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§1. Introduction

For time series in which data are categorical rather than numerical, linear models and normality
assumptions are not appropriate. In such cases, the so-called “Gibbs states” may be appropriate
models.

Gibbs states were originally conceived as models in statistical mechanics (cf. Ruelle [5]), and
they are also important in topological dynamics (cf. Bowen [1]). Multi-dimensional Gibbs states
have been proposed as models for certain types of spatial data (cf. Ripley [4]). However, using
one-dirﬁensional Gibbs states to model categorical time series seems to be a new idea.

A one-dimensional Gibbs state p5 is a probability measure on the space Tt = ﬁo{l, cees?h

i=
Each element of 7 is a sequence z = (%, 71, . . .) whose coordinates z; have possible states 1,...,r,

1 =0,1,.... Define the forward shift operator ¢ : ¥+ — £+ by (0z), = 2441, n = 0,1,..., for

z € . The Gibbs measure uy is the unique o-invariant probability measure on X+ satisfying

<ﬂf(yiyi=-'6£,05iém—1)

(1.1) = exp{—mp + Yy floiz)}

<ecg

for some constants ¢y, ¢z € (0,00) and for all £ € &1, m € N, where p is called the pressure for f,
and f is a real-valued function defined on ¥%, called the potential (or energy) function. It is clear
from (1.1) that f determines the dependence in the stationary sequence {X,}.

Traditionally, categorical time series X = (Xo, X1, ...) are modeled by finite state stationary
Markov chains, or more generally, k-step Markov dependent chains with k being an arbitrary
positive integer. When f depends only on a finite number k of coordinates, X under p; is just a
k-step Markov dependent sequence. Therefore the family of Gibbs states includes all k-step Markov
models, k=1,2,....

The inequalities (1.1) reveal that the family of Gibbs states looks like an infinite-dimensional
exponential family, where the potential function f plays the role of the natural parameter. There
is a formal similarity between (1.1) and the likelihood function for a stationary Gaussian sequence;

1



however, for Gaussian measures the potential function is quadratic.

Assuming the potential function f is unknown and the observations Xp,...,X,,_; are given.
One may want to estimate f based on those n observations. However, since two different functions
f and g may induce the same Gibbs measure ps(= p,), f is not identifiable; only ps is. Two
approaches are adopted to resolve the identifiability problem: reparametrization and normalization
constraints. In [2], instead of estimating f we estimate the linear functional ¢ 2 J ¢duy, where
¢ is a known function. Estimators of maximum likelihood type are constructed and shown to be
strongly consistent, asymptotically normal and asymptotically efficient. In this paper, we show
that under appropriate normalization constraints f is identifiable. Strongly consistent estimators

(in sup-norm) T, for the unknown function e/ are constructed.
We first introduce Ruelle-Perron-Frobenius theory and define Gibbs states rigorously.

(1) Forward shift: Let A be an irreducible, aperiodic, r X r matrix of zeros and ones (r > 1), and

let

o ]
oi= {zeH{l,...,r}:Az..z.._,_l =1. VieN},

i=0
where A, 3,k =1,...,r are entries of A. The space Ej{ is compact and metrizable in the product
topology.
Define the forward shift operator ¢ : 8} — X7 by (02), = znt1, n € N, z € }. Observe
that o, although continuous and surjéctive, is not generally 1 — 1.
Remark: £ is a special case of EI with Ajz =1for all j,k=1,...,r. The reason for introducing
EI is to cover those cases in which certain transitions § — k are not allowed.

(2) Holder continuity: Let C(X}) denote the space of continuous, complex-valued functions on

T1. For f € C(2}) define

var, f = sup{|f(2) — f(y)| : & = 9;, 0 < i < n};
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forO< p<1let

var,, f
= su
Iflp nGRl pn

and

Fr={fec(=l):|f], < oo}

Elements of 7‘,"' are referred to as Hdlder continuous functions. The space 7p+ is a Banach algebra
when endowed with the norm || - ||, = |+ |, + || - ||co-

(3) Ruelle-Perron-Frobenius (RPF) operators: For f, g € C(X}), define £; : C(Z}) —
C(z7) by

Lsg(z) = Z e’Wg(y), z € =t

yioy=x

Theorem 1.1. For each real-valued f € F;t, there exists Ay € (0,00), a simple eigenvalue of
Ly: 7,,"' — .7;,"‘, with strictly positive eigenfunction hy and a Borel measure v5 on EI such that

Ljvs = Asvy. Moreover, spectrum (L7)\{)} is contained in a disc of radius strictly less than .

Finally,

Jim 11230/33 - ([ gdvp)helles =0, Vg € O(55).
The proof may be found in [1], 5].
(4) Gibbs states: Assume that [ hydvs = 1. For each f € 7, the Gibbs measure u; is defined

by

dus
de

= hy.
It is easy to verify that u; is an invariant probability measure under o.

Let M, (2:) denote the set of all o-invariant probability measures on Ej.

Theorem 1.2. For each f € 7}, there exist constants ¢y, ¢z € (0,00) such that

”’f(xO)"'7zm—1) =+ +
1.2 ¢ < — - <e Vze X1, me NT =N\{0};
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and py is the unique element in M, (2:) such that (1.2) holds, where ps(zo, ..., Tm—1)

=ps(y € ZI tyi =i, 0< ¢ <m—1). Here p=p(f) =log Ay is called the pressure for f.

The proof is given in [1].

Remark 1.3. (1.2) is an extension of (1.1) for the case X7.

Remark 1.4. Two functions f,g € C(EI) are said to be homologous, written f ~ g, if there exists

¢ € C(Z7) such that

f-g=doo—4.

Homology is clearly an equivalence relation. It can be shown (cf. [1]) that py = p, iff f — g ~

constant; otherwise py L pg, because py and py are ergodic measures.

Remark 1.5. Gibbs states have the following special cases: Let X = (Xo, X1,...) be a stationary

sequence with underlying distribution pz, then

(i) In the case of 7, if f(z) = ¢, for all z € 7, then X is a sequence of iid random variables
with discrete uniform distribution.

(i1) In the case of T, if f(z) = f(=zo), for all z € T+, i.e., f only depends on the first coordinate,
then X is a sequence of iid random variables with P(Xo = I) = cef ®, 1=1,...,r, where
c=1/3_, /0.

(iii) In the case of =7, if f(z) = f(z0), then X forms a stationary Markov chain with state space
{1,...,r} and suitable transition probabilities.

(iv) In the case of X1, if f(z) = f(zo,...,Zk-1), k € NT, i.e., f only depends on the first &
coordinates, then X is a k-step Markov dependent chain.

In fact the family of Gibbs states includes all finite state stationary k-step Markov chains, k € N*.

§2. Construction of Consistent Estimators for e/ under certain constraints on f
The reason that the identifiability problem arises when estimating the potential function f is

because all potential functions equivalent to f in the sense of homology induce the same Gibbs state
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i5. The next lemma indicates that in each equivalence class there is a unique distinguished element
which satisfies certain normalization conditions. We will construct estimators of this distinguished

element later on.

Lemma 2.1. For every f € 7, there uniquely exists f € F;© such that
(i) hy=1;

(iii) f ~ f+ constant.

Proof. Let
(2.1) f=r+ log hy — log hy-0 — log Ay,

then (i), (ii), (iii) are straightforward.

Furthermore, by [3] Proposition 1 we have

(2.2) s (20|21, 72,..) = S By ()

- J\) +
- z\fh_f(an:) ’ V:I:GEA,

where the LHS is the conditional probability of zo appearing in the slot 0 given that z,z,,...

appear in the slots 1, 2, .... Since the martingale convergence theorem implies that the limit

. . uf(xo,...,xm_l)
) 1 ey Tm1) =
(2 3) ml—rbrgo ”'f(ZOle’ yTm 1) ";‘!'l_l;rgo Ivl'f(zl’ ey xm—l)

exists for almost every z € 7} under py, the LHS in (2.2) is well-defined as the limit in (2.3).
Therefore, uniqueness follows from (2.2). O

Let ¥ C F,;* be the set of all functions that satisfy (i) and (ii) in Lemma 2.1. In the sequel we
just use the notation f to denote the generic element in ¥ when there is no confusion.

Assume that X = (Xo, Xy, ...) is a stationary sequence with probability distribution uy, f € ¥
and let = = (zq, z1,...) denote a specific value of X. We want to estimate the unknown function
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ef based on observations Xo,...,X,_1. f and e are in 1-1 correspondence. Hence Lemma 2.1
guarantees that ef is identifiable for f € ¥.

For simplicity we only consider the case with the configuration space ¥+. Similar results
can be derived for the case 2:. Our goal is to construct a random function T, on X+ based on

Xo, ..., Xn—1 such that for every f € ¥

(2.4) sup |Tn(y) — e/®¥)| -0, as. under p; asn — co.
yeD+

The random function T}, satisfying (2.4) is called a strongly consistent estimator of ef.

Notice that Lemma 2.1 (i) and (ii) are equivalent to the normalization constraint

Y efteom) =1, v g € 5

Zo

Moreover, for f € ¥, by (2.2)
(2.5) ps(zo|z1,23,...) = @, vzezt

So ef may be regarded as an infinite-step backward transition function, which suggests the following
plan for constructing T,,.

First of all, we may use a sequence of finite-step (backward) transition functions
{ps(zo|z1,...,Zm_1), mEN, z € £1} to approximate ef. Then at each stage m we estimate
ps(%o|z1,. .., Tm—1) by the “sample transition function”. Given n observations, the correct order
for the “step-length” m should be ¢ log n, where ¢ € (0,1) also depends on f, hence is unknown.

Certain adaptive procedures are proposed to guarantee the strong consistency of the estimator T),.

Construction of Consistent Estimators
Given observations Xy, ..., X,,_; we first construct n periodic sequences

0’X(n), §=0,1,...,n — 1 with

X(n) = (X07---;Xn—-l;Xo,.--,Xn_l;.. )
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Then for every y € 1 and m < n define

n—1
N'(':")(y) = Z I{(ajx(n))k=y’n k=0,1,...,m~—1},
7=0

n—1
N,(:l]_(y) = Z I{(a-"X(n))k:yk, k=1,...,m—-1},
=0

where (07X (n))s represents the k—th coordinate of the sequence 07X (n). And define

N(n) . n
Nk, i N, () > 0,

R (y) = Nmlalv
0, otherwise.
(n) i NO @) N2y @) o e " . _
R’ (y), also written as —=—Hl /—==1""- ig the “sample conditional probability” of y, appearing

in the slot 0 given that y3,...,¥m_1 appear in the slots 1,...,m — 1. The next two theorems show

that under certain conditions R,(,'.l isa strongly consistent estimator of ef.

Theorem 2.2. Suppose f is an unknown potential function satisfying
(A1) feX;

(A2) |Ifll, < K for a known constant K > 0.

Let
(2.6) a= 12—_,1 and
(2.7 m = [c log n],
where ¢ € (0, 1) satisfies
(2.8) 1—ac > 0;

the notation [z] represents the integer part of z.
Define
Ta(y) = R (v), ye B+
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then (2.4) holds for T, .

Theorem 2.3. Under the assumptions in Theorem 2.2 without (A2), T, defined by the following

adaptive procedure also satisfies (2.4).

Procedure 2.4. Choose a sequence of positive constants {¢,,, n € N}, such that ¢, | 0 asn — oo

with arbitrarily slow rate (e.g. ¢, log n — co as n — 00). Set
m = [¢, log n],

then define

Ta(y) = BRI (v), ye =

The proofs of Theorem 2.2 and Theorem 2.3 will be given in Section 3.

§3. Exponential Decay of Certain Large Deviation Probabilities
In this section the deviation of the estimator T, (or RS,? )) from the estimated function e’ is
investigated in detail. The main result is that the related large deviation probabilities drop to zero
exponentially as n tends to infinity. As a corollary, the strong consistency of T, is established.
The next lemma provides uniform bounds for certain conditional probabilities, which will be

used very often.
Lemma 3.1. For every f € X, there exists a positive constant a which depends on f, such that

(31) e < I"'f(ym—1|y07 .- '1ym—2) <1i- e—a,

(32) e *< ”‘f(y0|y1) SRR ym—l) <1l- e—a,

uniformly for all y € &1 and all m € N.



Proof. For f € {, (1.1) implies that
Bs(YmlYos - - s Ym—2) > geﬂam— v and

21
”f(yolyla . '°aym—1) > c—zef(y), A4 yE 2+, m e N,

cp = e_”f"oo—ﬂ

Bowen [1] gives { with

= E varp f < £
! k=0 kf B 1 -

Therefore, (3.1) and (3.2) follow by setting

co = e"

»
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For y € £% and m < n, let

Py(:)(y)=l‘f($€2+! T = ¥, i=0,...,m—1);

and
PO (y)=pszeSt: =y, i=1,...,m—1).
Then
| { E;N{ (y) = nP(y),
PN () = nPS), (),
and
(ﬂ)(
y)
s Wolgs s o) = L
P ()’
By (2.5), ——("-;)i—)- is close to ef(¥) for every y when m is large.

P (v)

Notice that

(3.4) T, (y) — /@)
) T PR ) POG)
P _(y) W2, )=0) " plm) () T WL >0 ylm) ()T pl) ()

£ DM (y) + D (y) + D ().



The first term has a uniform upper bound. For m sufficiently large,

(3.5) sup DY (y) < elfll= (V3% — 1) < 2elI=var,, .
yED

In what follows we simply denote the probability of event A under u; by P(A), and the
corresponding expectation operator by E(-).

For every € € (0, %),

(n)
(36) PP () > €)= PN, () =0) < P (|N(,,;((”)) 1|>e).

Lemma 3.2. For every € > 0,

n N®
(3.7) P(D®(y) >2) < P (|% ~1|> 51) +P ( (n)l(é)) TIS 52) ,

where 6; = 1_’,_,, b2 = (1—i—¢)/(1 + 1—i—4)'

Proof. Since (
NS () - P ()]

N (v)

PP) NS (y) - nPD (9)]
1(u)>0) P(") (y) N(")l(y)

3
DS& )(y) <I N(") l(y)>0)

+ I(N(")

>

and N\ (y) > N )(y), we obtain that

P(D{)(y) > 2e)

_P(IN,‘,I"(y)—nPL”’(y)l>eN""1(y))+P(|N‘”’1(y)—nP‘”’1(y)|> — N (y))

— e

< P((1+9)IND ) - nPP )] > enPP ()

+ P (14 TSIV, @) - nPEL W) > T P () )

— e
(n) (")
=P(|£”("n)ﬂ—ll>61) +P(| (n)l(y) —1|>52) . |
nPm” (y) Z1(v)

(n)
(3.6) and (3.7) indicate that it suffices to evaluate P(|"—1Z;7;% — 1} > €) for large n.
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Remark 3.3. Here is the motivation of choosing the step length m = [c log n] (cf. (2.7)). To have

. . I . N, (n) y)
consistent estimators for e/, the ratio :;1;)&7) has to be close to one for every y. Hence both

{n )(y) and its expectation nP (y) should be large. For m = [¢ log n], by (3.1)

nl=% < nPP(y) <n' 7tV yest,

where b = — log (1 — e~%) > 0. Hence log n is the proper order and we may choose the constant

¢ € (0,1) such that
(3.8) 1-ac>0.

However, since a depends on the unknown function f, we should adopt either (2.8) to choose ¢ or
Procedure 2.4 to choose the sequence {c,,}.

Now let

Zj = I{(a"X(n)),,:y,‘, k=0,1,...,m—1} — P,(,I‘)(y), J=01,...,n—1;

Then
n—1
N3 (y) - nPP () = ) Z;,
s
and
Nr(':n.) n—1
P (|——(—Q -1 > s) =P |Z Z;| > enP™(y)
n Y =0
This is the large deviation probability for partial sum of a double-array, mean zero, mixing

sequence. The following “splitting” procedure turns out to be useful.

For a small number X € (0, 1).

Set N
p=[n313],
g=[n2?,
and
k= ["_m—+1+q1’ ie.
pt+q
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k satisfies

kp+(k—1)g<n-m+1<(k+1)p+ kq.

Let
Ur=Zo+...+ Zp_1,
Up=2p1q+...+ Z2pyq-1,
Uk = Z(k-1)(p+a) T+ -+t Zhp+ (k—1)a-1
And

V]_ = Zp+ ...+Zp+q_1,

Vo= Zspig+ ...+ Zapi2q-1,

Zpemi1t oot Zp1, ifkp+(k—1)g=n—m+1,
Ve={
ka+(k—1)q+---+Zﬂ—m+Zn—m+1+---+Z -1, ifkp+(k—1)q< n—m-+ 1.

Each U;, 1 =1, ..., k contains p Z-terms; Each V;, 7 =1, ..., k — 1 contains ¢ Z-terms.

In particular, Vi contains 8 Z—terms with
m—-1<s<(p+gqg—-1)+(m—-1).

The idea is that for large n both {U;, i =1, ..., k} and {V;, § =1, ..., k — 1} behave

n—1
approximately like iid sequences. And Vj does not affect the magnitude of }  Z; very much.
3=0

Denote nP{" (y) by b% and note that

n—1 k k—1

LRSS A

7=0 i=1 =1
Therefore,

n—1
P[>z >eb}
—~

i=1 J=1

k k-1
<P (|zu;-| > sbz) +P (Izm > ab:) +P(Vil > 582),
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with § = §.

Recall the following weak Bernoulli property of us (cf. [1] Theorem 1.25).

Let A,m_1 be the o-field generated by (Xo, ..., Xm—1); Am+n,co be the o—field generated by
(X:, 1 > m+n). Then there exist constants C > 0 and 8 € (0,1), which only depend on f, such

that

P(AN B)

() Beay-p) ~ =P

uniformly for all A€ Ay, B € Apmin,00o and all myn € N.

Lemma 3.4.

E(ZyZy)

(3.10) =52

|=0(™),V £>m.

Proof. (3.9) implies that
|E(Z0Z) — EZo- EZy| < C-E|Zy|- E|Zg|- ™,V £>m.
(3.10) follows since EZ; =0,V je€N. O

Lemma 3.5. Let v € N satisfy v ~ n® as n — oo with b € (0,1]. Then

E(Zo+...+ Z,_1)?

(3.11) V- EZ2 =0(1), as n— oo.
Proof. .
- L. E(ZoZ,)
LHS=1+42) (1--)  —5=
ot v EZ;
m-—1 v-1 v—1
E(Z0Z,) E(ZoZy)) 2 E(Z0Z,)
Sia Y MBS B 257, Bl
= P t=m+1 EZ = EZ
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By (3.10),

9 VZ_I E(ZyZ,)

EZ7 =0(1), as n — oo.

L=m+1

Moreover, for 1 < £< m.

E(ZoZs) = P ((Xo, ., Xm-1) = (Xt -+, Xe4m-1) = (%0, - - -, Ym—1)) (P,S;‘) (y))z,
Bz =PP()- (1- PP W)
And
P((Xoy--»Xm—-1) = (Xt -, Xetm—-1) = (40, - -, ¥m—1)) /P (v)
=P((Xe,-- oy Xetm—1) = (W05, Ym—-1)|(Xoy -+ - s Xm—1) = (%05 - - -, Ym—1))
=P(Xm =Ym-ts-+-» Xt4m-1=Ym-1|Xo =90, .. -, Xm-1 = ¥m—-1)
=P (Xm=Yym—-t|Xo=90,.. -, Xm-1=Ym—1)

-P (Xm.+1 = ym—t+1|X0 =90, -:Xm—l = ym—l,Xm = ym—t)

“P(Xmte—1=YUm-11Xo =90, » Xm—1 = Um—1,Xm = Um—ty- - -y Xm+£—2 = Ym—2)

<e b by (3.1)- (6= —log(1 —e™%))
Therefore,
2 v~ , E(Z¢Zy) 2 N bt 2 =
|_Zg. | < — Zee t = Z P{(y)
v BZR T -PPW) S v(1- PR () i
— 0, as n — oo;

And by the Kronecker lemma,

v—1 v—1
E L. E(Zofe)| < — 2€ E 8™ 50, as n— oo.
EZ§
L— +1 £=m+1

Finally,

E(Z.Z —be m (")
|2Z ‘E;O'-N_ Ze—(n)HZ )

1-P(y)  o1- P&"’ (¥)

- — as n — oo.
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Thus (3.11) follows. O

The next lemma indicates that {U;, 1 =1, ..., k} is similar to an iid sequence.

Lemma 3.6. For every t > 0,

(3.12) E lexp (Z% 2:; U.-)] - {E [exp (b—i-ul)] }k (1+o(1)), a5 n— oo

Proof. Applying (3.9) to the sequence {U;, i =1, ..., k} iteratively gives that

FE |exp (,,—t; Zf=1 U")] < (1 + Cﬁq—"")k_l .

{Blow (o]}

(1-cpr™) "<

Since

|(1£Cp™) " 1)< Ckp*™ =0, asn— oo,

(3.12) follows. 0O

Lemma 3.7. For everyt > 0,

(3.13) {E [exp (ivl)] }k —~0(1), as n— oco.

Proof. By Taylor expansion,

t t? EU} 61* EU}
plow (0n)| =145 T+ 5 T

where |#] < 1 may be different on each appearance.

By (3.11),

EU12=0(£)=O< 1 ), as n — oo;



And the same argument as in [6] Lemma 5.4.8 implies that
E|U:[* = 0 ((EU?)?) as n— co.

Hence as n — oo

EU?
k- b21 = 0(1),
and
EU}
k- T o(1).
n
Therefore,

k 2 2 3 3\~
t t* EU ot° EU.
{E [exp (-I;:U]')]} = (1+E'- b?‘l +'§'|-'an’1> =O(1), as n — co.

The main result is

Theorem 3.8. For every § > 0, there exist v > 0 and ng € N such that

k
(3.14) P (l > v > 5b3,) < e,
=1

uniformly for all y € &%t and all n > no.

Proof. It suffices to verify the inequality

k
(3.15) P (Z U; > 563,) < e "7,
=1

For every t > 0 and n sufficiently large,

k k
P (Z U; > 663,) =P (exp ({- Ug) > em’">
i=1 " i=1
P
< —t6b, i U';

= e—*"f’n . {E [exp (ivl)] }k (14 o(1)) by (3.12)
= e % . 0O(1) by (3.13).
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(3.15) follows by setting 0 <y < 152¢. [0

Since the same argument shows that

k-1

(3.16) P> vy >6b2 ) <e,
=1

and

(3.17) P (|Vi| > 8b2) < %77,

uniformly for all y € £+ and n > ng, by combining (3.14), (3.16) and (3.17) we obtain

Corollary 3.9. For every € > 0,

(n)
(3.18) P (|N";,2(y) —1}> e) < e

uniformly for all y € % and n > n,.

Proof of Theorem 2.2 and Theorem 2.3.

First by (3.4)

sup |Tu(y) — e®| < sup DM (y) + sup D{P)(y)+ sup D) (y).
yex+ yez+ yez+ yen+

Then recall that each coordinate of y € ¥ may take r different values. Thus
P ( sup DS,")(y) > e) <r™P (Dg)(y) > e) , 1=2, 3.
yeDt
Hence Theorem 2.2 follows from (3.5), (3.6), (3.7), (3.18) and the Borel-Cantelli lemma.

Furthermore, for every f € X, the quantity a = 111%;& satisfies
1-ac,>0

for n sufficiently large. Theorem 2.3 is proved just like Theorem 2.2.

Acknowledgement

This work constitutes a part of the author’s doctoral dissertation, which was written under
the supervision of Professor Steven Lalley. The author gratefully acknowledges Professor Lalley’s

guidance and support.

17



References

[1] Bowen,, R. (1975). Equilibrium states and the ergodic theory of Anosov diffeomorphisms.
Lecture Notes in Math. 470. Springer-Verlag, New York.

[2] Ji, C. (1987). Estimating functionals of one-dimensional Gibbs states. Technical Report #87-
33, Department of Statistics, Purdue University.

[3] Lalley, S. P. (1985). Ruelle’s Perron-Frobenius theorem and the central limit theorem for
additive functionals of one-dimensional Gibbs states. Proc. Conf. in honor of H. Robbins.

[4] Ripley, B. D. (1981). Spatial statistics. John Wiley and Sons, New York.

[5] Ruelle, D. (1978). Theomodynamic formalizm. Addison-Wesley, Reading, Massachusetts.

[6] Stout, W.F. (1974). Almost sure convergence. Academic Press, New York.

18



