and ¥ belongs to a class of matrices I'. Suppose for all &, T*
belonging to T,
(X'X+2HX' X+ ) = (X' X+ 2 H(X' X+ 271 (2.25)
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Let S ={0: || — || <k, k> 0}. Then, T < 2* implies

Ps(@ e S|Y =y) = Pe-(§ € S|Y =y) (2.26)

Proof: Let A = (X'X+X71)7!, and A* = (X' X +3*"1)~1. Under the hypothesis (2.26),
there exists an orthogonal matrix P such that A = P'DP and A* = P'D*P, where D and
D* are diagonal matrices. Let D = diag(ds,...,dp) and D* = diag(dj,...,d;). Clearly,
0<d; <df for every i, 1 <i < p. Now,

Pr(@ e SIY =y)
= P(||g]] < k|6 ~ N(Ay,A))
= P(|W|| < k|W ~ N(Dy, D)) (where y = Py)
= P(Z'DZ < ¥*|Z ~ N(D¥y,I)). (2:27)
Now, since Zy,..., Z, are independently distributed, the N(§,I) distributions form a lo-
cation parameter family, the standard normal density is log concave, [v/dju;| < |1/dFu;l

for every ¢, and the set {Z: Z'DZ < k?} is sign invariant and convex, it follows from

Theorem 4.1.5 in Tong (1980) that
P(Z'DZ < ¥*|Z ~ N(D%y, 1)) > P(Z'DZ < k*|Z ~ N(D*}y,I).  (2.28)
Since {Z'DZ < k*} D {Z'D*Z < k?} and
P(Z'D*Z <K'|Z ~ N(D*3y,I)) = P (6 € S|V =y), (2.29)

(by an argument parallel to (2.27)), the proof is now complete.

Example 5. The condition (2.25) is always satisfied if X'X and the prior covariance
matrices are diagonal. Thus, in the usual normal problem where ¥ ~ N(8,02%,) and
g ~ N(u,02%), and %y, ¥ are diagonal, our Theorem 2.5 will always apply. Suppose we

are in the situation of Example-l with the prior covariance matrix ¥ = 0(1)1 00 )
22
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being such that 1 < o711, 022 < 5. Let 4 = 0 and let S be the sphere {6: ||6]| < 4}. By
Theorem 2.5,

3.12 1
. — — < ~ o
P e sy =y) = P(lel <40~ N ((312), 5557)

= .0301.
Similarly, v
supP(§ € S|Y =y)
= g
= .1272.

In general, one needs to evaluate two noncentral chi square probabilities, which can
be done either using the PROBCHI option in SAS (1985), or by using the tables in Fix
(1949); for satisfactory approximations, also see Abramowitz and Stegun (1964).

Example 6. If the design matrix X and the prior covariance matrices X are such that
X'X+%1 are of the form aI+ 11’ (commonly known as the “equi-correlation” structure),
then hypothesis (2.25) is again satisfied. In particular, (2.25) will hold if X'X and X are
each of the form af + B11'. For example, if one lets the prior covariance matrix ¥ to vary

in the set

o o?p
T={%: ISZ_(azp 02)551},

then with é L, X'X, and S as in the previous example, by Theorem 2.5 the infimum and
the supremum of the posterior probability of S are again attained at ¥ =5l and & =T
respectively; consequently, they are .0301 and .1272 as before. Note that the set I" described

above is the subset of all matrices of the form al + 11’ of the previously considered set

I < ¥ <5I. As mentioned before, if 3 belongs to I', then 1 < ¢? < 5 and lp| < %

A hypothesis of general interest in regression problems is that a fixed linear combina-
tion ¢'d of the regression coefficients is in a neighborhood of its prior mean ¢'y. Using an
argument similar to that of Theorem 2.5, it is easy to prove the following result. We omit

the proof.

Theorem 2.6. Suppose hypothesis (2.25) holds; let ¢ be any fixed p-dimensional vector;

20



then ¥ < ¥* implies

Po(I(@ — )l S kY =y) > Pex(Ic( — )| < kY = y) (2.30)

Example 7. Suppose in the setup of Example 5, we want to know if E(Y|X = —.9) is
between +.5; this will then correspond to finding P(—.5 < ¢'6 < 5) where ¢ = (1,—.9). By
(2.30),

i%fP(—.S <9< BlYy = y) = P(—.5< X < .5|X ~ N(.312,.0896))

= .7323.

Similarly,

sgp P(-5<9<.5)Y = y) = P(-.5 < X <.5|X ~ N(.3,.0862))

= .7484.

Using the class of priors of Example 5, one will perhaps accept the hypothesis that
|E(Y|X = .9)| < 0.5 since the posterior probability of the hypothesis is large for all priors
under consideration and the results are very robust (the probability changes between .7323

and .7484).

3. Mixture normal priors.

A natural way to enlarge the class of priors considered in section 2 is to consider their
mixtures. If we want to use priors of the general normal shape with a mode at some point y
but are unwilling to use regular normal priors alone, a natural class to consider is the class
of mixtures of normal priors. Taking the mixtures of the priors N(u,%), 31 < ¥ < 3,
has different effect on the class of Bayes estimates of § for different losses. We consider
the quadratic loss (6 — a)'@(8 — g) and the piecewise linear loss of (2.21). Interestingly,
for quadratic losses, enlarging the class of priors by taking mixtures does not change the

class of Bayes estimates of §. This is the assertion of the following theorem.

Theorem 3.1. In an arbitrary decision problem, suppose that § is to be estimated under

the loss L(6,a) = (§ — a)'Q(8 — a), where @ is a fixed p.d. matrix. Let
I'={ma(6): a€l} (3.1)
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be any class of priors. Let S be the set of Bayes estimates of § as the prior varies in I'. Let

' = {n(8): =(9)= /IWQ(Q)dT(a), where /Id'r(a) =1}. (3.2)

Let S* be the set of all Bayes estimates of § as the prior varies in I'*. If S is convex, then

S*=S.

Proof: Follows from the fact that Bayes estimates under the loss of this theorem are

posterior means and hence S* is the convex hull of S.

Theorem 2.1 and Theorem 3.1 together imply that the class of Bayes estimates of §
under arbitrary mixtures of the N(y, X) priors (where £; < ¥ < ¥5) is the same ellipsoid
(2.1) and hence (2.2), (2.7), and (2.8) are all valid. Although mixing the priors has no
effect on the set of Bayes estimates for quadratic loss, it usually enlarges the set of Bayes
estimates for the piecewise linear loss (2.21). This is because under the loss (2.21), the
Bayes estimate of 8 is the vector of ﬁkblth posterior quantiles of §;, and the p-dimensional
set of posterior quantiles may not be invariant under mixing of the priors. We do not have
at the moment an explicit representation of the set of Bayes estimates of § under mixture
normal priors for the loss (2.21). However, for any single linear combination ¢'§, the range
of its Bayes estimates under the loss (2.21) remains unaffected by a mixing of the priors.

This invariance result is proved in the next theorem.

Theorem 3.2. Let 0 be a scalar parameter in an arbitrary statistical decision problem.
Suppose 0 is to be estimated under the loss (2.21). Consider the class of priors (3.1) and
let §, denote the Bayes estimate of § under the prior mo(6), o € I. Let

k1
6= ———,
ko + k1
L= O
Ts = sup 8, (3.3)
acl

Let 75 and T; denote the infimum and the supremum of the Bayes estimates of § under

the class of priors I'*. Then 7} = 5 and 7} = Ts.

22



Proof: Let 7*(#) be an arbitrary prior in I'*; hence, 7*(0) = [ m4(0)dr(a) for some
probability measure 7 on I. Let é; denote the Bayes estimate of § under the prior n*;
thus éz‘ is the 6th posterior quantile of 8 when the prior is 7*(8). The proof follows from
the fact that the posterior of § under the prior 7#* is a mixture of the set of posteriors

generated by the class of priors I', and hence
s < 03 <7s. (3.4)

Since n* is arbitrary, and I'* contains T, the result follows.

Theorem 3.2 implies that the range of the Bayes estimates of an arbitrary linear
combination ¢'f can be computed by simply appealing to (2.23) and (2.24) when the class
of priors consists of arbitrary mixtures of the N(y,X) distribution, where £; < ¥ < %5,

and when the loss is the piecewise linear loss of (2.21).

As discussed before, in the problem of estimating a linear combination ¢'@, the set
S(c) defined in Theorem 2.3 is of independent interest by itself. Under mixture normal
priors, even though the range of the means of ¢'6 is the same as that for the regular normal
priors, the set S(c) as such is usually a genuine superset of the ellipse (2.13) and is no
longer an ellipse. In the following paragraphs we describe an easy method to obtain the
set S(c) for mixture normal priors; in particular, we will demonstrate for what values of
the least squares estimate §7, (which is the minimal sufficient statistic for §), the set S (¢)

remains the same as before, i.e., is again the ellipse defined in (2.13), (2.14), and (2.15).

Consider, instead of the set S(c), the set M(c) of the vectors of first two posterior

moments of ¢'6, as the prior 7(§) varies in the set I' of N(y,X) priors, & < 33 < Xg; thus,

M(c) = {(ESOY =y, E(¢'9)*|Y =y) : m €T}

= {(u1,u] + u2): (u1,u2) € S(c)} (3-5)

Similarly, let M*(c) denote the set of first two posterior moments of ¢'@ when the prior
7(§) varies in the mixture class I'*. Clearly, M*(c) is a convex set in R? because I'* is

a convex class of priors, and in fact, M*(c) is precisely the convex hull of M(c). If now
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5*(c) denotes the set of two dimensional vectors of the posterior mean and the posterior

-variance of ¢'6 when the prior changes in the mixture class I'*, i.e.,
S*e) ={(Ec8lY =y, Var(¢'§)IY =y): =eT"}, (3.6)
then clearly,
§*(6) = {(uyv — u2): (u,) € M¥(O)}. (3.7)

Thus, S*(¢) can be generated by following the sequence
S(c) = M(c) —» Convex hull of M(c) — S*(c).

Thus it is immediate that S*(c) = S(c) if M(c) is itself convex. Usually, however, M(c)
will not be ‘a convex set because I' is not a convex class of priors. Sometimes, rather
fortunately, M(c) is convex. We will provide a condition under which this is the case.
Without loss, let us assume that the error variance 02 = 1. It is easy to see that the lower
boundary of $*(c) is the same as the lower boundary of S(c). Thus we only need consider

points on the upper boundary 85(c) of S(c). Recall that (uy,us) € 8S(c)

: o o
= U2 = Ug2 + pﬁ(ul — ’LL()1) + ﬁ\/l — pz\/(Aal)z — (u1 — u01)2. (38)
Define W = u? + u,. From (3.8) it follows that

2w 2 (4o1)?
=2 22\/1—p2. . .
du? o1 p ((Aoy )% — (ug — ugp )2)3/2 (3.9)

Thus the upper boundary of M(c) is concave (i.e., M(c) is convex from below) if

09 (A0'1)2
2< 2. /1—,2 v
7N (Ve R R )T
_ A2
eoc2VI—P
01 AO‘]
& 02 < /1 — p? since (2.16) implies A = 02—2. (3.10)

Thus, from (2.15), it follows that S*(c) = S(e) if

('(Az — A1 )p)®

! _ 2 £1_
(v'(A2 Ar)e) <1 c'(Agy — Ar)e-v'(Ag — A1)y

(3.11) -
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Example 8. Let p=2,n=20, u=0, 5, = I, 3y =5I, X'X = 20I. Let 41, = (61,0,)
‘denote the least squares estimate of §. Then (3.11) reduces to
R Ia 2
56006(8,8,) <1 - ~£28)_ (3.12)
¢'c- 0.9
In particular, if ¢ = (0 1)’, then (3.12) further reduces to

.56906(62 + 62)° < é2. (3.13)

So, for example, if the least squares estimate of the intercept #; is .5, then the set S(c)
would remain invariant under mixing if the least squares estimate of the slope is between
+.71428. Typically, S(c) would remain invariant under mixing if the least squares estimate
é L is close to zero; this is just saying that if the likelihood function is concentrated near

the location of the priors, then good Bayesian robustness will obtain.

Let us now briefly consider the problem of obtaining the set M*(c) when (3.10) does

not hold and therefore M(c) is not convex. Observe that (3.10) certainly holds (i.e., d;uv%/ <
0) if u1 = uo1 £ Aoi, and therefore by continuity near u; = uo; £ Ao;. Geometrically,
it is clear that the upper boundary of the convex hull of M(c) coincides with the upper
boundary of M(c) for u; near ug; + Aoy; in between, it is a straightline L joining two
appropriate points P = (u},,w};) and @ = (u3;,w3;) on the upper boundary of M(c) (see
Figure 3). These two points must be such that L is tangent to M(c) at the points P and
Q. Consequently, ;T"’l assumes the same value at P and @; using the fact that W = u? +us
and expression (3.8), one then has
a2y/1—p? U3 — Yo1 Uy — Uo1

71 [\/(A01)2 —(h —un)’  V(Ao1)? - (uf; —uor)?
Also, since P and @) both lie on L, it is clear that

aw| _aw
du1 E du1

2(”31 - u?l) =

]. (3.14)

* *
Wa1 — W1a

* * 7
Q Uz1 — Uny

which reduces to

21— p? (\/(A01)2 — (ui; —v0o1)? — \/(1‘1‘71)2 — (u3; — u01)2>

g1

* g2 (U;I — U’Ol) * *
= | 2us; — —=+/1—p2- (ul; —u 3.15
( 21 o1 P \/(Aal  — (a3, — u01)2> (uis 51) ( )
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Equations (3.14) and (3.15) give the required values u}; and u3;. In general, (3.14) and
-(3.15) have to be solved numerically; in some cases symmetry arguments can be given

leading to an easy derivation of uj,, uj,. Here is an example.

Example 9. An interesting special case is when ug; = p = 0 (i.e., the two axes of the
ellipse S(c) are parallel to the coordinate axes and the posterior mean varies in an interval

symmetric about zero). In this case, (3.11) immediately implies that S*(c) = S(c) if
ol =v'(A2 — A1)y S 1.

Otherwise, S*(¢) is a superset of S(c); one question of specific interest then is how much
does the maximum posterior variance of ¢'@ increase due to prior mixing. An easy sym-
metry argument implies that in this example u}? = u3? = 1—3(@% — al_f) Using this, it
is not difficult to prove that the maximum posterior variance increases from ugq -+ _{22_ to
uo2 + Zf-(af + 01—%) Evidently, the increase in the maximum posterior variance is nominal if
o = v'(A2— A1)y is only marginally bigger than 1, but the increase can be substantial if o7
is substantially bigger than 1. Since o2 is likely to be smaller for §1, close to i, once again
we find that prior mixing will have a less pronounced effect when the likelihood function

is concentrated near the common mean of the priors. Finally, we give one example where

the set $*(c) is found numerically by using the S(¢) — M(c) - M*(c) — S*(c) algorithm.

Example 10. Let p=2,n =10, uy =0, &) = I, 3y = 5I, X'X = 101, §;, = (1.5,1.5)
and ¢ = (—1,1)". The ellipse S(c) in this case is given by

31167u? + 70.12622(uy — .18895)% < .00356. (3.16)

The maximum posterior variance equals .19608. If prior mixtures are allowed, the maxi-
mum posterior variance increases to .20137, a marginal 2.70% increase. The set S(¢) and

the enlarged set S*(c) are plotted in Figure 3.

Remarks and discussion. If in the definition of the family of priors I' in (1.8), ¥ is allowed

to be an arbitrary matrix, then the set of Bayes estimates of § under a quadratic loss turns
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out to be the ellipsoid S

-1 -1 ! —1
0 - 2y pyymg - M2t 8y YV (817)

where, as usual, M = X'X, and v = X'(y— X ). In this case, the diameter D of S is equal

to V' M =1y - Amax, Where Amax is the maximum eigenvalue of M. In this case, unlike in
Example 2, D does not go to zero almost surely (or even in probability) as n — oco. This
says that the family of N(y,X) priors with an arbitrary ¥ is too big and one cannot hope
to achieve robustness in this case. One good theoretical reason for considering normal
priors with arbitrary ¥, however; is that completely monotone priors can be generated by
taking mixtures of N(y, X)) priors; for example, an elliptically symmetric ¢-prior with mean

w and scale matrix 3y can be written as

it 1 — 2 _(Q-p)' (-
0, u,50) = @5 E- B gg(o? 3.18
7T(~,Ha 0) /0 (27r)%|0_220|%6 2 (0' )a ( )

where G is an inverse gamma distribution. The need for letting ¥ to be arbitrary in the
family of normal priors is that the integral in (3.18) ranges over the entire half line (a
t-prior cannot be generated by taking mixtures of bounded variance normal priors). Our
initial study shows, however, that mixtures of bounded variance normal priors give very
good approximations to Cauchy and {-priors in a very safe neighborhood of y; so unless
we have definite reasons to worry about the behavior of the prior in the extreme tails,
our results in this section on mixture normal priors when ¥ is between 31 and ¥, will be

useful.

4. Priors with unknown mean.

We now consider the problem of finding the variations in posterior measures when
the prior mean 4 is allowed to change in some convex set of RP. The pure Bayesian way
of expressing uncertainty about the location of the prior would be to put a second stage
prior on g. This has been considered in Polachek (1984). However, one then has to worry
about the robustness of the analysis with respect to the hyperparameters of this second

stage prior. Changing the mean g in a convex set is an attractive alternative to putting a
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second stage prior; this also seems more natural because often we are not that uncertain
about the location of the prior and it should be quite easy to write down a neighborhood
of a prior guess where we think the prior mean lies. Mathematically, changing the mean g
in a convex set leads to novel geometric problems not encountered in Bayesian robustness
studies before and brings into attention the surprising fact that the set of Bayes estimates
of § need not be convex even if y changes in a nice convex set (like a sphere or an ellipsoid
or a solid cube). For the purpose of the following results, we will consider the class of
normal priors N(g, ) with g4 in an ellipsoid and ¥; < ¥ < Y. Again, from Theorem 3.1
it will follow that the set of posterior means under the class of priors N(g,X), g € C, X >0
arbitrary, will include the posterior means under all priors which can be obtained by taking

mixtures of these normal priors.

Theorem 4.1. Let Y ~ N(X§,02I)

Q ~ N(H’ 0'22)7
where 31 < 3 < 3,, and g belongs to the ellipsoid
I ={u: (g—p)Alg— ) <1} (4.1)

where g is arbitrary but fixed.

Let P(Ay — Ay _%M_lAM_l(Ag — Al)"%P' = L be the spectral decomposition of
(Ag — Ay)"TM~YAM~Y(Ay — A1)~ %. Define

Z = P(A; — A1) MYy,
yo = P(Az — A1) ¥ My,,
and C = P(Ay — Ay)"5(I — AM)M ™' (Ay — Ay)"3 P' (4.2).

Then the euclidean diameter of the set 5* of all posterior means of § under the family of

priors (4.1) is given as

1 1
D= Vlla = swp {H1Z-ull+ 12—l +ICw -l |, ©3)

1,{1;7,{261'2
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where Amax(A2 — A1) is the maximum eigenvalue of (Az — A;) and I is the ellipsoid
L={v:(y—vo)L(yv — o) <1} (4.4).
Before giving the proof of Theorem 4.1, we first give an example illustrating its application

in finding the diameter of the set of Bayes estimates of § under quadratic loss.

Example 11. Consider the setup of Example 1 where p = 2, n = 20, ¥y = I,%y =
5I,; = (3.15 3.15), and M = 20I. Also assume that y belongs to the unit circle
g'p < 1 so that in the notation of the above theorem, yo = Q and A = I. It is easy to

show that
Z = (2.7359 2.7359)',
Vo = Qv
C =.76251,

L = 1.3256I, and

A2 — Ay =.0018861.
Therefore, by Theorem 4.1,

1 1

D= VOOISSS x sup {312 —rall + 312 — vl + 7625 la —all |, (49)
{4314

where v1,v, belong to the circle v'v < .7544. Since the circle v'v < .7544 is rotation-

ally invariant and so are euclidean distances, the vector z in (4.5) can be replaced by

(v/2.73592 4 2.73592, 0)' = (3.8691, 0)' without changing the problem. It is not difficult

to prove that for such a gz, the points v, v, which give the required maximum in (4.5) are
such that one of them, say v, is in the first or the second qua;irant and the other, i.e.,
V2, is in the third quadrant. First consider the case when v; is in the second quadrant.
We may therefore let vy = (rcosd,rsinf),vs = (rcos¢é,—rsing), with r? = .7544 and

5 < 0,¢ < 7. Thus, we need to maximize the function

h(6,$) = %\/(a — rcos6)? + 12 sin? 6

1 .9
+ —2-\/(a—rcos¢)2 + r2sin” ¢
+ 8+/r2(cos 6 — cos )? + r2(sinf + sin $)?
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(where a = 3.8691, and § = .7625)

1

2

Va2 4+ 12 — 2ar cos@ + v/aZ + r2 — 2ar cos ¢

+ 26rv2+/1 = cos(8 + 4)

?

S<6ésm (4.6)

Since the maximum cannot be attained on the boundary of the rectangle [T, 7] x [T, 7],

it is attained at a point in the interior of this rectangle; hence, at this point, % and

a—hé%ﬂ are both zero.
Now,
oh _ ar sin @ érsin(f + ¢) B
89  2/aZ +r? — 2arcosB ﬁ\/l—cos(e-l—qﬁ) -
d Oh ar sin ¢ érsin(f + ¢)
an - = =

06 2y/a® 4712 —2arcosd V2+/1—cos(f + ¢)

imply that

arsin 8 arsin ¢

2va? 4+ r2 — 2ar cos 6 - 21/a? +r2 — 2ar cos¢

(4.7)

Since in the interval 3 < ¢ < 7, sint and cost are strictly decreasing and sint is nonnega-

tive, it follows that Ve +T§ii‘ ;arcost must be strictly decreasing on 7 < ¢ < 7. Consequently,
(4.7) can hold only if 8§ = ¢ (this is just saying that the optimum v, and v have the same
¢ coordinate, i.e., vy is right underneath v;). Therefore, we have to simply maximize the

one variable function

h(8) = v a? + 2 — 2ar cos 8 + 6rv/2/T — cos 26,
Z<e<m | (4.8)

Denoting cos 8 = z, equivalently, we have to maximize

g(z) = Va2 + r2 — 2arz + 26r\/1 — 2,

—1<z<0. (4.9)

30



The maximum is attained at z = —.5, and the maximum value is 5.5157.

Consider next the case when v, is in the first quadrant and v5 is in the third quadrant.
We may, therefore, let ¥4 = (r cos8, rsinf) and v2 = (—rcos¢, —rsing), with 0 < 6,¢ <

2. In this case, we have to maximize the function

h(8,¢) = %\/(a — rcos9)? +r2sin® §

1 -
+ 5\/(a+rcos¢)2+rzsm ¢
+ 64/72(cos 8 + cos ¢)? + r2(sin § + sin ¢)2.

Calculus gives that the maximum of b is attained on the boundary of the rectangle {(6, ¢) :
0 <6,¢ < T} On the boundary of this rectangle, (at least) one of § and ¢ equals 0 or Z. In
each of the four cases: § =0, § = 7, ¢ =0, and ¢ = Z, the function h becomes a function
of one variable. Then routine one variable calculus gives that the maximums in the four
cases are 5.2974, 5.5509, 5.3347, and 5.3937 respectively. Therefore, the overall maximum
is 5.5509 (attained at § = T,¢ = .86466m). Hence, from (4.5), the required diameter of
the set of Bayes estimates is .2411. Recall from Example 1 that if g is kept fixed at 0,
the diameter of the set of Bayes estimates if .1697. Thus, percentage wise, varying the
prior mean results in a non—negligible increase in the diameter; but the encouraging news
is that, even so, the diameter is quite small (the radius is still only about half of .2236,
the standard error of the least squares estimate). See Figure 4 for a plot of the diameters
of the set of Bayes estimates as a function of ||§1||. As expected, the effect of varying p

gets more pronounced as @ I gets large.

Before giving a proof of Theorem 4.1, we like to explicitly point out that as long
as M, ¥,,3X, are proportional to the identity matrix, the technique used in this example
will give the supremum in (4.3) (go need not be zero). Also notice that in case C = 21,
the maximization in (4.3) is equivalent to finding the triangle with the largest possible
perimeter that can be constructed by joining any two points on the ellipsoid I, and the

point Z. This is an interesting geometric problem by itself.
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Proof of Theorem 4.1: From Theorem 2.1 it follows that

s*=J s,

UETL

where S, is the ellipsoid (2.1). Transform  to P(A2—A1)"%Q and g tov = P(Az—Al);—M/;L
where P is defined in the statement of Theorem 4.1. On doing these transformations, it

follows that

D = \//\maX(AZ —Ay)- sup [|61 — 82, (4.10)

viLY2

where 61,8, € S** = |J S3*, where S}* is the sphere
vel

st ={8: @-we-w<3E-wE-0}, (£11)
and w, the center of the sphere S}*, is given by
w=C"Z+ Cv, with

C* = P(Ay — A1)"5A(Az — A1)~ 3A(Ay — A1) %P, and C is as defined in (4.2) (although
it looks intimidating, derivation of (4.10) and (4.11) is really very straightforward). Let
g1,82 be any two points on the boundary of S**. Suppose §; belongs to the boundary of

S,, and @2 belongs to the boundary of S;» (such vy and v, have to exist). Let
w; =C*Z+Cy;, 1=1,2.

Then, [|6 — 0]

VAN

161 — will + (|82 — wal + |lw1 — w2
1 1
= 5“5 — vl + §||Z ~ || + |C(x1 — v2)||- (4.12)

1 1
sup |if1 =62l < sup {12 -l + 5117 - vall + [Clea —w2)l}. (413)
01,62 €5+ Vi,V2€],

To prove the opposite inequality, take any v1,v, on the boundary of I,. The spheres S v
and S}* are completely contained in S**. On the other hahd, the line L* obtained by
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extending the line segment joining w; and w; to the boundaries of the spheres S}* and

Sy is obviously contained in S}* U S} and hence contained in §**.

.". Diameter of $**

= sup [|¢1 -l
Q17Q2€S**

> Length of L*

1 1
= §||Z — v+ §I|Z — v + |C(¥1 — v2)]|-

Since v1, v, are arbitrary, it follows that

1 1
o 00z s {J1Z-nl+ HIZ-wl o -wI} @1

81,025+ Y1,¥2€l;
The theorem now follows from (4.10), (4.13), and (4.14).

It clearly will be nice to have an explicit representation of the set S* of all posterior
means when the prior mean y changes in a nice convex set such as an ellipsoid. We do
have such a representation in some special cases. The following theorem is a result in this
direction. In general, i.e., if & lies between two positive definite matrices ¥; and X5, the
problem of obtaining an explicit representation of the set of posterior means seems to be

hard and remains an open problem.

Theorem 4.2. Consider the setup of Theorem 4.1. If ¥ > ¥; where 21_1 =rl, A=472],

and X'X = m,rl, then the boundary of the set of posterior means of § consists of the

p-dimensional vectors z 4+ 7, where z satisfies

2(1+m2)z'z — 20v7'z + 22/ (81, — o) = 0. (4.15)
In particular, if p = 2 and ||é L — wol|| = £, then the posterior means form a translated
cardioid; if ||z — po|| = 24, it is a translated trisectrix, and in general it is a translated

limacon.

Discussion: Before proving the theorem, we present a short discussion of the assumptions

and the conclusion of the theorem. The assumption that ¥, is a multiple of the identity
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matrix would not be very restrictive because if it was thought that ¥ > 3, where ; is
not necessarily proportional to I, we could always enlarge the class of priors by observing
that X1 > Aninl where Apjp is the minimum eigenvalue of ¥;. This enlargement will not
be very substantial unless the eigenvalues of ¥; are very widely scattered (some very large,
others small). The assumption that M is proportional to the identity matrix, admittedly,
is restrictive, but at least leads to an explicit representation of the posterior means in
an important special case. Recall that in the theory of optimal regression designs, the
optimum M matrix often turns out to be a multiple of the identity matrix. Finally, note
that since cardioids, trisectrices, and Pascal’s limacons are not convex, it follows that
varying the prior mean in a very nice convex set would not necessarily result in a convex
set of posterior means. Of course, as my — oo (which, roughly speaking, corresponds to
the sample size tending to co), the set of posterior means approaches a circle in the setup
of Theorem 4.2 and thus is asymptotically convex. More comprehensive problems of this

nature are currently under investigation.

Proof of Theorem 4.2: Direct computation using (2.1) yields that S*, the set of posterior

means, consists of points § where
2 A ! ) j 1@
(8-l +1—7w) (8- +-1w) @ —w@r—w)  (416)
where (u — o) (g — po) < €2, and

= 2(1 4+ m3)
v = 2%:1_2'_—_;1) (4.17)
Consider the problem of characterizing the boundary of S*. The set S*, as such, is con-
structed by drawing circles of radius 6%(@ 1 — 1) (81 — g) around 76z + (1 — v)y where g
itself is any point on the boundary of the circle (g — wo)' (g — wo) < £2. Corresponding
to each such yu, there exists a unique § on the boundary of the circle (4.16) which is on
the boundary of S* (every other point in the circle (4.16) falls in the interior of S *). The

characterization of the boundary of S* depends largely on identifying this unique § for

every fixed y.
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Fix g = p1; suppose the corresponding (unique) § is §,. Clearly, then,
!
inf 52(9'- 6 +(1 - ) (e — (L +(1- )
(H—HJTH—HJSﬂ[ 6~ (Ve + (A=) | (&= (V¥ + (1 =)
— (6 — 1) (81 - g)]
=0 (4.18)

and this infimum must be attained at g = g;. Now, minimizing the quantity in square
brackets in (4.18), by straightforward algebra, is equivalent to minimizing p' (é L —61),
which, in turn, is equivalent to minimizing (g — po) (81 — 61). An application of the

Cauchy-Schwartz inequality gives that the minimizing y satisfies
2@r -8
Ko — —F= U 21) .
V@ — 1) (31— 8)

Recall that the minimum is attained at g = y;. Consequently, g1 and 8y share the relation

(4.19)

kl,:

481, — 61)
o — —7= - -
V@ — 6y (81 — 61)

Substituting this expression for gy in (4.18) results in

M1 = (4.20)

8%(81 — 01) (81 — 01) +26(61 — 81) Bz — po) — 25@\/(‘21 ~81)(8:1—81)=0. (421)
If one now transforms to z = §; — 61, one immediately gets (4.15).

If p = 2 and ||f;, — po|| = £, then letting s be the angle between z and (81, — o), (4.15)

reduces to ||z|| = ﬁ(l — cos s), which is a (rotated) cardioid; if |81 — wol| = 24, (4.15)
reduces to ||z|| = 1+€1?-2 (1 —2cos s), which is a (rotated) trisectrix. In general, (4.15) is
1 A
lzl| = (¢ — |9z — wo|| cos s), which is a (rotated) limacon.
14+ ma

This proves the Theorem.

For a plot of the set 5*, see Figure 5.

5. Unknown o2.
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Many of the results for the case of a known 02 generalize quite easily to the case when

0? is unknown. To avoid repetitive argument, we merely point out which of the results

generalize to the unknown case and which do not.

When o? is unknown, and primary interest is in , it seems reasonable to assign a
fixed prior to o2, like a conjugate inverse gamma, prior or a flat noninformative prior. So

suppose that the prior structure is

Given o2, 6~ N(0,0°%),
1
and 7 = g G(a, p),

where G(«, ) stands for a gamma distribution with density
g(a, B) x 7* e PT(a, B > 0). (5.1)

In the above, @« = f = 0 corresponds to the noninformative prior for a normal variance and
formally, @« = 8 = oo corresponds to (known) o2 = 1 case. It is well known that in this

case, the posterior distribution of § is an elliptically symmetric ¢ distribution with n 4 2«

degrees of freedom, location parameter (M +X1)~1 X' y, and scale matrix _1_12a (26 +y'y—

y'X(M+X71)71X'y)- (M +Z71)7" (the posterior dispersion matrix is 2o times the

scale matrix).

Since for a ¢ distribution the location vector is also the mean, it is self-evident that

under the quadratic loss (§ — a)'Q(8 — g), the Bayes estimate of § remains the same as

that for the known o2

case (although the associated posterior expected loss increases,
the increment being the penalty for not knowing 02). Consequently, the results stated in
Theorem 2.1, Corollary 2.2, Theorem 4.1, and Theorem 4.2 carry over verbatim to the

unknown o2

case. The result on mixture priors implied by Theorem 3.1 also carries over.
We do not know if suitable versions of Theorems 2.3 and 2.5 are valid or not; we believe,
however, that the set S(c) of Theorem 2.3 is not an ellipse anymore, and Theorem 2.5 is
true even though we have not been able to find a proof. Summarizing, then, the results

2

for quadratic loss go through for the unknown o case, but the results for the piecewise

linear loss of (2.21) do not go through verbatim, and we do not have explicit theorems for
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2 2

this loss in the unknown o“ case. From a practical point of view, the unknown ¢* case is

of interest, and it would be nice to have explicit results in this case for the losses in (2.21).

6. Another approach to prior modeling: Density bands.

In this section, we consider a different method of modelling prior indeterminacy. For
fixed nonnegative functions L(§,0?) and U(§,0?%) with L < U, consider the set of prior
densities 7 which lie between the density bands L and U, i.e., L < 7 < U. Since Bayesian
inference is invariant under multiplication of a prior by positive constants, consider formally

the class of prior densities I'z, 7 defined as
Trv={ar: L<7<U,a>0}. (6.1)

I'z,u is a convex-class of priors and was first used in robust Bayesian inference by DeR-
obertis (1978) and DeRobertis and Hartigan (1981). Several very attractive features of
the class I'f, y were mentioned in section 1. We like to point out, in addition, that I'z ¢
can be thought of as the family of acceptable bets for or against an event; i.e., for a mea-
surable subset A of the parameter space, L and U correspond to the lower and upper
probabilities (of the event A) and any probability in between is considered plausible. For
detailed discussion, see DeRobertis (1978) and DeRobertis and Hartigan (1981). Another
extremely attractive property of this class of priors is that if the likelihood function itself is
considered uncertain, and it is thought that the likelihood function belongs to the convex
class 'y, for some f and g, then the resulting set of posteriors is I'fz, 47; this is a highly
reassuring stability property in the sense that theorems proved for a general convex class of
distributions of the form (6.1) apply simultaneously to the set of priors, set of likelihoods,
and set of posteriors. This is very very helpful for a study of decision theoretic robustness
when the model and the prior are both considered indeterminate. We will have plenty of
occasions to see how this stability property is useful when we relate the problems of finding
extremal values of posterior measures to the Markov-Krein—-Stieltjes moment problem (see

Krein and Nudel’'man (1977)).

For the purpose of the discussion in this section, we will let U be kL, where k > 1

is a fixed real number. The reason for this restriction is that for an arbitrary upper
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envelope U, it seems almost impossible to derive closed form robust Bayesian results when
the parameter under consideration is a vector parameter. If U = kL for some k£ > 1,
all priors in 'z, y have similar tail behavior. However, the band L < 7w < kL contains
multimodal and asymmetric priors even if L is symmetric and unimodal. Thus the closed
form analytical results of this section will be useful in getting an overall understanding of
the robust regression problem when there is little concern about the exact tail of the prior
but we are not sure about the shape of the prior or suspect that the prior is not necessarily
unimodal and we want to see the extent to which our analysis is robust by changing the
prior in a nice convex class that allows a closed form theory. We start with a general

theorem for the class of priors I', 1, and later specialize to standard choices of L.

' Theorem 6.1. Let Y ~ f(y, X, 8,0?) and let (§,0?) have a joint prior 7(8,0?) belonging

to the convex band I'g, 1, where k£ > 1. If the likelihood function f and the lower envelope
L are such that the marginal posterior of § under the prior 7 = L is elliptically symmetric,

then the set of posterior means of 8 as 7w changes in I'f k7, is the p-dimensional ellipsoid

(6.8).

Proof: Let ¢'§ be any fixed linear combination of the coordinates of 4, and let 71 (8]y)

denote the marginal posterior of § under L. By hypothesis, for suitable gy = g(g) and
D = D(y),
m1(fly) = constant X 7y, ((@—w)D7'(0—u)). (6.2)

Since the characteristic function of (¢'§ — ¢/u)(¢'D¢)™ 7 is independent of ¢ (see Muirhead

(1982, page 34)), it follows that for any c,
Z=(d§—du)cDe)™*
has the same density, say g(z), which is symmetric about zero.

Let A = A(¢) denote sup E(c'§|Y = y). From DeRobertis and Hartigan (1981),
w€lL L -
one then has

k [_7 / o+ / . zg(z)dz] oy / o=z + / =0, (63
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where v = v(y) = (X — ¢'u)(¢' D)™ 7.

Using the facts that [ g(2)dz =1 and [ zg(2)dz = 0, (6.4) reduces to

R oo

& h(y) = ’“;—1 [ / _ 9(e)z = % / . zg(z)dz] ~1=0. (6.4)

Note that lim A() > 0 and lim A(y) < 0 and 5L[y [ g(2)dz— [ zg(z)dz]—v is a strictly
~l0 ¥Too z<y z<vy
decreasing function of v if lim 2g(z) = 0. Therefore, there exists a unique y = 7(y) such

that (6.4) holds. Hence, for any ¢,

Me) = ¢'p +vV¢' De. (6.5)

Exactly a similar argument yields that

Meg)= inf E(9Y =y)

7€l xL
=c'u— V¢ De. (6.6)
coaf é,r denotes the posterior mean of § under any 7 € ', 1, then for any ¢,

—y < (¢8r — )¢ De)"F <. (6.7)

Since vy is independent of ¢, and for any ¢ the values xvy are attained in (6.7), it now

follows that {0, : 7= € 'y 31} form the ellipsoid

Sp={9: @-w'D'@-p) <+}. (6.8)
This proves the theorem.

Remark It is well known that under standard regularity conditions, the posterior distri-
bution for general likelihood functions f and general priors L are approximately normal
and hence elliptically symmetric as the sample size n — o0o. The strength of Theorem 6.1
- also lies in the interesting fact that the ellipsoidal representation is “approximately” valid

under general conditions for large samples. See DasGupta and Studden (1988c) for details.
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Corollary 6.2. (a) Under the hypotheses of Theorem 6.1, the diameter of the set of

posterior means equals
D =27 v/ Amax(D), (6.9)

where 7 is the unique solution to (6.4), D is as in (6.2), and Amax(D) denotes the maximum

eigenvalue of D.

(b) For any ¢, the posterior means of ¢' form the interval

dp— Ve De<u < dp+Ve'De, (6.10)

3

R

where u is as in (6.2).

Proof: Part (a) follows from the ellipsoid representation Sy, of the posterior means of 4.

Part (b) is already proved in (6.5) and (6.6).

We will now specialize to the case where the likelihood function f is normal. Two

examples follow.

Example 12: Normal likelihood, priors with noninformative tail.

Let ¥ ~ N(X6,0%I) and let L(§,0%) = % (this amounts to putting independent
noninformative priors on § and o2). Then, in the notation of Theorem 6.1, 7z is an
elliptically symmetric ¢ with n — p degrees of freedom, y = @ 1 (where Q L is the least
squares estimate of §) and D = anp(y’y - QILMQL)M_l. Thus, D = %M‘l, where SSE
is the usual residual sum of squares. It follows that the density g is a univariate ¢ with
n — p degrees of freedom, location parameter 0 and scale parameter 1. Equation (6.4), on

manipulation, reduces to

Cm * %(1 + Z,L_Z)_méﬁ-H + [Tm(’)’) - %J =0, (6.11)
where m = n — p,cm = T(2fL)/ (vVmaT(%)), and Tn(-) is the cdf of a standard ¢
distribution with m degrees of freedom (see equation (3.16) in DeRobertis (1978)). For
given k and n, (6.11) has to be solved numerically. Values of v = v(k,n) are tabulated in

Table 3.2 in DeRobertis (1978).
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As a specific example, suppose p = 2, n = 21, 6% = i_S_EZ_ =1, X'X = 211, and
1= (3.15 3.15)' (this is roughly the setup of Example 1, except n is taken as 21 to make
use of the table in DeRobertis (1978) possible); the diameter of the set of Bayes estimates

of @ for different values of k are given below:

k 2 3 4 ) 6 7 8 9 10
Dy 1255 .1989 .2507 .2905 .3230 .3506 .3749 .3955 .4143

Compared with Example 1, there is much less robustness in this case. The reason for this
is the flatness of the priors considered in I'f, 1, where L is noninformative. Even then, the '
radius of the set of posterior means is only about .21 for £ = 10, roughly the same as the
standard error of the least squares estimate (which was found to be .2236 in Example 1).
- The sets of posterior means for different values of k are plotted in Figure 6. Notice the

marginally diminishing effect of increasing k.

Example 13. Normal likelihood, normal-gamma lower envelope. This example is like the
preceding one, but here we take a proper prior as the lower envelope L. Specifically, let
L,(8|o?) be N(0,0%%) and let La(0?) be an inverse gamma prior as in (5.1). Define the
lower envelope L as L(§,02) = L1(8|0?) - Ly(c?). The marginal posterior distribution of §
is an elliptical multivariate ¢ and has been described following (5.1). From Corollary 6.2

it follows that

1
26+ SSE — §',(MX + )" M4y, A
Dp =2 = ~— - Apax(M + X , 6.12
L 7{ i (1 +27) (612)
where X satisfies equation (6.11) with m = n + 2a. For specificity, let us assume an
exponential prior for 0—12-; this implies &« = B = 1. Also, let p =2, n =22, 5% = % =1,

X'X =221, 67, = (3.15 3.15)', and £ = I (again, the choice of n = 22 enables use of Table
3.2 in DeRobertis (1978)). The diameters of the set of posterior means for different values
of k are listed below. The actual sets are plotted in Figure 7. Again notice the diminishing

effect of increasing k.

E 9 3 4 5 6 7 8 9 10
D, .0421 .0668  .0841  .0976  .1085  .1177 .1257  .1327  .1406
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Corollary 6.2 also implies that as the prior 7(8, 0%) changes in T'f x1,, the prior mean y of

@ changes in the circle
wu < (6.13)

where v is the solution to (6.11) with m = 2 ((6.13) follows on noting that under L, the
marginal prior of § is an elliptical ¢ with 2 degrees of freedom, location parameter 0, and
scale matrix ¥ = I). So, for example, if £ = 10, then the prior mean g varies in the circle
w'p < 4.0481. Considering that this is indeed a substantial variation in the prior mean,
the variation in the posterior mean is quite small (for k = 10, the diameter of the set of

posterior means is only .1406).

Example 14. In this context, another question of intrinsic interest is in what way do &
and n interact. Clearly, increasing k£ would enlarge the family of priors; so, for example,
one could ask typically how many more observations would be needed to balance the effect
of doubling the value of k. One way to understand how do k and n interact would be to
simply look at the behavior of the diameters as k and n change. In this article we have
not gone beyond considering a simple example; since the diameters involve the constants
7 for which no analytical expressions seem possible, it may be worth fitting a curve to the
(expected) diameters jointly in the variables ¥ and n. A close approximation would give
a very good overall idea of how these quantities interact with each other. Since é 1 and
SSE would obviously change with the sample size, comparison of posterior diameters may
not be quite meaningful here. Instead, we list below the ezpected squared diameters of the
set of Bayes estimates for different ¥ and n, where the expectation has been taken under
the marginal distribution of ¥ induced by the prior L. The choice of L as the prior in
this calculation is a natural choice. Also we calculate E(D%) rather than E(D) because
the latter calculation is more involved (although possible). E(D3%) is not finite for any n
if the prior on 7 = % is a simple exponential (i.e., if @« = 1 in (5.1)). For a > 1, routine
calculation using (6.9) gives,

7 4

E(D} )-( +2 ] 284 p =) Amax(M + )7, (6.14)

where it has been assumed that in the prior L, X is equal to I. The following values are
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forp=2,a=2, =1, and M = nl (recall again that M = nI is a classical design with

a number of optimum properties).

n 2 3 4 ) 6 7 8 9 10

3 | .0556 .1400 .2239 .3037 .3777 .4465 .5125 5737 .6324
o5 | .0272 .0683 .1092 .1473 .1830 .2161 .2470 .2765 .3040
10 | .0088 .0223 .0354 .0478 .0592 .0697 .0797 .0889 .0975
15 | .0044 .0109 .0174 .0233 .0289 .0340 .0388 .0433 .0475
20 | .0026 .0065 .0103 .0138 .0171 .0201 .0229 .0255 .0280
25 | .0017 .0043 .0068 .0091 .0113 .0132 .0151 .0168 .0184
35 | .0009 .0023 .0036 .0048 .0060 .0070 .0080 .0089 .0097

Initially, increasing the value of n has a remarkable effect on the expected diameters; for
example, by simply increasing n from 3 to 5, the expected diameters get reduced by a
factor of at least 2 for every k. Later on, increasing n seems to have a rather marginal
effect and the diameters get reasonably stabilized when n = 20 or so. Also, for n > 25
or so, increasing k quite a bit does not seem to have any serious effect on the expected
diameter. For example, if n = 25, then the diameter increases from .0113 to .0184 if %

increases from 6 to 10. Also notice that the maximum standard error of the BLUE of

normalized linear combinations ¢'§ is \/Amax(M 1), which is \/Lﬁ if M = nI. Compared

to this, the expected radius in the table above is small; even for n = 10, the expected
radius is at most .156 ((ED)? < ED% < .0975), whereas max \/Var(g’QAL) i1s .316. Thus
a substantial amount of variation in the priors has a small effect on the Bayes estimates

compared to the uncertainty in the usual least squares estimates.

For reasons indicated in the paragraph following Corollary 2.2, the set of Bayes pre-
dictors of k£ future values of the response variable Y form an ellipsoid under the prior

modelling of this section also. Below we state a corollary without proof.

Corollary 6.2. Consider the decision problem of predicting Y3, ...,Y} corresponding to

k
the vectors of predictor variables zo1,...,Zor under a squared error loss > (y; — 9:)2. Let
t=1

43



Lixp = (zo1,..-,Zox)'. Then, under the hypotheses of Theorem 6.1, the set of Bayes
- predictors of Y = (¥3,...,Y%)" form the k£ dimensional ellipsoid

St = {u— Ly)'(LDL")™ (v — Ly) < +*}, (6.15)
where p, D, and v are as in (6.8).

Next, analogous to Theorem 2.3, we describe how to work out the boundary of the joint
set of posterior means and posterior standard deviations of an arbitrary linear combination
¢'6 when the prior changes in 'z, x. The techniques used in the Markov-Krein-Stieltjes
moment problem are useful in describing the boundary of this set. We will do this in the
case when the posterior distribution of § under L is an elliptically symmetric ¢. This will
then cover the cases when the likelihood function is normal and L is noninformative or
conjugate normal-gamma as described in Example 13. To work out the upper and lower
boundary of the mean-standard deviation sets it will suffice to calculate for each fixed
value of the posterior mean, the maximum and the minimum posterior standard deviation,
which in turn can obviously be found by finding the maximum and the minimum value
of the second moment of ¢'d corresponding to each fixed first moment. This is where the
techniques of moment theory are useful. The most appealing part of the following analysis
is that the set of means and standard deviations of an arbitrary ¢'6 is a plain location-
scale translation of a fized set. Each individual practitioner can thus generate his or her
appropriate set very easily from this fixed set and separate computing will be unnecessary.

For a given linear combination ¢'§, define a new scalar function k(6) as
1 / !
h(g) = (8~ cv)

where A is a constant, v is a fixed vector, both are independent of 6, and both will be

specified later. Define
Sk = {(Br(@)ly, /Var h(@)ly ): 7(g,0%) € Trer} (6.16)
and S¢={(Efly, \/W ): w(8,0®) €TLrr}
Clearly, S¢ = ASh + (c'v,0) where for any set A, and any vector v,
MAvy={AZ+y: Ze A}l (6.17)
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Recall now that as the prior = varies in I'f, x1,, the posterior varies in '+ pr» where L* is
the posterior corresponding to the prior L. We remind the reader that the way I'zs pr+ is
defined, a measure belonging to 'z« 1+ need not be a probability measure. Thus while
computing posterior means and postérior standard deviations of a function A(§), we have

to suitably normalize the posterior measure. Define then, for any fixed function A, and a

/[
[

w = /h27r*.  (6.18)

fixed 7* belonging to I'rs rr+,

U

v

Thus Er«(h) = £ and Ex+(h?) = %. Since I'z+ 1~ is convex, it is quite easy to show that
so is the set

Mh = {(Eﬂ.-ﬁ h, Eﬂ-* hz)l W*GFL*’kL*}, (6.19)

Hence, for a point (%%—, %07-) on the upper boundary of M}, there exist constants a and b

such that

2gcuz-|-b V(B,E)th,
U u u U

and 20— g2y, (6.20)

Uo Ug

If the point (%g—, 3—:—3—) corresponds to an extremal measure 7§ € I'z+ 7+, then (6.20) implies

that V 7* € Lr kr*,

/(hZ—ah—b)(w* —m3) <0

& [B=d)h-2) ) <0Vt € Trmp

(where ); are SEYeZE4b; note g2 + 4b > 0 because 22 > (22)?)

b 0 —

=kL* if h < /\1 or h > Ag. (621)
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The representation (6.21) of measures maximizing the second moment is well known in the
- moment theory literature; we have briefly sketched the proof for the sake of completeness
and ease in reading. A representation similar to (6.21) for measures minimizing the sec-
ond moment is also available; if (%;—, %o’-) belongs to the lower boundary of M}, then the

corresponding extremal measure is of the form

o =L*if h <Ay orh > A

=kL*if Ay <h < g (6.22)

(6.20) now implies that for a point on the upper boundary of M}, there exist A, Ay such
that
Wo = (/\1 + /\2)’00 —_ )\1)\2’&0. (623)

We now specialize to the case when L* is an elliptical ¢ with m — 1 degrees of freedom,
location parameter v, and scale matrix D. Recall from the paragraph following (5.1) that
v and D will depend on the data (y) on the dependent variable. Also we now specialize to

1

"0 = Jope

('8~ c'v). (6.24)

For a measure of the form (6.21),

/ L*+k / L*,

A <h<g R<ALUR> g

] RL* + k / hL*,
A <h<y R<A1UR> Ay

and wo = / h2L* + k/ R2L*. (6.25)
A]_ShSAz h<A1UR> Ao

Using the fact that if L* is an elliptical ¢, then for any ¢, k() as defined in (6.24) is a

Uo

Vo

standard univariate ¢ with m — 1 degrees of freedom, one gets from (6.25),

Uy = Tm—1(A2) = Tre1( A1) + k[ — {T—1(A2) — Tn—1(A1)}]
=k — (k= 1)[Tm-1(A2) = Tm-1(A1)], (6.26)

where Tr,—1(t) is the cdf of a standard t with m — 1 degrees of freedom. Also,

A2 A oo
= [ tpna @tk [ s+ [ tpuns(t) (6.27)

2
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where pp—1(t) is the density of a standard ¢ with m — 1 degrees of freedom. Routine

integration by parts simplifies (6.27) to
_ (k—1)(m—

Vo =

1_1{Aﬁpm—l(kz)—ﬁpm_l(Al)}]. (6.28)

1)
m—2)  Pm-102)=Pmoi ()} 2

Similarly, on integrating by parts twice,

12m=1(M) 3y 6 99)

Wwo =

m—1 A1) — A
™~ o+ (k= 1) {Dapmos (h2) = hpms (h) 4 222m1 ) =2

Observe now that since the standard ¢ distribution is symmetric about zero, the set M}, is
also symmetric about zero in the first coordinate, i.e., (21, 22) € M}, implies (—2z1,22) € M.
Let then v = sup Eq«(h) and —y = iﬁf E+(h); indeed, the constant v is the solution to
the equation (67.r11) (with m replaced by m — 1 because we have (m — 1) degrees of freedom

here). The maximum value v of the mean is attained for the measure

mp=L%if —co< h<¥y

=kL*ifvy< h < o0, (6.30)
and the minimum value —« is attained for the measure

ny =L"if —y<h<oo

=kL*if h < —7. (6.31)

Notice (6.30) and (6.31) are both of the form (6.21) with Ay = —o0, Ay = v and A, =
—v, A2 = oo respectively. Also observe that for measures of the form (6.21), the mean
is zero if and only if Ay = —)X3. Let M > 4 be such that the measure (6.21) with
~A1 = A2 = M gives the unique point on the upper boundary of M}, with a first coordinate

equal to zero (i.e., the mean equal to zero). The value of M can be found from the equation

(6.23) which, because —A; = Ay = M, reduces to
wo = M*u,, (6.32)

where u¢ and wy are to be evaluated using —\; = Ay = M in (6.26) and (6.29). By varying
A2 in the range v < Ay < M, and then solving for the corresponding A; by using (6.23), we
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generate the right half of the upper boundary of Mj}; the left half is simply the symmetric
image of the right half. The method described above has been carried out by us for various

values of the degrees of freedom, resulting in Figures 8 through 12.

We now very briefly describe the theory and computation involved in working out the
lower boundary of Mj. Recall that the measures corresponding to points on the lower

boundary are of the form (6.22). The equations corresponding to (6.26), (6.28), and (6.29)

are now
wo = 1+ (k = D[Te1(A2) — Tra1 (A1), | (6.34)
oo = =IO D (s 00) = s ()} + g s () = s G

and

00 = PR (= 1) apcs ) a(00)— 222208 Memcs Gl g5

The choice \; = —o00, Ag = —n in (6.22) results in the mean —v and the choice A, =

v, Ag = oo results in the mean . Again, there is an L, where —y < L, such that
—A1 = A2 = L gives the point on the lower boundary of M}, with first coordinate equal to
zero. L is found from equation (6.23) ((6.23) holds for points on the lower boundary also)

which, because —A; = A2 = L, reduces to
= L%uy, (6.36)

where ug and wo are as in (6.33) and (6.35) with —A\; = Ay = L. By varying A; in the
range —y < A2 < L, we generate the left half of the lower boundary of M}. The right half,

again, is its symmetric image.
The set Sy, of (6.16) is found from M}, by using the transformation
(2:1722)_)(2:17 22—2,'%),
which gives the set S¢ for an arbitrary ¢ on using the relation

S¢ = V¢'DeSh + (¢, 0).
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The standardized Si set which produces S¢ for any ¢ is shown in Figures 8 through 12
for various degrees of freedom. A glance at the picture gives a quick idea of the effect of
increasing m (which is related to the sample size) on attainable robustness (the smaller

the set Sp, smaller is the set Sg and thus better the robustness).

Equations (6.26), (6.28), (6.29), (6.33), (6.34), and (6.35) are fairly complicated and
we seriously doubt that there is a nice representation of S¢ like the elliptical representation
of the mean-variance set in Theorem 2.3 for normal priors. Nevertheless, the practitioner’s
task is made very easy by making the standardized S, set available. The other very useful

fact is that since S¢ = V/¢'DeSh + (¢'v,0), it immediately follows that

supy/Var (¢'f)ly = V' De x  sup 2,
¥ ~ (21,22)ESh

and

inf \/Var (¢'§)ly = V' De x  inf  z;
™ RS 7 (z1,z2)ESh

thus, in order to find the range of the posterior standard deviation of an arbitrary ¢', one
merely needs to scale the tip and the pit of the standardized S}, set and separate computing

will not be required. An example follows.

Example 15. Consider the situation of Y ~ N(X8,02I), and L(6,0%) = L1(8|0?)L2(c?)
where Ly is N(0,02I) and L is the prior implied by (5.1) with & = 2, 8 = 1. Suppose
p = 2 and let X'X = nl and consider the problem of estimating the slope 6;, which
means that ¢ = (0 1)’. The minimum and maximum posterior standard deviation of 8;
are listed below. Assume that n = 16, §;, = (3.15 3.15)' and 35E = 1. Recall that the
marginal posterior of § under L is an elliptical ¢ with n + 2a degrees of freedom, mean

v = (M + I)~' X'y, and scale matrix

1
D= 28 +y'y —y' X(M + ™1 X'y) (M + )L,
a8 Yy —y X + )7 X"y)( {r)

Thus, in this case, V¢!D¢ = .31936. On the other hand, the marginal prior of § under
L is also an elliptical t with 2a degrees of freedom, mean Q and scale matrix gZ = %

Consequently, the standardized S} set for 2a = 4 degrees of freedom immediately provides
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the minimum and the maximum prior standard deviation on simply multiplying the high

[c'c
and the low of Sp by {/ == = .70711. This gives a truly convenient ground for comparing
the effect of the data on the standard deviation of ¢'§. Some numbers follow as a simple

llustration.

k Min prior s.d. Max prior s.d. Min post s.d. Max post s.d.

2 .8134 1.2212 2823 .3987
4 .6580 1.4797 2334 .4649
6 .5800 1.6490 2078 5055
8 .5299 1.7777 1910 5351
10 .4938 1.8825 .1788 .5585

As k increases, the minimum posterior standard deviation decreases and the maximum
increases, implying that enlarging the family of priors enlarges the range of posterior
expected losses: an anticipated effect. It is also clear that after a certain stage, increasing

k seems to have a diminishing effect on the posterior robustness.

Finally, we now present a result on the ranges of posterior probabilities of sets as the
prior changes in a band I', y. The result is stated in DeRobertis (1978) and therefore the

proof is omitted (in any case, the result is very easy to prove).

Theorem 6.3. Consider an arbitrary statistical decision problem where the prior changes
in the class I'r,,y where L,U are arbitrary subject to L < U. Let A be any (measurable)
set in the parameter space. The supremum of the posterior probability of A is attained at
the prior 7 that equals U on A and L on A°, and the infimum is attained at the prior =

that equals L on A and U on A°.

The strength of Theorem 6.3 lies in the striking facts that the form of the extremal
priors is the same for all sets A and that the extremal priors do not depend on the specific
data at hand (normally, they do). Since A is arbitrary in Theorem 6.3, it is easy to find
the ranges of posterior probabilities of a variety of sets under the prior modelling of this

section. Two specific examples follow.
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Example 16. Let Y ~ N(X8,0%I), let L1(8|0?) be the N(0,c%I) density, let La(c?) be
the inverse gamma density of (5.1) with @ =2, 8 = 1; let alson = 20, §; = (3.15, 3.15),
% = 1, X'X = nl, and suppose we want to find the maximum and the minimum

posterior probability of the set A = {§: ||d]| < 4} for various values of k. Theorem

6.3 immediately implies that the maximum posterior probability equals where

—kp
1+(k—1)p
p = P(||8|]]| £ 4) when @ has an elliptical t distribution with n + 2a = 24 degrees of
freedom, mean (M + I)_IX’Q = %QAL = (3 3)’, and scale matrix D = 5;1:(—21(2 + SSE+
%QA’LQA 1)+ I = .0772I (again, see the paragraph following (5.1)). Similarly, the minimum
posterior probability equals HI{TM' The posterior density of ||8]|2 is, in this case, an
infinite mixture of type 2 Beta densities and a closed form expression for p, although
possible, is complicated. A simple numerical integration gives p = .186023; the minimum

and the maximum posterior probability of ||§|| < 4 is given below for various k.

k 2 4 6 8 10

min . .1025 .0540 0367 .0278 .0223
max 3137 4776 5783 .6464 .6956

Example 17. Linear combinations of the coordinates of @ are of special interest in re-
gression problems. The minimum and the maximum posterior probability that c¢'§ lies

between a and b again equal and where p is the posterior probability of

—kp
1+(k—1)p
this event under the prior L. Computation of p is considerably easier in this case because

—P
k—(k—1)p

the posterior density of ¢'8 under L is itself a t; so, for example, in the setup of Example
16, with ¢ = (0 1)', the posterior density of ¢'§ is a t with 24 degrees of freedom, mean
'3 and scale parameter .0772 (i.e., variance = % x .0772 = .0842). Therefore, under L,
the posterior probability that 6; is between 3.5 approximately equals .9573. Using this

value, the following table immediately follows.

k 2 3 4 3] 8 10

inf P(|¢'g| <3.5)y)  .9181  .8820  .8486  .8176  .7370  .6915
supP(|¢'g| < 3.5]y)  .9782 9853  .9890  .9911  .9944  .9955
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It seems that the maximum posterior probability is more robust than the minimum, which
is expected because the event under consideration was a ‘favorable’ event to start with.
Also, again the effect of increasing k on the range of the posterior probability seems to

diminish for large values of k.

Example 18. Using the techniques of Examples 2 and 16, it is again possible to prove
that under very general conditions the Euclidean diameter of the set of Bayes estimates
under the family of priors considered in this section converges to zero a.s. as n — oo for
all marginal distributions induced by the priors in I'7, 7. We sketch the proof below in the
case L is the normal-gamma prior of Example 13 with ¥ = I, and U = kL, where k > 1.

From Corollary 6.2, the diameter equals

D, = 2')’ Y/ /\ma.x(D)7

where v depends on n and is to be found from equation (6.11). Note v = y(n) decreases
o0
with n. As in Example 2, we will prove that for any € > 0, Y. Py, (D, > €) < 0o, where

n=1

m, is the marginal density of y induced by 7 € I'g &1,

Now note that
YP, (D, >€) < ZPmT(h(y) = n) (6.37)

where h(y) = 28+ y'y, An = Amax(M + 71 and §% = (6.37) follows from the

E2
()
expression for D following (5.1), and the facts that y(n) < 4(1), and o > 0. Now using

the fact that if 7 € 'y k1, then mx € Iy kmy , and hence that

kpn
P, h = > —_— 6.38
where pn = Pm (h(y) - An672 > n), clearly it is enough to prove that Yp, < oo (for
inequality (6.38), refer back to Example 16). But, by Chebyshev’s inequality,

2
an = 2-sz,(h2(y) —>n )
2

< SB(K(y) 2.

(6.39)
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Since under my, typically Eh*(y) = 0(n2), the result will follow from (6.39) as long as
A2 < co. Typically, A\, = 0(1) and hence the result of this example will typically be
true. In (6.39), interestingly, the first order Chebyshev inequality that P(h(y) - 2 >n) <
%5)2-)% fails to establish that Lp, < co because Eh(y) is 0(n) under my and XA, will

typically diverge.

7. Closing remarks, future research, conclusions.

This article demonstrates that it may be possible to derive closed form results in
multiparameter problems on robustness with respect to the prior for different classes of
priors. In DasGupta and Studden (1988b), we build on the results of this article (especially,
Theorems 2.1, 2.3, 6.1,.and the results on the set S}, in section 6) to answer such questions:
for a nonnegative measure A (like Lebesgue measure), which set C minimizes A(C) subject
to iﬁf P(@ € Cly) 2 1 — a? That will be the smallest volume robust Bayes confidence
set. See L. LeCam’s discussion on Diaconis and Freedman (1986). The importance of our
closed form results and formulae also rests on the fact that one can carry on with the
statistically interesting problem of deriving the most or nearly the most robust inference.
To give a specific example, Theorem 2.1 implies that the squared diameter of the set of
Bayes estimates equals Amay{(M +35;1)"1 = (M + 371} x (§r — p) M{(M +271)7! -
(M +27Y)"2YM (61, — i). One can then ask what kind of a design matrix should be used
so that we are nearly Bayes under a fixed prior in the family of priors under consideration
and most robust among all designs which are nearly Bayes for this fixed prior. Such Bayes

optimal design questions arise very naturally from the present article and are treated in

DasGupta and Studden (1988a).

Much work remains to be done. For the density bands of section 6, some more
restrictions like a fixed mean or a fixed median seem quite natural. This is treated in
DasGupta and Studden (1988c). The form of the extremal priors under such additional
restrictions are worked out in that article. In DasGupta and Studden (1‘988d), we attempt
to tie together the robust Bayesian and the classical perspectives; for example, it is proved

that if a conditional I' minimaz procedure is developed by using either of the two family of
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priors considered in this article, then one can get a frequentist admissible and/or minimax
procedure. Aesthetically, a more attractive way to consider robustness would be to vary
the likelihood, the loss, and the prior simultaneously. Hopefully, this article gives some

insight into such comprehensive robustness problems.
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Normal Priors (Example 3)

0.050 -

0.049 -

0.048 -

0.047 A1

2.9 3.0 3.1



0.22

0.21

0.20

0.19

0.18

0.17

0.16

F{?‘\m@g

Set of posterior means and variances: normal and mixture

normal priors (Example 10)

-0.15

-0.10

-0.05

0.0

0.05

0.10

0.15



F{OJL\)L@ !

Plot of diameter of set of Bayes estimates vs. the least squares estimate:
normal priors.  variable mean (Example 11)

DIAMETER
0.4-

0.0

LSQUARE



\tioa\me 5

Set of posterior means: Normal priors, variable prior mean
(Example 11)

1.41

1.3

1.21

1.2 1.3 1.4



(% aa\me, b

Example 12

priors in a density band,

Set of posterior means:

\\W\\l‘......ll../l///
\\\ NN
s Ve — ~N
\\ \ TS S~ / /I/

\ - -
NN Py
YN T~ T
N — Wt
~ /II/ |\ -
~Toe e
1 ¥ L R ) L ¥
0 < m Y ~ o L) ®
m m m m m m Y Y

3.5

3.4

3.3

3

2.9

2.8

-8 —— - 10

~mmm=- 4



Set of posterior means:
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