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1. Introduction

Construction of optimal confidence intervals for discrete distributions is a difficult
problem to handle analytically, and standard techniques tend to break down. The proce-
dure described here resorts to numerical rather than analytical optimization, and produces
exact confidence intervals that are as small as possible yet still maintain the nominal con-

fidence level.

The earliest derivation of Poisson confidence limits is given by Garwood (1936), who
used a technique similar to that of Clopper and Pearson (1934), and derived intervals
based on the chi-squared distribution. Later work was done by Crow and Gardner (1959),
using an acceptance region construction. Good normal approximations are given by Peizer
and Pratt (1968) and Pratt (1968). Randomized Poisson intervals are treated by Stevens
(1957) and Blyth and Hutchinson (1961). These admit a simple mathematical treatment
and exact analytical solutions. The practical consequences of such a practice, however, are

quite disturbing: one must add random noise to the data to produce a confidence interval.

In this paper, non-randomized Poisson confidence limits are constructed by a process
similar to that used by Casella (1986) for the binomial distribution. This process, called
refinement, is a numerical procedure to be applied to an existing 1—«a confidence procedure.
The result is a new confidence procedure whose endpoints have been shifted to produce
the smallest possible intervals. In fact, the refined confidence procedure is a member of
a complete class of confidence procedures, i.e., the class of all 1 — a procedures that are

admissible when length is used as the loss function.

In Section 2, we describe a number of preliminary facts, including an inadmissibility
result about procedures with interval endpoints that are not strictly increasing. Section 3
contains a description of the refinement process along with some properties of the refined
intervals. Section 4 has some comments, in particular a discussion of the applicability of

refinement to other discrete distributions.



2. Preliminaries

Let X be a Poisson random variable with mean 6, that is,
P(X = z|f) = e %%/z!, z=0,1,... (2.1)

A confidence procedure C is an infinite collection of intervals C = {[{;,u;), £ =0,1,...}.
The coverage probability of C is the probability that the random interval [{x,ux) covers

0, and is given by
o0
P(0C[0) = Y _ I, u,) (0)P(X = z|6). (2.2)
=0

Note. We consider right half-open (instead of closed) confidence intervals in order to
avoid technical difficulties related to coincidental endpoints. (If the upper endpoint of a
particular interval is identical to the lower endpoint of another interval, such a point is
called coincidental. This is explained more fully in Section 3.2.) Evaluation of coverage
probabilities, when @ is a coincidental endpoint, becomes computationally clumsy because
one must examine 8 &+ ¢, for small €, to locate minima. Thus, for computational purposes,

we suppose that the intervals are of the form [£,u). For example, if £, < ug < £y+1, then

m

P(0sCllm < 0 <ug) = »_ e 0%/
z=k
m
POcCl0 =ux) = > e %0%/zl.
z=k+1

Note also that we cannot consider left half-open intervals, as § = 0 would not be covered
at all. We stress that this modification has no effect on any theoretical properties of the
intervals, with respect to length or coverage probabilities; it merely allows the minima to

be attained at the endpoints.

It is customary to guarantee a minimum coverage probability, or confidence coefficient,

for a procedure C. To say that C is a 1 — o confidence procedure means
ir;fP(ﬂsClﬂ) >1—a. (2.3)

One of the earliest Poisson confidence procedures is due to Garwood (1936), who

actually derived a fiducial interval. Garwood’s work is similar in spirit to that of Clopper
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and Pearson (1934), and gives the 1 — & confidence procedure

1 1
G 2 G 2
£ = g X2z,1-a/2> Yz = 5X2(2+1),0/2) (2.4)

where xﬁ’a denotes the upper a cutoff point of a chi—squared distribution with v degrees

of freedom, and where we define x3 , = 0.

The Garwood intervals are, in general, too wide, yielding coverage probabilities much
greater than 1 — a. Strictly speaking, however, they are exact 1 — o intervals in that
infy P(0e[£$,u$}|0) = 1 — o (Casella and McCulloch, 1984). Figure 1 shows a plot of the
coverage probabilities of the Garwood intervals for 1 — o = .9, from which it can be seen

that the coverage probabilities are quite large.

A relatively easy—to-compute procedure, and a respectable performer, can be ob-
tained from a normal approximation with continuity correction. Using the fact that
EX = Var(X) = 0, we define the lower and upper bounds by

N — min{6 : 0 L., 9 2
Y= min{d: (20— 2)"/0< 2}
(2.5)
ul =max{f: (z—0+ l)2/0 <22}
z — . 2 a/2 3
where z, denotes the upper o cutoff point of the standard normal distribution. Numerical
studies suggest that these intervals offer a small length improvement over the Garwood
intervals, and do maintain 1—« coverage (the normal approximation without the continuity

correction does not maintain 1 — « coverage). Figure 2 shows the coverage probabilities

for the intervals defined by (2.5) for 1 — a = .9.

It is relatively easy to show that, for any ordered Poisson confidence procedure (i.e. one
that satisfies £; < £, and u, < uy if z < y; we will see later why we can restrict ourselves to
these intervals), the minimum coverage probabilities are attained at the interval endpoints.
For example, consider what happens to the coverage probability for # in the range £,, <
6 < uz,, where o > z1 > 1 and there are no other endpoints between £, and u;,. From

(2.1) and (2.2), the coverage probability over this interval is given by

P(8eClO) = > e7%%/x!, Ly, <0< ug,, (2.6)

=2



and after some algebra, it can be shown that

d e fgz1—1 5!
= p(o = — g2 =t e < o .
— P(8eCl9) ( — ><(z1_1)! 0 ) lo, <0 <usy.  (27)

Examination of (2.7) shows that as § moves from £, to u,, the derivative either has
no sign change, or changes from positive to negative. In either case, the minimum of the
coverage probability over the interval (¢;,,uz,) is attained at an endpoint. There are other
possibilities to consider with respect to the ranges of 8, but they all work out in a similar

manner.

Therefore, if one has a confidence procedure whose coverage probabilities do not equal
1 — o at the interval endpoints, it should be possible to improve on such an interval.
Examination of Figures 1 and 2 shows that this is the case for the Garwood and normal
intervals, so we expect to be able to improve upon them. In fact, from Figures 1 and 2 it
is easy to see that both the Garwood and approximate normal intervals are inadmissible
— one can obtain a better procedure by merely shortening any interval whose coverage
probabilities do not equal 1 — & when # equals an interval endpoint. This will produce a

new procedure that maintains 1 — e confidence with uniformly shorter intervals.

Crow and Gardner (1959) indirectly exploited this fact. They didn’t work with confi-
dence intervals directly, but instead they constructed 1— o confidence intervals by inverting
families of a-level tests with shortest acceptance regions. Figure 3 shows coverage proba-
bilities of the Crow—Gardner intervals for 1 — a = .9, and it can be seen that their intervals

attain 1 — a coverage probability at virtually all interval endpoints.

While the Crow—Gardner intervals give a length improvement over the other two in-
tervals described here, they suffer from a somewhat arbitrary condition imposed to achieve
uniqueness. For many parameter values, it is the case that the “shortest” acceptance re-
gion is not unique (here “shortest” refers to the fewest number of = values required in the
acceptance region). To achieve uniqueness, Crow and Gardner choose the acceptance re-
gion to yield the smallest possible upper confidence bound, a strategy that they claim leads
to a certain minimal length property (minimizing interval lengths for smaller values of z

at the expense of larger values). However, their intervals have a counterintuitive property:
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the interval endpoints are not strictly increasing in z. For example, for 1 — a« = .9 and
z = 17,8,9,10,11,12,13, they give lower endpoints of 3.589, 4.532, 4.532, 5.976, 5.976,
7.512, 7.512, respectively. In fact, this property is not only counterintuitive but also

nonoptimal.

Firstly, we make the assumption that any confidence procedure under consideration
satisfies

Vz, ze[ly, ug. (2.8)

This condition can be interpreted, in general, as requiring that the MLE of 6 (which is
z itself in the Poisson case) is in the interval constructed. While we do not prove length
non-optimality if (2.8) is violated, we suspect this is so. More importantly, all procedures
we have examined satisfy (2.8), and making this assumption greatly reduces technical

difficulties.

We would, of course, like to compare two 1 — a confidence procedures by comparing
their interval lengths directly; however, it is not clear if dominance results can be estab-
lished. But we can compare procedures by comparing sums of lengths, a practice used by
Crow and Gardner (1959). Although we cannot compare two confidence procedures accord-
ing to the total sum of their lengths, because such a sum is infinite, we can compare them in
the following sense. We say that a 1 — o confidence procedure C’/ = {[¢.,u)), z=10,1,...}

dominates another 1 — o confidence procedure C = {[£;,u;), z = 0,1,...} if there exists

an integer N, such that, for all N > N,, either

N N
i Z(u; -2 < Z(uz —£;)
= z=0
or
N N
ii. Z(u; — L) = Z:(u,gc —¢;) and
z=0 z=0

Py(0eC") > Py(0eC), with strict inequality for some 6.
With this definition, we have the following results about the ordering of interval endpoints.

Proposition 2.1 If, for some integer k, the confidence procedure C has £y > £iy1, or

Uk > Uk+1, then C can be dominated.



Proof. Assume that £ > £x41 (the proof is similar if ux > ugy1). Define a new confidence
procedure C’ by exchanging £, and £y, that is, C’ is exactly the same as C with the
exception that ¢}, = £x4+, and by = L. Note that £+ 1 < ug41 because upyy; > k+1>
k> 4.
It is straightforward to calculate

—00k 0
E (1- ).

k! kE+1
For 8 < ¢, we have 8 < k (since ke[£k, ux] by assumption). Hence, Py (0eC")—Py(0cC) > 0

Po(oECI) - Pg(ﬂEC) = I[2k+1,ek)(0)

for all 8, with strict inequality if £x+3 < 8 < Ig. O

A confidence procedure can, thus, be immediately improved by fixing any endpoints
that are out of order. However, the above proposition does not apply to the case of the
Crow—Gardner intervals, the intervals that initiated this particular investigation. The

following proposition covers that case.

Proposition 2.2 If, for some integer k, the confidence procedure C has € = Li41, or

Uk = Uk+1, then C can be dominated.

Proof. We again will only consider the case of lower endpoints, upper endpoints being
handled in a similar fashion. Let r > 1 be such that £, = ... = £k, < Lryr41 and
assume that u,, is the smallest upper endpoint such that u,, > £;. Two cases exhaust the

possibilities.

Case I: lx = Llrir < um

In this case, we can produce a dominating procedure with uniformly shorter interval

lengths. The coverage probability at § = £ = £iy, is
k+r

P(0sCl0 =) = > P(X = z|f = &)
P
> ) P(X=zl0=0)+P(X =k+1/§ = &).

If it can be shown that the first term on the rhs is strictly greater than 1 — ¢, it will
immediately follow that there exists a § > 0 so that the confidence procedure having £ + 6

replacing £x41,..., £k+r is a 1 — a confidence interval with shorter interval length.
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If Kk = 0, {o = 0 and m = O; therefore, P(fcC|§ = 0) = 1 > 1 — a. Otherwise, at
0 = £, — e, we must have P(§eC|0 = £ —¢€) > 1—a, since C is a 1 — « confidence procedure

and the mimimum is attained at the endpoints. It then follows that

k—1 k—1
;np(x = z|0 =) = ;E%gnp(x —zlf=tlr—€)>1—a,

which implies that
K
Y PX=zlf=0)>1-a

Therefore, in both cases, there exists 6 > 0 such that moving £x+1,..., €kgr to £ + 6

produces a 1 — « confidence procedure with shorter interval length.
Case IT: u,, = £ = Lx+,. Here we consider two subcases.

Case Ila: £ ™m!/k! < 1.
k+r

First note that at § = u,, = £ = £k+,, the coverage probability is > e—"ez /!,
: z=m+1
and, as 6 T £, we have
k—1
lim Py(eC) = » e %42/l >1—q
012, ( ) z;n k/ = 3
since C is a 1 — a confidence procedure. Our new confidence procedure C’ has ul, =

w1 ==L, =L+ 6.
If £ < 0 < £ + &, the coverage probability of C’ is
k—1
D e[zt + e 005 kL,

r=m

and if 6 is small enough, we can keep Py(0cC’) > 1 — a. Furthermore, if » > 1, the length
is smaller and if r = 1 and e[lk, Lk+1 + 6), the coverage probability of C’ will be strictly

greater if
k k+1
Z e % /2! > Z e %0% /! (2.9)
z=m z=m-+1

For § small enough, (2.9) holds if £5~™m!/k! < 1, as £/(k +1) < 1.
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Case ITb: £5~™m!/k! > 1. In this case, we have £X/k! > ¢ /m!. So
~ahT Zo k k k

k—1 k i
1—a< Z e %z < Z et 0z 1,
z=m z=m+1
and we now consider a new confidence procedure C’ where £, ; = ... = £, = £;+6. For

6 small enough, C’ is also a 1 — « confidence procedure, but clearly has uniformly smaller
length.
O

Proposition 2.2 shows that the Crow—Gardner rule of choosing the smallest upper
bound from the non—unique acceptance regions results in an inadmissible procedure if
the sum of lengths criterion is used. This proposition can also be interpreted as saying
that a necessary condition for admissibility is that a confidence procedure have strictly
increasing interval endpoints. We also note that Propositions 2.1 and 2.2 ca.h be shown to
apply to any discrete distribution with the property that the local minima of the coverage

probability occur at the interval endpoints.

3. Refining Poisson Intervals
3.1 Difficulties.

Refinement is a method for systematically shortening a given 1 — o confidence proce-
dure until it can be shortened no more. Refinement actually results in a family of intervals

that constitute a complete class of non—randomized procedures.

In Casella (1986) a procedure for refining binomial confidence intervals was developed.
The procedure devéloped here extends the previous one, and must deal with two additional
difficulties. First, there is no natural invariance structure to take advantage of, as in the
binomial case, but this turns out not to be too great of a problem. We must merely
apply the refinement procedure to all endpoints, where in the binomial problem only lower

endpoints need to be refined.

The second problem is that the sample space for the Poisson distribution is infinite,
necessitating, in theory, the refinement of an infinite number of endpoints. In practice, we

sidestep this issue by appealing to the normal approximation with continuity correction for
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large X, as described in (2.5). This approximation is remarkably close to the refined inter-
vals for large values of X, which was also noted by Crow and Gardner (1959). Therefore,

we will only carry out the refinement procedure for a fixed number of endpoints.

3.2 Coincidental Endpoints.

The essence of the reﬁnement procedure is to decrease upper endpoints and increa.se.
lower endpoints until they can be moved no further. In certain cases, an upper endpoint
will be decreased until it hits a lower endpoint. When this happens, it may be the case
that the upper endpoint can be decreased beyond the lower endpoint and 1 — « confidence
can be maintained. If not, then the upper and lower endpoints become coincidental, i.e.,
they must have the same value. In Table 1, for 1 — a = .9, the endpoints ug and /g
are coincidental and the tabled value is given as up = £ = 2.79. However, this value is
not unique, and uo can take any value in the interval 2.79 + .36, as long as s takes the
same value. This phenomenon of coincidental endpoints corresponds to the fact that in
the two-sided testing problem there is sometimes more than one “shortest” acceptance
region (“shortest” in the sense of containing the fewest z values). Coincidental endpoints
appear in the Crow-Gardner tables, but are given unique values based on their rule of
always choosing the acceptance region that yields the smallest upper endpoint. However,
coincidental endpoints can occupy a range of values and 1 — a confidence can still be
maintained. Therefore, refining a 1 — a confidence procedure actually results in a family
of procedures, and an experimenter can choose the member of the family that best suits

his needs.

3.3 The Refinement Procedure.

Starting with a 1 — « confidence procedure C' = {[{;,u;), z = 0,1,...}, we create a

*

*), £ =0,1,...}. There are many ways to accomplish this,

refined procedure C* = {[£%,u
and if the original confidence procedure is very conservative, things tend to get somewhat
complicated because there will be many instances when upper endpoints get decreased
past lower endpoints. The following method is quite easy to implement, and seems to

hold confusion to a minimum. The strategy is simple: starting with the smallest upper
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endpoint, ug, decrease it as far as possible while maintaining 1 — « confidence (this will
probably entail decreasing it past some lower endpoints). Once ug is decreased as far as
possible, increase, as far as possible, all of the lower endpoints below uo. Now move to u;

and repeat this process, then to us, etc. A more formal statement is:

The Refinement Procedure: To create the refined 1—« confidence procedure C* = {[£%,u}),

z=0,1,...} from the 1 — a confidence procedure C = {[{;,u;), £ =0,1,...}.
0. Set k =0.
1. Set u = ug and find m such that £,, < u < £41.
2. Check ifu = £, maintaihs 1 — o confidence.
i. Calculate T'(¢,,) = Z:Lk+1 e %m (2 /z!, the coverage probability, at § = £, of
the confidence procedure with u = £,,.
ii. If T(¢m) > 1 — a, set u = £, and go to 3.
iii. If T(¢n) < 1 — a, solve for u*, £y, < u* < ug, T(u*) =1— a. Set u} = v* and
go to 4.
3. Check if v < ¢,, maintains 1 — o confidence.
i. Calculate U(fm) = Yompr, s e~ o L2, /2l .

ii. If U(¢y) > 1 — « then v can be decreased past £,,. Find 0 < § < £, — £yp—1 such
that U(4y, —6) > 1 — o Set ug = £, — 6 and go to 1.

?

ili. fU(£yn) < 1—o then the endpoints u and £, are coincidental. Set uj = £, = £,

and go to 4.
4. Next, refine all lower endpoints between uj and u;_; (u—_1 = 0).
i. Find n such that £,,_pn—1 <uj_; < fpm_n.
ii. For § =0,1,...,n, solve for £ such that E;nz_,g_l e % /z! = 1—a. Set g, ;=L
iii. Increment k and goto 1 if k < K.

5. After steps 1-4 have been run for £k = 0,1,..., K, there will be a number of coin-

cidental endpoints. As mentioned before, there is an allowable range of values for
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each pair of coincidental endpoints. These ranges are now calculated. For each pair

of coincidental endpoints, say u;,, = £;, = t, the upper and lower ends of the range
must be found. This is most easily done by calculating two probabilities, one which
considers the interval open at £,/, and closed at u,, and the other which considers the

opposite situation. Calculate

n'—1
Pi(r) = Z e r¥/z!
r=n
nl
Py(r) = Z e "r®/x!
z=n+1

m(r) = min{Py(r), Pa(r)}.

The allowable range for the coincidental endpoints is given by [r.,r*] where
r* =max{r: m(r) >1— o}
r. = min{r: m(r) > 1— a}.

Formally, one has to choose a value of K, the value at which to stop the algorithm. For
large values of X, numerical studies indicate that the quadratic normal approximate confi-
dence interval is quite close to the refined procedure with centered coincidental endpoints.
Thus, one really only needs to refine intervals for small values of X. On the other hand,
since computing is relatively cheap and quick, one can always find the refined interval for

any observed X using the procedure in an interactive way.

Table 1 gives refined Poisson confidence intervals for & = .05, and z = 0,1,...,49.
In each case of coincidental endpoints, the value tabled is the midpoint of the range.
In addition, Figure 4 is a plot of the coverage probabilities of a refined procedure for
1 — a = .9. The procedure plotted is the one for which the coincidental endpoints are
set to the midpoint of their range, and results in a procedure with fairly regular coverage

probabilities.

3.4 Properties of Refined Intervals.

Because of the occurrence of coincidental endpoints, the refinement procedure actu-

ally produces a family of refined intervals. If we denote this family by R,, we see that
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the confidence procedures in R, all agree at non—coincidental endpoints, but may have

coincidental endpoints anywhere in the allowable range.

It is easy to see that the family R, is a complete class, i.e., it contains all the admissible
procedures. If C € Ry, then it must be the case that C has at least one non—coincidental
endpoint different from those procedures in R,. Therefore, if the confidence procedure C is
refined, there will be a non—trivial decrease in the length of at least one interval and hence
the procedure C is inadmissible. The question of whether R, is a minimal complete class
(contains only admissible procedures) is still open. In general, the procedures in R, are
not comparable, but there is a possibility that some procedures in R, are not admissible.
Even if this is the case, however, the method of construction of the refined intervals make

it seem unlikely that any major improvement can easily be made.

The observation that procedures in R, are not comparable can be exploited by an
experimenter to choose an optimal procedure from R,. For example, if the experimenter
had some prior knowledge that § was near a certain value, he could set the coincidental
endpoints to minimize interval size near the prior value. In the absence of any such
information, choosing the coincidental endpoints at the middle of their range will produce
a reasonable interval, one whose left and right-hand tail probabilities are approximately

equal.

As mentioned before, Crow and Gardner (1959) regard the sum of the interval lengths
as a criterion to consider, and assert that their intervals minimize the lengths for small z
values at the expense of larger = values. The procedures in R, are essentially equivalent on
this criterion, since coincidental endpoints will cancel out of the sum of the interval lengths.
Moreover, any confidence procedure that attains a minimum on this sum—of-length criteria

must be in R,,.

4. Comments

The refinement procedure outlined in Section 3.3, although somewhat computer-
intensive, describes a method of constructing a class of optimal confidence procedures.

The method, with minor modification, can be adapted to any discrete distribution. For
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example, consider the negative binomial distribution

r+z—1

P(X:a:|0)=< o

)0’(1—0)92 >:1:=0,1,.... (4.1)

where r is known and 8 is unknown. The mean of this distribution is u = r(1 — 8) /6, and

one can construct conservative 1 — a confidence intervals given by

TFy5,5(r+1),1-0/2 < 1 < (2 + 1) Fa(et1),2(r+1),0/25

where Fy, o denotes the upper a cutoff from a F distribution with m and n degrees
of freedom, and we define Fy 5 o = 0. The method of construction is similar to that of
Clopper and Pearson or Garwood, and exploits the relationship between the binomial and
beta distributions. Recall the relationship (which can be established by integrating the
rhs by parts),

P(W >wl|d) = P(T <6),

where W is binomial (n,0) and T is beta (w,n — w + 1). One then uses the negative

binomial-binomial relationship and the F-beta relationship to construct the intervals.

An easier method of construction, which seems to work reasonably well in practice, is
to use a normal approximation with continuity correction. Recall that if the distribution
of X is given by (4.1), then EX = u and VarX = p + %;ﬁ. Lower and upper bounds are
defined by

. 1 1
& =minfu: (z—p—3)/(n+ ) < 225}
(4.2)
N Lo 1, 2
u = max{u (2=t )7/ (u+ 247 < 22p2).
A plot of the coverage probabilities, for »r = 5 and 1 — e = .9, is given in Figure 5.

The conservative nature of the intervals is clearly evident, although the intervals do, in
fact, attain the 1 — o infimum. The refinement procedure was applied here, and coverage
probabilities for the resulting intervals are given in Figure 6. 1t is easy to see that a large

improvement is possible, especially for small values of z.
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As mentioned before; practical improvements are obtained from the refinement pro-
cedure only for small values of z. As £ — oo, the central limit theorem takes over and
even fairly crude normal approximations are close to optimal. Intervals for small z values,
however, are not well approximated, and that is the region where the refined intervals yield
their greatest improvement. Producing tables of refined intervals for many discrete distri-
butions would be quite unwieldy, since in many cases there are many parameters to vary
(e.g., negative binomial, hypergeometric). However, it is quite easy and fast to produce

the needed intervals from a computer program.
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True Mean

Figure 1: Coverage Probabilities for the Garwood Intervals, 1 —a = .9

True Mean

Figure 2: Coverage Probabilities for the approximate normal intervals
given in (2.5), 1 —a =.9.
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True Mean

Figure 3: Coverage probabilities for the Crow-Gardner intervals, 1 — o = .9

True Mean

Figure 4: Coverage probabilities of the refined intervals, 1 — o = .9.
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True Mean

Figure 5: Coverage probabilities of the normal approximation (4.2) for the
negative binomial distribution, 1 — a = .9, r = 5.

True Mean

Figure 6: Coverage probabilities of the refined negative binomial
intervals, 1 —a = .9, r = 5.
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