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Nonoptimality of Randomized Confidence Sets

Summary
Randomized confidence sets are used in classical decision theory as a device to ob-
tain optimality results. In particular, in discrete distributions, a uniformly most accurate
unbiased (UMAU) confidence set is based on an auxiliary randomizer that is independent
of the data. Such procedures are shown to be nonoptimal when evaluated conditionally,
using the Buehler-Robinson theory of relevant betting. In particular, for the binomial and
Poisson distributions, sets in the sample space are identified on which the UM AU intervals

have conditional coverage probability uniformly smaller than the nominal level.
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1. Introduction

Classical decision theory, as presented in Ferguson (1967) or Lehmann (1986), involves
the use of randomized procedures to obtain optimality results. In the case of a convex
loss function, such procedures are not required (see, for example, Ferguson, Section 3.4,
Theorems 1 and 2). In the cases of both testing and set estimation, common loss functions

are not convex and randomized procedures are required.

In general, randomized procedures involve the addition of an extraneous random vari-
able, one that is independent of the data, to achieve a required test size or coverage
probability. Thus, if Xi,...,X, are iid F(z|f), where 6 is the parameter of interest, a
randomized procedure would be based on a statistic (T, V'), where T is sufficient for 8, and
V ~ G(v), independent of . It is usually the case that F(z|6) is a discrete probability
function and G is an absolutely continuous one. The discreteness of F' makes it impossible

for a test to achieve any arbitrary a level, but the addition of G alleviates this.

Although such procedures can be classically optimal, consider the following scenario.
An experimenter can consult two statisticians and each one gives the correct advice based
on a randomized procedure. The experimenter then finds that two opposite conclusions
can be legitimately made with the same data. Of course, the randomization is to blame, as
any randomized procedure necessarily violates the likelihood principle (Berger and Wolpert
1984). Such behavior is what prompted Casella (1986) to remark that such procedures are
to be treated with disdain.

Unfortunately, violation of the likelihood principle (or, more simply, allowing a pro-
cedure to take two different actions for the same value of a minimal sufficient statistic)
is not a cause for concern for a classical decision theorist. The previously cited theorem
in Ferguson (1967) can be interpreted as saying that an auxiliary randomized provides a.
reduction of the sample space. The performance of any procedure based on the entire sam-
ple can be equalled by the performance of a procedure based on only a sufficient statistic

plus a randomizer. Since this reduction simplifies the problem, why not use it?

However, deep inside it should be felt that procedures using information that is no
more than random noise are nonoptimal. It is the purpose of this paper to demonstrate,
using frequency-based criteria, that randomized procedures are nonoptimal. To do so,

we must turn to the Buehler-Robinson theory (Buehler 1959, Robinson 1979a, 1979b) of
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relevant betting, recently discussed by Maatta and Casella (1987) in the context of variance
estimation and Casella (1987) in the context of estimation of a multivariate normal mean.

Briefly, if C(X) is a confidence set for a parameter 8, where X ~ F(z|§), and C(X)

satisfies
(1.1) PyfeC(X) 21—« for all 6

for some specified value 1 — a, then it would be disturbing if we found a set A in the sample

space such that
(1.2) PelCX)XeA)<l-a—c¢ for all 4, -

for some € > 0. Such a set is called a negatively biased relevant set and casts serious doubts
on the validity of the assertion (1.1).
These sets were investigated by Buehler, and formalized by Robinson in the following

way

Definition 1.1: For the confidence set C'(X) with confidence assertion §(X), the function

S(X) is a relevant betting procedure if, for some € > 0,
Ep{(I(6 € C(X)) — B(X))S(X)} = € Ep|S(X)),
with strict inequality for some 6. If e = 0, then S(X) is a semirelevant betting procedure.

‘A betting procedure is taken to be any bounded function of X. Notice that S(X) =
—I(X € A) reduces the definition to (1.2) and, in general, if S(X) < 0 for all X and if S
is relevant, S(X) is a negatively biased relevant betting procedure.

The existence of any type of betting procedure allows a nonnegative expected gain for
a bettor and thus leads us to question the validity of the probability assertion. However,
the existence of a negatively biased procedure is much more serious. Such a procedure
says that the unconditional probability assertion is wrong in the worst possible way: the
experimenter is overstating confidence uniformly.

In this paper, we demonstrate that randomized confidence sets are nonoptimal in

allowing negatively biased betting. In particular, in Section 2, we exhibit negatively biased
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semirelevant sets for the Uniformly Most Accurate Unbiased (UMAU) confidence intervals
for a binomial or Poisson parameter. In Section 3, we extend a result of Pierce (1973)
to show that, in compact parameter spaces, randomized tests allow relevant betting, and

hence are nonoptimal.



2. Negatively-Biased Betting Procedures for the Binomial and the Poisson
Distributions

We first give some preliminary results concerning the form and behavior of UMPU
tests in the binomial and Poisson distributions. Also we note that, although we are prin-
cipally concerned with the behavior of confidence sets, we can equivalently work with
hypothesis tests. If an « level test of Ho: 6 = 6y vs. Hy: 6 # 65 is given by

1 if X € A°(6,),
oX) = { 0 it X € A(6),
for some acceptance region A(6p), then this defines the 1 — o confidence set Cy,(X), given
by
0 € Cy(X) <= X € A(9).

It is straightforward to establish that S'(X) is relevant for C,(X) if and only if
(2.1) Epo{(p(X) — )S"(X)} 2 € By, |S'(X))]

for some € > 0. Moreover, —S5'(X) is a negative biased betting procedure for C, if
S'(X) > 0 satisfies (2.1).
Since inversion of UMPU tests gives UM AU intervals, we equivalently work with either

the interval or testing formulation.

2.1 UMPU Tests

Given an observation z of a random variable X whose distribution belongs to a one-
parameter family, with parameter 8, it is known (see Lehmann (1986, Chap. 4)) that there
does not exist an UMP test for the hypothesis Hy: 6 = 6y vs. Hy: 6 # 6,. However,
there exists an UMPU test, i.e. a test (g, such that

Eg,(po,(X)) =a and Eg(ps(X)) > a forevery 0+ 6

(given a level 0 < o < 1). This test is given by

Theorem 2.1. (Lehmann, Chap. 4, Section 2). A UMPU test for the hypothesis Hy: 6 =

6o vs. Hi: 0 # 6y, for a given level «a is

1 if £ < C1(8p) or z > Cs(6y),
wo,(x) = < 7i(bo) if z = Ci(o), 1=1,2,
0 if C1(60) < o < Ca(6y),
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where the Ci’s and v;’s (i = 1,2) are determined by the constraints

Eoy(po,(z)) =a  and  Ep(Xpe,(2)) = a Eg(X).

For the binomial and Poisson distributions, we then have the following consequence,

using randomization:

Corollary 2.1.
(i) If X ~ binomial (n, p), a UMPU test for the hypothesis Ho: p = pg vs. H1: p # po

satisfies
1 fz+v<Ki(py) orz+v> Ko(po)

Ppo(T +v) =
0 ifz+ve[Ki(po), Ka(po)]

where v is a realization of V ~ U(0,1) and K1(po), K2(po) are uniquely determined by
(2.2) Epo(pp (X +V)) =« and Epo(zpp,(X +V)) = a npo

(ii) If X ~ Poisson (1), a UMPU test for the hypothesis Ho: A = Ao vs. Hi: A # Ao
satisfies
1 fz4+v< KI(AO) orrz—+v> I{Q(}\O)
P o (:17 + ’U) =

0 otherwise

where v is a realization of V' ~ U(0,1) and K1()\o), K2(X\o) are uniquely determined by
(2.3) Exy(proX+V)) =« and Ex,(Xpx,(X +V)) =a A.
Furthermore, we deduce the following from Lehmann (1986, Lemma 1 — Chap. 5, §5).

Proposition 2.1. When the randomized tests ¢ are defined as in Corollary 2.1, the

functions K;(z = 1,2) are strictly increasing.

For the binomial and Poisson distributions, we will now establish that there ex-
ist negatively-biased semirelevant betting procedures against the UMPU tests defined in
Corollary 2.2.



2.2 The binomial case

The confidence intervals for p deduced from Corollary 2.1 (i) have been tabulated
in Blyth and Hutchinson (1960). The authors have, in particular, established that there
exist unique n;, 7vi(p) such that K;(p) = n; + vi(p), with n; an integer and v;(p) € [0,1)

(2 = 1,2). These numbers are solutions of

_ (r2—rp){Pp(m1 <X <no—1)—a}—n1 (1=p) P(X=n1)+ns(1—p) Pp(X=n,)
n= (n2—n1) Pp(X=n,)

(2.4)
_ (mi—np){Pp(n1<X<ny—1)—a}—n; (1—p) Pp(X=n1)+n2(1—p) Pp(X=n,)
2= (n2—n1)Pp(X=n2)

Before giving the betting procedure against this UMPU test, we need to establish
some basic results about the behavior of K; and K3, when p goes towards the extremities,

0 and 1.

Lemma 2.1. For the UMPU binomial test, we have
lim Ki(p) =a and = lim K2(p) =2 — «
p—0 p—0

and

liniKl(p)zn—l—l—a and lirriKg(p)zn—l—l—a.
p— p—

Proof. We will only give the proof for p — 0, the result for p — 1 following by symmetry.
As p — 0, n1(p) — 0 and thus, for small enough p, the equations (2.2) can be written

(28) Ki(@Ppy(X =0)+ Y Pp(X =14)+(na(p) +1 - K2(p))Pp(X = na(p)) =
n2(p)+1

and

(26)  na(p)(na(p) + 1 — Ka(p))Pp(X =na(p)) + D, i Pp(X =4)=a np.
na(p)+1

The fact that nq(p) goes to 0 as p goes to 0 follows from the first equation: otherwise, the
left term would go to 0 while the right one, a, would remain constant, a contradiction.

The limit of (2.5), as p goes to 0, is
(2.7) K1(0) + (n2(0) + 1 — K3(0)) gi_{% Py(X =ny(p)) = a.
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We will show that n(0) = 1, from which it follows that lin%) Ki(p) = a.
p—)

Consider two cases. First, if no(0) = 0, we obtain from (2.7) that

Therefore, since K3 is continuous, there exists p* such that na(p) = 0 for p < p*. For these

p < p*, (2.6) implies

n

Z iPp(z =1) = a np,

=1

n

but > ¢ Py(z =1) = np. Therefore we have a contradiction.
i=1
Now consider ny(0) > 2. Equation (2.6) implies

ma(p)ma(s) + 1= Kol )00 - pr
+ i i(?)z)i‘l(l —p)"~* = an.

i=na(p)+1

Again, this is impossible as the left side goes to 0 as p goes to 0. Thus (2.7) implies that
K;(0) = o and we have from (2.6) that

(2 - Ka(p)) n(1—p)" ' + Zz f@ = an.

=2

The limit of the equality, as p goes to 0, gives K3(0) =2 — a. O
We are now able to show the main result of this section.

Theorem 2.2. Let s be the indicator function of [1,n]°, i.e.

0 iftelln]
s(t) = {

1 otherwise.
Then
Epllpp(X +V)—a)s(X +V)] >0, Vpe]0,1],

where ¢, is defined as in Corollary 2.2 (i) and V ~ (0, 1).

This result means that the UMPU test ¢, rejects the null hypothesis too often when

X is equal to 0 or n. From the discussion at the beginning of the section, it then follows
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that the procedure that bets against coverage if X = 0 is a negatively biased betting
procedure against the UMAU interval.

Proof. As ¢, is also an indicator function, note first that we have

(2.8) Epl(pp(X +V) —a)s(X + V)]
= Pp((X +v) € [Ki(p), K2(p)]U[1,n]) — a Pp(X + V € [1,n]).

Now consider four exhaustive cases, in which we show that (2.8) is always positive

(i) 1 £ K1(p) < Ka(p) < n: In this case, (2.8) becomes

(1—a)Py(X +V &[1,n]) > 0.

(i1) Ki(p) < 1< Ky(p) < n: In this case, (2.8) is

Byl(pp(X + V) — a)s(X + V)] = Py(X +V ¢ [Kx(p),n]) — & Pp(X + V ¢ [1,n])
= K1(p)Py(X = 0) + Po(X = n) — a(P,(X = 0)
+ Py(X =n))
= (Ki(p) — a)Py(X = 0) + (1 — @) Pp(X = n) >0,
as Ky is an increasing function and lim K3 (p) = o

(i) 1 < Ki(p) <n < K(p): This case follows from case (ii) by symmetry, as

Byl(pp(X +V)~a)s(X+V)] = (1-a)Pp(X = 0)+(n+1—a—Ks(p)Pp(X = 1) > 0.

(iv) Ki(p) <1< n < Kz(p): When this case occurs, (2.8) is
Ep((pp(X +V) —a)s(X +V)) = (Ki(p) — @) Pp(X = 0) + (n + 1 — a — Kz(p))
Py(X =n)>0.
O
This betting procedure is only semirelevant, because the expectation E,[(o(X + V) —

a)s(X + V)] goes to 0 and p goes to 0 or 1. However, due to Theorem 3.1 of the next

section, we know there exists relevant betting procedures. It is easy to construct bets that
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give increased expected gain over the bet in Theorem 2.2. Consider, for example, betting

procedures associated with the functions

a iftdg][l,n],
(2.9) 3q() =

—~1 ifte[l,n]

which bet against the test when X is equal to 0 or n and for it otherwise. We have then

the following result.

Proposition 2.2. For every a > 0, for every p €]0, 1],
Eyl(0p(X + V) = a)sa(X + V)] > 0.

Furthermore, this expectation is an increasing function of a.

This property is illustrated by the graph in Figure 1, where the expectation
Epl(pp(X + V) — a)s(X + V)] has been computed for s introduced in Theorem 2.2 and
sqe(a=1,2,3).

Proof. The techniques being the same than in Theorem 2.2, we have skipped the inter-

mediate computations. We have

Ep((pp(X +Y) —a)s(X +Y)) =

((a+1)Py(X =0 or n)(1 —a) if 1 < Ki(p) < Ky(p) < n,

) (a+ D{(K1(p) —a)Pp(X =0)+ (1 — a)Pp(X = n)} if K1(p) <1< Ka(p) <n,

(a+ D {(1—a)Pp(X =0)+(n+1—a—K(p))Pp(X =n)} if 1 < Ki(p) < n < Ka(p),
(a4 1) {(K1(p) ~ a)Pp(X =0) + (n + 1 — a — K3(p))Pp(X = n)} otherwise,

which gives us the desired result. O

Note that these betting procedures are still semirelevant. This problem is due to
the fact that Pp(X = 0) goes to 1 as p goes to 0. Therefore, in order to get relevant
betting procedures, one should use more complex functions s which could compensate in

the extremes.
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2.3. The Poisson case.

In the same way as for the binomial distribution, we will exhibit a negatively-biased
semirelevant betting procedure for the Poisson distribution. Blyth and Hutchinson (1961)
have also tabulated confidence intervals for A, deduced from Corollary 2.1 (ii); here, too,
there exist unique n;(A),vi(A) such that K;(A) = ni(A) + 7:(A) and the functions K; are
also continuous.

The analog of Lemma 2.1 in this case is
Lemma 2.2. We have

)1‘11)1%) Ki(A) =« and )l\li)l}] Ky(A)=2—a.

The second part of Lemma 2.1 is of no interest here. If A goes to infinity, the Poisson
distribution can be approximated by a normal distribution and the reason for randomiza-
tion disappears. The normal approximation is also valid, for an arbitrary A, as = goes to
infinity (cf. Casella and Robert (1988)). However, we can still propose betting procedures

which take action for large values of X (see Proposition 2.3).

Proof. For the Poisson distribution,

z

A
PA(X::x)::e_)‘-m—' z=0,1,2,...,

we have the same property as for the binomial distribution, that Py(X = z) = A*Ax(z),
with Ax(z) # 0. This property being the basis of the proof of Lemma 2.1, we can apply

the same arguments here. O

We will now establish the analog of Theorem 2.2; as before, the simplest betting
procedure is associated with the extreme value. When X = 0, it is possible to bet against

the test because the conditional level of rejection is more than a.

Theorem 2.3. Let s be the indicator function of [0, 1], i.e.

1 ifte]o,1),
s(t) = {

0 otherwise.
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Then
E)(epa(X +V)—a)s(X +V)] >0, VA>0,

where V ~ 2(0,1) and ¢, is defined as in Corollary 2.1 (ii).
Proof. We can write the above expression in the form
(2.10) PyA(X +V ¢ (K1(A),K2(A) U [1,400)) —a PA(X +V € [0,1)).
Now consider two cases, in which we show that (2.10) is positive.
(i) K1(A) > 1: Expression (2.10) is then

P)\(X-I-VE[O,I])—O[ P,\(X+V€[0,1])>O

(ii) K1(A) <1: As K3(A) > 1 for every A (see Lemma 2.2), expression 2.10 is

PA(X+V <EK(\)—aPA(X+Ve01))
= K1(A)PA(X =0) — a Py(X =0)
= (K1(\) — &)Px(X = 0) > 0,

because of Lemma 2.2.

Once again, the extremum of the possible values is a valuable candidate to build up

the betting set; the UMPU test o) rejects more than @ when X = 0. In fact, it seems

possible to go beyond 1, i.e. to take s as the indicator function of the interval [0,1+¢€] if

€ is small enough (K;(\) — a(1l + €\) must remain positive as A goes to 0). But, when

n = 10, a = 0.05, numerical study shows that ¢ = 0.01 is too large.

As for the binomial distribution, we have also considered betting procedures associated

with the functions

a ifte]|0,1],
(2.11) sq(t) =

—1 otherwise.

The analog of Proposition 2.2 is then
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Proposition 2.3. For every a > 0, for any A > 0,
E,\[((,D)\(.X + V) — Ot)Sa(X + V)] > 0.
Furthermore, this expectation is an increasing function of a.

This result is illustrated by the graph in Figure 2 where we represent the expectations
Ex(pa(X 4+ V) —a)s(X + V)] for s defined as in Theorem 2.3 and s, of (2.11) for a equal
to 1 and 2.

Proof. As previously, it is easy to show that

(¢ +1)(1 — a)Py(X =0) if 1< Ki(),
Ex[(eaA(X +V) —a)sa(X + V)] =
| (a + 1)KL (N) — a)Pa(X = 0) if Ki()) < 1,

which is sufficient to establish the result. O

Note that all these betting procedures are semirelevant. As the parameter space is not
compact, we are not sure whether there exist relevant betting procedures for the Poisson

distribution. The case of a compact parameter space will be discussed in the next section.
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3. Necessary and sufficient condition of existence of relevant betting proce-
dures.

For point estimation, it is well known that admissible estimators are (proper) Bayes es-
timators or limits of such estimators in many cases (see, e.g., Brown (1986)). For confidence
intervals, when the parameter space is finite, Pierce (1973) establishes that a confidence
region admits a relevant betting procedure if and only if it is not essentially é-level Bayes
(see definition below). We generalize this result to the case where the parameter space
is compact and where the measure induced by the observed random variable is a contin-
uous function of the parameters. It is, in particular, the case when the distribution is
discrete with compact parameter space (binomial, geometric, hypergeometric, logarithmic
distributions, ...).

Let us first recall the notion of é-level Bayes confidence procedure. Let X be a random
variable on X with density fy w.r.t. a measure A, where 8 € Q. If C(z) is a confidence

region, we denote C(z,8) the associated indicator function, i.e.

1 if 6 e C(x),
C(z,0) = {

0 otherwise.

For 0 < § < 1, the procedure C is é-level Bayes for a prior distribution 7 on Q if
(3.1) E™C)[C(2,0)] =6 for every z € X,

where 7(6|z) is the posterior distribution of §; C will be said essentially §-level Bayes if
(3.1) holds for almost () all z € X.
The proof of the main result relies upon a separation theorem in topological spaces

(see, e.g., Parthasarthy (1967, Theorem 1.6)).

Lemma 3.1. If X is a metric space, A and B two disjoint non-empty closed convex sets

of X, there exist v € R and A € X'*, the topological dual of X, such that

Az <y< Ay, foreveryze A, ye€ B.

From this proposition, we have the following theorem
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Theorem 3.1. Let X be a random variable on X with distribution Py such that 8 € ,
compact, and the measure induced by Py is a continuous function of . Then, for any
confidence region C(X), C(X) admits a relevant betting procedure if and only if C' is not
essentially §-level Bayes for any 6§ € ]0,1].

Proof. Let fs be the density of X with respect to a measure A. First suppose that C' is

essentially §-level Bayes for the prior distribution 7, i.e. that
/(5 — C(z,0))fo(z)dn(8) =0, for almost (A) all z.
Q

Therefore, for every s € Loo(X, B, A),
[ ][ sto)6 - cooso@)re)| anto)

=/ s(:v)/(&—C(:r,&))fg(m)dw(e)d)\(m)
X Q
=0,
by application of Fubini’s theorem (as {2 is compact). This implies that there exists no
relevant betting procedure against C.

Suppose now that C is not essentially é-level Bayes. Therefore, for every prior distri-

bution 7 on , there exists a set Ny C X with A\(N) > 0 and

/Q (6— C(z,8))fo(z)dn(8) £0 for @ € Ny,

If A is the collection of Borel sets associated with the topology induced by the metric on
Q and M(Q) is the space of probability measures on (2, 4), M(Q) is a compact space
for the weak topology (see Parthasarathy (1967, Theorem 6.4)), as (2 is compact. Let us
define the function 1, from M(Q) into Ly (X, B, ) by

$(m)(z) = / (6 — C(x,8)) folz)dn(6)

for every £ € X and every 7 € M(Q). If C is not essentially Bayes, ¥(7) is not identically
null, for every 7 € M().

We will now establish that the closure of Y(M(K)) does not contain the null func-
tion. By application of Lemma 3.1, we know then that there exists s € (Li(&X,B,A))* =
Loo(X,B,A) such that

[ senm@ae = [ o@ [ 60 omaneie) >
X X Q -
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for every w € M(2). This implies, by Fubini’s theorem and by considering the Dirac priors
on 2, that, for every 8§ € Q,

/X 5(2)(5 — C(z,6)) fo(z)dA(z) > 0,

i.e. that s is a relevant betting procedure for C.

We now establish the intermediary result. Suppose there exists a sequence (7). in
M(R2) such that (3(7y))n converges in L1 (X, B, A) to 0, the null function. Then, as M(Q)
is compact, there exists 7 € M(R2), and a subsequence (7, )r converging, in the weak

sense, towards w. Let A; be the subset of X defined by

(e € 2; [ (6= Cla,0)fole)dn(6) 2 0}.

For every € > 0, there exists kg such that, for k > ko,

()l = /X (e ) (@) AN (@) < e.

This implies, for &k > ko,

| /A (e ) ()N < /A (s )(2)|dA(@) < €,

or, by Fubini’s theorem,

[ ][] 6-clempene)] o<
We have assumed that the function
m(®) = [ (6 Cla, ) fo(2)iN)
Ay
= 5P9(A1) — Pe(Al N Ce)

is a continuous function of 6 (where C(z, 8) is the indicator function of Cy, i.e. z € Cy <
8 € C(x)).

Therefore, by definition of the weak topology, the sequence ( Jo m(0)dmy, (6)) , 1s con-
verging towards [, m(8)dm(6). There exists then k; such that, for k > k1,

I/Qm(é?)dﬂnk(G)——/S;m(G)dW(GN < e
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Thus, for k > max(ko, k1),
I/ m(6)dr(6)] < 2e
Q
or

I/A1 /9(5 — C(z,0)) fo(z)dm(6)dA(z)] < 2¢,

by Fubini’s theorem. Due to the definition of Ay, this implies
/9(5 — C(z,0))fo(z)dn(8) =0, for every z € A;.
The same technique, applied to A, = Af, leads to
/{2'(5 — C(z, Hj)fo(m)dr(e) =0 foreveryz € X.
We have then got a contradiction; 0 does not belong to P(M(Q)). O

A randomized procedure, since it violates the likelihood principle, cannot be essentially
8 level Bayes and thus, if the parameter space is compact, a relevant betting procedure
exists.

That Theorem 3.1 can be extended to a general parameter space 2 is not clear. Pierce
(1973) proposed an alternative definition of a Bayes set to be used in a general case, but
the class of confidence procedures satisfying the definition is actually very large. The
technical problems in general parameter spaces become quite impressive, making a result
like Theorem 3.1 extremely difficult to establish. It is probably the case, however, that a

confidence procedure must be a limit of Bayes sets to be free to relevant betting.
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Figure 1: FExpected Gain E,[(¢p(X + V) — a)s(X + V)] for s in Theorem 2.2 and (2.9) with @ = 1,2,3. These curves are
increasing in a.
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Figure 2: Expected Gain Ej[(oa(X + V) — a)s(X)] for s in Theorem 2.3 and (2.11). Lowest curve is for s in Theorem 2.3, and
the other two are for s in (2.11) with a = 1,2. These curves are increasing in a. The horizontal axis is A1=A .

1.0



