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SUMMARY

This paper derives the asymptotic distribution of the weighted least squares estimator
(WLSE) in a heteroscedastic linear regression model. A consistent estimator of the asymp-
totic covariance matrix of the WLSE is also obtained. The results are obtained under weak
conditions on the design matrix and some moment conditions on the error distributions. It is
shown that most of the error distributions encountered in practice satisfy these moment condi-

tions. Some examples of the asymptotic covariance matrices are also given.
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1. Introduction

The follbwing linear regression model is widely used in practice:
Yij =xB+ e, j=liom, i=l..k, T n=n, - (1.1)

where B=(B; ... Bp )’ is the unknown parameter of interest, p is a fixed integer, y;; are the

responses, X;;=( X;j1 ... X;j, )’ are known design vectors, and e;; are independent random
2

errors. For each i, €is J=1,....,n;, have the same distribution with mean zero and variance G;.

The _0',-2 are unknown and unequal. Model (1.1) is called a heteroscedastic model because of the.

presence of unequal scale parameters o;. Let

_ ’
e—(ell---elnl ...... ekl---ekn,,)nxl’
— 4
y—(yu...)’lnl ...... ykl---ykn/,)nxl’
and
7
X=(X11...x1n1 ...... -xkl----xlmk)nxp°

A matrix form of Model (1.1) is then

with the dispersion matrix

D =Var(e) = block diag.(6%1, ...0¢1, ), (12)
where I, is the txt¢ identity matrix. The design matrix X is assumed to be of full rank. Note
that X and y depend on the sample size n, but the subscript n is omitted for sirriplicity. For

each i, if Xij are the same for all J, then yij is the jth replicate at the i th design point. Model

(1.1) is slightly more general since x;;, j=1,...,n;, are not assumed to be the same.

For a regression problem, it is usually difficult to obtain a large number of replicates (see

[3]). Therefore, throughout the paper we assume that n;<n., i=1,....k, fora fixed integer n...

The ordinary least squares estimator (OLSE) of P is
B = xx)'x%. (1.3)

The OLSE may be improved by the weighted least squares estimator (WLSE) of B:

PRI



Bv = @xwx )y lx'wy), (1.4)

where

W = block diag.(wy 1, ... w1, ),
and w; ! are estimates of 62, i=1,....k.
If 6,-2 is a smooth function of the design or the mean response, a consistent estimator of
0',-2 (k=) can be obtained and the asymptotic distribution of ﬁw is the same as

B=(x'D~'x Y X'D 1y (see [1]). Therefore, ﬁw is more efficient than ﬁ In the general situation

2

where 67 is not related to the design, no consistent estimator of 67 is available unless 7; —>o,

If w,-"1 are inconsistent estimators of 6,-2, the asymptotic distribution of ﬁw is not well known
and is different from that of B. Thus, ﬁ“’ may or may not be more efficient than ﬁ For com-
paring the efficiency of ﬁw and ﬁ and making statistical inferences based on [3“’, it is crucial to

obtain the asymptotic distribution of ﬁ“’.

Several types of estimators of 0',-2 are proposed by various authors (e.g., Hartley, Rao and
Kiefer [5]; Rao [7]; Rao [8]; Horn, Horn and Duncan [6]; Fuller and Rao [3]; Shao [9]) for the

case where 67

is not assumed to be related to the design. The empirical results in [9] show
that the WLSE is more efficient when the following estimator of 67 is used:
v =0ty rd + his?, (1.5)

where r;; = y;;— x,Jlg s2=(n—p) 13k 12;—1" and h;=n;"! X,J(X’X)‘lx

Fuller and Rao [3] derived the asymptotic distribution of .ﬁw with w,-‘1=v,-, where

v, =n Iy (1.6)

However, the assumptions they made are rather restrictive: (1) the errors e;; are normally dis-

ij
tributed; (2) several matrices, such as k~1X’X and k~'X’DX, converge to positive definite
matrices. Since 0',-2 are unknown and unequal, it is usually difficult to check if £ 'X’DX has a

positive definite limiting matrix.



Under a weak condition on the design matrix X and some moment conditions on the error

distributions, this paper derives the asymptotic distribution of [3“’ with the reciprocals of the

estimators (1.5) or (1.6) as weights.

The rest of the paper is organized as follows. In Section 2, we state some assumptions
and prove some technical lemmas. The main results are established in Section 3. The last sec-
tion studies some examples and derives a large class of error distributions satisfying the

assumptions for the asymptotic theory.

2, Preliminaries

The following assumptions are used in deriving the asymptotic distribution of ﬁw:

Assumption A. There are positive constants 6y, G,, and c., and positive integers n and n.,
such that 6(<0;<0.., ng<m;<n.. and llx; ll<c_, for all i and j, where llx I=(xx)" is the

Euclidean norm of x.

Assumption B. There is a positive constant ¢ such that

co < k7( the minimum eigenvalue of X’X ).
Assumption C. The érrors e;; satisfy the following moment conditions:
E(e;/Yjie) =0 and Elee/(Tied)'1=0 Q)
for all i and ¢=1,2, and |

Ele 1?<h and EQXXe) M <p (2.2)

for all i, where b and 8<1/2 are positive constants.

Assumption B together with the boundedness of llx;; Il imply that XX diverges to infinity

at the rate O (k), i.e., there are positive constants ¢, and ¢, such that

c1l, kXX <cy I, forall k. (2.3)



This is much weaker than k™1X’X converging to a positive definite matrix, a condition assumed
in [3]. A sufficient condition for (2.1) is that the distributions of e;; are symmetric about zero.
It is shown in Proposition 1 of Section 4 that most of the error distributions encountered in

practice satisfy (2.2). Define
™) = 67E Xk ed) . (2.4)

Examples of the functions T can be found in Section 4. It is easy to see that under Assumption
A and (2.2),

0< t(n.,) <t(n) <t(ng) <o foralli.

The results in Lemma 1 can be found in probability theory. The proofs are omitted.

Lemma 1. (i) Let { &; } be a sequence of independent random variables with E&;=1;. Put
E=k'y K & and =k 3K ;. X for a positive <1, k- IFE E 1€, 11950, then E-1-,0,

where —, denotes convergence in probability.

(ii) Let { &; } be a sequence of random variables with sup;E I&; |'*3 < co for a §>0. Then
limy, _,_k"LE [max;; |€; 11=0.

Lemma 2. Suppose that Assumption A and (2.2) hold. Let { z; } be a nonrandom sequence
such that |z; I<z_ for all i. Then

-1Ivk -1 -1 -2
kY E ziut - kISR zin(ng)o; —,0,
where

;= n Y el (2.5)

Proof. From (2.4), E(z; u,-‘l) = z;n; T(n;)O; 2 From Assumption A and (2.2),

k_(1+8)2ik= ) El z; ui——l | 1+8 < z°1°+8k—(1+8)2ik=1 Eui—(1+8) < Zi+5ni+8bk—8.

The result follows from Lemma 1(i). O

Lemma 3. Suppose that Assumptions A and (2.2) hold. Let a0 > [2(14+8)]7}, where & is given
in (2.2). Then



K205k e 1 (Eied) ™ —,0
and for any 1<h<n;,
K03k e e | (T e —,0.
Proof. Let {; (Z —1‘3 ! Then
le;y | (T e < (The 2 < (2
and
et lew |(TiLied) > < ley, (e < P2

Hence, the result follows from

k—3a kl ‘3/2_> 0

which is implied by
E[(k_3a2ik=1Ci3/2)2(1+8)/3] < k-—2a(l+8)2ik=1E Ci1+8 < bk 1-20(1+8) -0

since o > [2(1+8)]7L. O

Lemma 4. Suppose that Assumptions A and B and (2.2) hold. Let
H = block diag.( z,vi} I, ... z v ! 1, )

and

G = block diag.( z;nyt(n)o721 N ROl A
where v; is defined in (1.6) and z; satisfying 0<z(<z;<z . <eo. Then

kT'X’HX - k7'X'GX — ,0.
Proof. The (¢, s)th element of k" X’HX is
[ Y FEAVES Yl o

Let u; be defined in (2.5). Then

lk~Iyk 2 VO s | < CROITE 1y
where C is a positive constant. From Lemma 2,

YKz Y s — kYR zim(n)o; 23 XijeXijs =0

Hence the result follows from

KRk v 0.



Fix an o such that [2(1+8)]_1< o< 2—1. Let Bik = { man le,-jl < k_a}, Akl = UiSkBik’

App={ max; ;j10;;1 > 27"k ] and A, = A, UAy, where ¢;=x/(B-B). Let A be the
complement of the set A. On Af, |
Y1051 <27 Pk < 27 fmax; e | <270 Y ey
and
Ej";lq)‘% <ndnlk < 4'1maxj e,-Jz < 4‘12‘0-";'1e,-l2
which implies .

g 29 -1, ~Iem ,2_ I 42 o -1, —Iem ,2 _ 4-1
vi=ng (00" 2 27 Y e — L0 24T L6 =4y

Hence there is a constant C >0 such that on Af,

Iv,-_l—u,-_l |=n,-_1 lui_lvi—lzj'il(2e,-j—¢ij )q)lj I < Ck_uui“zz;il lei]- . (2.6)

Thus, from Lemma 3,
R v AR < CET oI T ey lu 2 (A9
< Ck—sa ilf:IZjnil Ieij |ui_2 —)p O,
where I(A) is the indicator function of the set A. It remains to show P(A;) — 0. Note that

P(Ay) S TP By) + P(Ar)

and
TEPBy) = TP (k* < (max; le; V) < TEP (7> < (Tjiedh™)
< Eik=1ni(l+5)k—2(1+5)aE (Z;;olei]z)—(l+5) < bn °(°1+8)k 1-2(1+3)a - 0.

Under Assumptions A and B, |l ﬁ—B I=0,(k~"?). Hence k®max; ; |¢;; |<c kIl ﬁ—BII—) 0 and
p . i,j Y p
P(AkZ) - 0.

This completes the proof. O

Lemma 5. Suppose that Assumptions A and B and (2.2) hold. Let <]),-j=x,-1'~([§—B). Then

Ry = X U 2y 02 Y e = 0, (k™) @2.7)



and
Ry = Thn 2u v T eyi— 005 P A xi € = 0, (k7). (2.8)
Proof. From Assumption A, there is a constant C >0 such that
k72 IR, | < CETENB-BITE SR Ly, lu 2

Since I ﬁ—B Il 2=0p *™1), (2.7) follows from Lemma 3. Let A, be defined as in the proof of

Lemma 4. From (2.6), there are positive constants C; and C, such that
k™R 1R\ (AD) < C k™" (max; ;02T K u3F 0 ey, | iy le;1)

-1 . . .
< CkFIB-BIZTE w33 S e F ey | —,0

by Lemma 3 and |l ﬁ—B I 2=0p (*Y). From the proof of Lemma 4, P(A;)—0. Hence (2.8)
holds. D

3. The main results

Let t(n;) be defined in (2.4). Define
D = block diag.( 67%n %(n)) I, ... oi’mu(m) I, ),

D, = block diag.(o7%t(n)) I, ... opw(m) I, ),

and
T, =X'D,X +4X’D X + 4X'D X X’X)"'X’DX (X’X)"'X'D ,X

where D is given by (1.2). Note that under Assumptiohs A and B, there are positive constants
Cy and C such that

Col, <k™'%, <C, 1. (3.1)

We first derive the asymptotic distribution of |3W with wi‘1=v,- given by (1.6).

Theorem 1. Suppose that Assumptions A-C hold. Let ﬁw be defined in (1.4) with w; l=v;.
Then



Vi@ —B) -, N, L), (3.2)

where —; denotes convergence in distribution, Vk'l’2=(Vk'/’)‘1 and V" is a square root of

V, = X'D X)L, X'DXx)". (3.3)
Proof. We first show that
X ’T, -, NQ©,1,), (3.4)
where
T, = X'We + 2X'D,X (X'X) 'X’e
with

W = block diag.(ui® I ... T I, ).
Under (2.1), ET;,=0. Then
Var (T,) = E(T,,T,") = E(X'Wee'WX ) + 2E[X'Wee'X (X’X)™X'D ,X ]
+ 2E[X'D X (X’X ) X’ee’'WX ] + 4[X'D X (X’X ) 'X'DX (X’X)1X’D X ].
Since u;~ ,J, Jj=1,...,n;, have the same distribution,

E@W%e})=n" Z]_IE(u, Ze) = Eu' = o7 2mt(ny). (3.5)

Then the expected value of the (¢, s)th element of X'Wee'WX is
E [Zik=1ui_2(Zfi1xz_'jt €)X xijs €)1 = Eil;lzjfiici_ 20y )Xo X5
Hence
EX'Wee’'WX)=XD X.
Similarly, the expected value of the (¢, s )th element of X'Wee’X is
E[Zh i (i x e XX Xys €)1 = T T EE @ e = T3 X Xiis

since E (u,-"le,-]Z) = ni'lzj";'lE (u; e 2) = 1. Hence

E[X'DX (XX) 'X'ee'WX] = X'D X XXy X'X =XD,X.



This shows
Var (T},) = ;.
Let I be a fixed nonzero p-vector and A, =%z 21/(I’ Z;'1)". Then IlA, =1 and
dZ = Var(\WTy) = U2 2 b ot = gy,
Let A4, and T, be the sth elements of A, and 2(X’X )~'X’D,X A, respectively. Then
MTe = T Tl 3 M X555 + MisXijs€i)-
From Assumption A, I I1?=40,/X'D ,X (X’X Y 2X’D ,X A\, <C;, where C is a positive constant.
Let 8 be given in (2.2). Then | ‘
E st g€ + Mo xiee; 1270 < Cop(Bu7 0D + E 1e;) 179 < €,
where C, and C are positive constants. Hence
dr®OTE TP S E Nt e + NisXijseg; 1270 < Can o phdy D),

From (3.1), kdk‘(2+5)SC 0 1-82;,-82_4(), Hence the Lindeberg’s condition holds and therefore

diWT, =V Z7 T /D" >4 N, 1).
Since [ is arbitrary, the proof of (3.4) is completed.

Next, we show that

X'We — T}, =0, (k™). (3.6)

e w2 (v~ )+ui_2v,-_"1(v,-—u,- ), the rth element of X’We is
Zf:lvi_lzj"ilxijteij = Zik=1“i_12;h;1xijteij = Ry1 + Rip + 2R3,

where R;; and R,, are defined in (2.7) and (2.8), respectively,

From v;~

Ryy= Y23k n w2 xiie Yo Xins €in )Bs—By),
and ﬁs is the sth element of [3 From Lemma 35, R,1=op (k"?) and R,2=op (k'h). Note that the
tth elements of X’We and X'D X (X'X Y 1X’e are, respectively,

PR g -2 n
Yiali YioXipe; and  YP0; T(”;’)Zjélxzj:xijs(ﬁs—Bs)-

Hence it remains to show that



Y Tk 0 )T ki xis Bs—Bs) — Rea = 0, (k™). 3.7)

Since I B-Bii=0, (k™"), (3.7) follows from
T 0T ) T ki ks — San u T ke X S ein) = 0, k). (3.8)
From (2.1) and (3.5),
E [n 1 _2(Zj—lxtjteq )(Zh 1Xihs €in )] - 0 t(n, )Zj—lxljtxljs
Also, 1w X(E R X e X Ehe Xins€in) 1 S 27 u (T % ey 1)?<e 2u;7. Hence (3.8) follows
from Lemma 1(i). This proves (3.6).
Finally, from (3.4) and (3.6),

¢ 2X'We —4 N (O, L). (3.9)
Since f* -B=(X’'WX ) X’'We,
27 mX'D X)BY-P) = D X)X WX Y Btz X We. (3.10)

Note that
i MDD X)X WXY g = B XD O WX — (XD Xy S +
From Lemma 4, kK[(X'WX )™ — X'D,X)"] -,0. From (3.1) and X'D X < nwcaz'c(n XX,
2 XD X)XWX) I -, 1

Thus, from (3.9) and (3.10),
27D X)(BY—P) =4 N(O, L,). 3.11)

That is, we have shown (3.2) when (X’D ;X )‘12‘.;‘/2 is taken to be a square root of V;. For an
arbitrary square root V.2, (3.2) follows from (3.11) by using the same argument as in [2] (p.
349). This completes the proof.

The next theorem shows that (3.2) also holds for ﬁw with 62 estimated by v? given in
(1.5).

10



Theorem 2. Suppose that Assumptions A-C hold. Let [3”’ be the WLSE with w,-"1=v,-b. Then

VB (B -B) =4 N(O, I).

Proof. Let

W1 =block diag.(vi' I, ... vi'I, )

1o

and

W = block diag. (W) I, ... WO I, ).
The result follows from
X'Wye =Ty + 0, (k") (3.12)
and
XWX X'WX) -, I, (3.13)
where T, is defined in the proof of Theorem 1. Following the proofs of Lemma 5 and

Theorem 1, (3.12) follows from

max; ¢ v —v; | = O, k™),

which is implied by max;<.h; = O (™) under Assumptions A and B. For (3.13), it suffices to

show that
max; ¢ [vPv; - 11 —,0, (3.14)
which follows from
max;<p hi Vi_l '—)p 0.
Since max; ¢, h;=0 (k™1), it remains to show

k~'max; v —,0. (3.15)

Let Bk={ max; < |A‘ u,-_ll > 1/2}, where A,-=v‘-—u,-=n,-"1 ;’;1¢5—2n,-_1 }';lq),-je,-j. On Blg’
max; ¢, v; ! < 27'max; 47! < 27n max; ¢, (2;;"1%2 1
Since k~'max; ¢, (¥ 7,¢3)™! —,0 by Lemma 1(i), (3.15) follows from P (B,)—0. Note that

A7 < 7 T BB + 20 DB

11



Hence P (B;)—0 follows from II§—B1%=0, (k™) and
max;< {n; 3 D B-BPu Y < e 2 1B-B I 2max; g ;!
< c2n BB max; (5 e ) —,0. O
From the above theorems, V; defined in (3.3) is the asymptotic covariance matrix of ﬁw.

A consistent estimator of V;, is required for making statistical inference based on ﬁw. Let w,-‘1
b

be either v; or v,
U = block diag.(n7'w, I, ... neiwy L,)
and
V, = @WX) ™+ 4x'WX) IX'Ux X’wx)!
+AX'WX)Y IX'UX XX XWX XXy x'ux xwx )™

The following theorem shows that IA/,‘ is consistent for V.

Theorem 3. Suppose that Assumptions A-C hold. Then
R T AA SN
Proof. From Lemma 4 and (3.14),
KIXWX - k7X'D X —,0
and
kX'UX - k7'X'D X —,0.
It remains to show that
kXWX - k7'X'DX —,0. (3.16)
When w;1=v;, the (¢, 5)th element of k" X’'W™IX is k;lzi’;l ;’;'lx,-j,x,-jsv,-. Let u; be defined
as in (2.5). From Lemma 1(), |
kyk, T iy Xijs Uy = k-lz;,.’;lzj";lx,-j,x,-js o? —,0.
From the proof of Theorem 2, max;; |v; 4,1 1= max;; 1A; 4, I=0, (1). Hence (3.16) holds.
The same argument shows that (3.16) also holds if w;'=v?. This completes the proof. O
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In some situations the parameter of interest is 6=g (), where g is a function from R? to

R? and is differentiable at B. A natural estimator of 0 is é=g ([.5)“’). Let
VE = Ve BV (Ve B),

where Vg (B) is the gradient of g at . We have the following result.

Theorem 4. Let é=g (ﬁw) with w; = either v; or vib. Suppose that Assumptions A-C hold,
Vg is continuous at 3 and Vg (B) is of full rank. Then

V) "6-8) =, N, I,) 3.17)
and
kVE - kVE —,0, (3.18)

where IA/,f=Vg (ﬁw_ )IA/k (Vg (6“’ ).

Proof. From Theorems 1 and 2 and the continuity of Vg,
6-0 = Vg BYB”~B) + 0, (k™).
Let ! be a fixed nonzero g -vector, lk='(V,§)_1/’l and lk=Vkl/2(Vg B L /VEL k)l/z. Then
r(VEEB-0)/ (1) = Vg BYBY B UVEL)" + ¥ (VE 0, (™ (1)
=MV BB -B) + 0,(1) =4 N(O, 1)

by Theorems 1 and 2 and IIA; II=1. This proves (3.17). (3.18) follows from Theorem 3 and the

continuity of Vg.O

Let M denote a nonnegative definite matrix. If the map M —M " is continuous with
respect to the norm M ll=[trace (M’M‘)]lh, then the square root M " is said to be continuous.

An example of continuous square root is the Cholesky Square root.

Statistical inferences such as testing hypothesis and setting confidence region for 6 can be

made by using the following result.

13



Corollary 1. Let (I'\/,f)ll2 be a continuous square root of 1’\75 . Under the conditions of Theorem |

4, we have
WVEy"2(6-6) -, N, I).

Proof. From (3.17), it suffices to show that
WVOHWE -1, —,0. (3.19)

From (2.3) and (3.18), (V&) VE(VE)™~ I, —,0. Then (3.19) follows from (2.3), the con-

tinuity of the square root (‘7,"5)1/2 and the result in [4] (page 85). 0

4. Some examples of error distributions

The following are examples of the distributions of e;; and the function T defined in (2.4).

Example 1. If ¢;; have normal distribution N (0, 62) and n;2n =3, then Assumption C holds
and '

Un;) = (m;=2)""

Thus, the result in [3] is a special casé of our results.

Example 2. Let the distribution of e;; have a density
fii(@®) = M@ A 12 12 lexp(—12/,),
where o>0 and A;=c%/0.. Then the density of Z}’;leif is
Fi(@) = [T o)A %™ Lexp(—t /), £20.
Thus, Assumption C holds if and only if

no 2 ngo > 1, 4.1

and if (4.1) holds,

() = om0 — 1)L

14



When o>1, (4.1) holds for ng=1 and therefore there is no restriction on »;’s.

Example 3. Let ¢;; be uniformly distributed on [-3"c;, 3"7G;]. Then

Ee,-JTZ = oo,

Note that €;;=0; le,-j are uniformly distributed on [-3"2, 3%2]. Let 0<8<1/2, m>2 be an integer,
¢=(3m) ¥ and d=37"*9, Then

E(Erefy @ = [P(gfef < 7 (42)
00 d |
— (n/lz)m/Z[r(m /2+1)]-—1jd t—m/(2+25)dt + J‘CP( erilsz% < I_l/(1+8) )dt, (43)

which is infinity if m=2. When m 23, the first term in (4.3) is equal to
(/12)™2[T(m 124+ 1] [m /(2+28)—1] 13m/2-(1+9), (4.4)
Thus, Assumption C holds if and only if n;2n=3. If ny@=3,
() = 37 @AY AT 24 1)1 Y 12-17 + Awy),

3n,- _ .
where A(ni)=J3 52 P( 2}';18,% < s )ds.
The following result gives a large class of distributions satisfying Assumption C.

Proposition 1. Assume that n;2n¢=3 and e;; has a density f;(¢) which is symmetric about
zero and satisfies jl t I2+8f ;@)dt<C and f;(t)SC when te[—a, a], where a and C are positive
constants and independent of i. Then Assumption C holds.
Proof. We only need to show that E(Z}'z"lei})'(l‘“& < oo, Let A=[—a, alX[—a, alX[~a, a].
For 0<8<1/2, from (4.2)-(4.4),

IA (2423413 UOF, 0 )f; () ; (t3)dedt ydt 5 < C3JA 2413412 e drydrs < oo,
The result follows from

jAc(t12+t22+t§)‘(1+5)f,~ tf i (E)f s (t2)dt dtydts < a2 < oo, O
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