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ABSTRACT

This article discusses some of the major contributions of T. W. Anderson to the statis-
tical formulation and analysis of linear statistical relationship (LSR) models. A secondary
goal is to briefly introduce some LSR models, including errors-in-variables regression mod-
els, linear functional relationship models, linear structural relationship models and factor
analysis models, and to describe theoretical and methodological problems that arise in
analyzing such models.
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A large class of statistical models share the assumption that certain latent variables
are linearly related, and that these variables can only be observed subject to random errors
of measurement. In his 1982 Wald Lectures [106]*, T. W. Anderson called such models
linear statistical relationship models.

The most basic linear statistical relationship (LSR) model is the linear functional
relationship model. A collection of p-variate random vectors X7, Xa,..., X, obeys a linear
functional relationship model if the mean vectors ui,us,...,u, of these observations lie
in an r-dimensional hyperplane ¥ in p-dimensional space, r < p. One can regard the

components of the u;’s as being values of the latent variables, and the elements of
e; = Xi—ug

as being random errors of measurement. The random vectors e; are usually assumed to
be independent and identically distributed with mean vector O and covariance matrix Z.
The dimension r of the hyperplane ¥ containing the u;’s is called the rank of the model.
The fact that the vectors u; lie in a hyperplane of dimension r can be expressed
parametrically in several equivalent ways. For example, many of Anderson’s papers make

use of the implicit form:

(1) Au;=a, i=1,2,...,n,

*Numbers in square brackets refer to the bibliography of Anderson’s publications
included in The Collected Papers of T.W. Anderson: 1943-1985 (G.P.H. Styan, ed.), to
be published by John Wiley & Sons. An excerpt from this bibliography is given as an
appendix to the present article.



where A is a (p—r) X p matrix of rank p—r, and a is a (p— r)-dimensional column vector.

Alternatively, one can assume that
(2) u;=Af;+6, 1=1,2,...,n,

where A is a p X r matrix of rank . This is the familiar model of factor analysis. Finally,
p—r elements of u; can be expressed as a linear transformation of the remaining r elements;

that is,
(3) v; =Bw;+¢, 1t=1,2,...,n,

where B is a (p — r) X r matrix of slopes, and v;, w; are subvectors of u;. This is the
errors-in-variables linear regression model Wiciely studied in the statistical literature (see
Fuller, 1987.). Note that model (3) is a special case of model (2), in which certain of the
coordinates of A have specified values (0 or 1).

In each of the parametric forms (1), (2), (3) of the linear functional relationship model,
the vectors u; (or f; or w;) are unknown parameters of the model. Since these parameters
are not usually of primary interest, they are called sncidental parameters. The parameters
A and a, A and 6, B and ¢ which serve to identify the hyperplane ¥ are called structural
parameters, as is also the error covariance matrix ¥. When the rank r of the model is
unspecified, it also is regarded as a structural parameter. The structural parameters are
typically the primary focus of statistical inference.

Linear structural relationship models are related to linear functional relationship mod-
els in the same way that random factor (Model II) ANOVA models are related to fixed
factor (Model I) ANVOA. That is, the vectors u;, f;,w; in (1), (2), (3), respectively, are
now regarded as being randomly sampled from some common population (distribution).
The linear relationships (1), (2), or (3) consequently determine a parametric structure for
the covariance matrix of the observations X;. Psychometric factor analysis models are

usually of the linear structural relationship type.
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Both the implicit form (1) and the factor analysis form (2) of linear functional or
structural relationships models are not identifiable. For example, the mathematical form
of (1) is not changed by replacing A by AT and u; by T~ 'u; for any p-dimensional non-
singular matrix T'. Similarly, the transformations A — AM, f; — M~1f; do not change
the form of (2). The errors-in-variables linear regression model (3) appears identifiable in
this sense, but there is an implicit restriction (noted by Anderson and Sawa [72]) resulting
from specifying which elements of u; form the vector w;. Any identifying restrictions im-
posed to remove the parametric indeterminacies in (1) or (2), or to choose which elements
of u; appear in w; in (3), are not inherent in the model, but rather are imposed exter-
nally by the investigator. (In addition a structure must often be imposed upon the error
covariance matrix ¥ to prevent the linear relationships among the elements of u; from
being confounded with correlations among the elements of the measurement error vectors
e;.) Different contexts of application have generated different identifying restrictions, thus
making communcations among specialists in the applications of LSR models difficult and

obscuring the essential similarity of the models used.

FIn bivariate (p = 2) LSR models of rank r = 1, Anderson [69] suggests use of the angle
§ made by the hyperplane ¥ (here, a line) with one of the axes as a structural parameter
of the model. (The choice of the axis to be used is immaterial.) This angle is clearly an
intrinsic property of the model; generalizations of this suggestion to higher-dimensional
(p > 2,r > 1) LSR models are straightforward. When the error covariance matrix ¥
is spherical (¥ = ¢%I) and normality assumptions hold, Anderson [69] shows that the
exact distribution of the maximum likelihood estimator § of 8 can be obtained from the
distribution of # when § = 0. The distribution of the maximum likelihood estimator B of
the slope B in the errors-in-variables linear regression model (3) is then easily obtained
from that of 4, and confidence sets for both # and B can be constructed. (See also [72].)
Obtaining the exact distribution of B from that of 8 offers a considerable simplification

when compared to previous direct derivations of the distribution of B. However, these
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exact distributions do not have a simple closed form. This lack of mathematical simplicity
is common to the exact distributions of virtually all estimators proposed for the structural
parameters of LSR models. Consequently, evaluation and comparison of the properties
of such estimators require some type of distributional approximation or expansion, even
in the simple bivariate case studied in [69]. Anderson, with various collaborators, has
developed several types of distributional expansion for estimators in bivariate (p = 2)
linear functional and structural relationship models. See [66], [67], [69], [72], [73], [83],
[90], [97], [100], [101], [1L04] and [105]. The papers [69] and [90] provide useful summaries
of this topic.

In LSR models, ordinary least squares estimators of the structural parameters in any
of the forms (1), (2) or (3) of such models are biased (and also inconsistent). However,
the familiarity of the least squares estimator (and the existence of plentiful software for
computing it) leads many investigators to want to use this estimator. On the other hand,
theoretical considérations favor use of the maximum likelihood estimator. To settle the
question of which estimator to use, the usual approach would be to compare expected mean
square errors of these estimators. Unfortunately, the maximum likelihood estimators fail to
even have a well-defined mean, and have infinite mean squared error. Even so, large-sample
(n — o00) comparisons favor the MLE, but need not be relevant to finite-sample situations.
In [69], Anderson makes an interesting and important contribution to this question by
comparing the distributional concentrations of the least squares and maximum likelihood
estimators of the slope B in the functional linear errors-in-variables regression model (3)
when p = 2,r = 1, and the errors are normally distributed with covariance matrix & = ¢21.
Subject to the accuracy of the distributional expansions used for the least squares estimator

B and the maximum likelihood estimator B, it is shown that
P{|B-B|<z} < P{|B- B| <z}

for all z > 0, except when the magnitude of the slope B is small. This supports the
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intuitive belief (based also in part on practical experience) that the maximum likelihood

estimator is the superior estimator.

As already noted, in the bivariate case (p = 2,7 = 1) of LSR models the angle § made
by the line (hyperplane) ¥ with an axis is more intrinsically meaningful as a structural
parameter than the slope B in (3). In a joint paper [107] with C. Stein and A. Zaman,
Anderson shows that under the usual normality assumptions (and with & = o2I) the
maximum likelihood estimator § of 6 is the best equivariant (under rotation) estimator of
this parameter under a certain invariant loss function. From this result, it follows that ]
is admissible. This is the only exact decision-theoretic optimality result for estimation of

a structural parameter in LSR models obtained to date.

In linear functional relationship models, maximum likelihood estimators of the struc-
tural parameters do not necessarily exist (see [23], and also Solari, 1969; Willassen, 1979).
Even if they exist, these estimators need not be consistent. These difficulties arise be-
cause the number of incidental parameters (which must be accounted for in maximizing
the likelihood) increases proportionally to the sample size n. A variety of theoretical
approaches have been suggested for producing estimators in such contexts. Two such ap-
proaches were suggested by Anderson and Herman Rubin in [23]: (a) to maximize the
likelihood of a certain non-sufficient reduction of the data (the sample covariance matrix)
whose likelihood depends on the incidental parameters only through a finite-dimensional
vector function of these parameters, and (b) to use the maximum likelihood estimator of
the structural parameters in the corresponding linear structural relationship model. Pro-
posal (a) is complicated by the fact that the sample covariance matrix has a non-central
Wishart distribution (see [3], [4]), so that the likelihood does not possess a convenient
mathematical form. Proposal (b), which is one of the earliest examples of a paramet-
ric empirical Bayes approach to estimation, has strongly influenced my own approach to
constructing estimators in linear functional relationship models (see Gleser, 1985, for ex-

ample). Recent research (Gleser, 1983; Nussbaum, 1984; Bickel and Ritov, 1987) shows
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that, under normality assumptions, the structural-model maximum likelihood estimators
of the structural parameters of linear functional relationship models are best asymptotic
normal and asymptotically minimax. The estimators of Anderson and Rubin’s proposal

(a) have similar large-sample properties.

We have noted that even for LSR models of the form (3) identification of the structural
parameters requires knowledge of the error covariance matrix 3, or the specification of
a restricted structure for this matrix (e.g., that © = o02I). Alternatively, one can try
to estimate ¥. Two widely used approaches for providing estimators of ¥ are to use
replications (several X;’s with the same value of u;), or to use instrumental variables
(covariates Z; which are “correlated” with the latent vectors u;, but not with the error
vectors e;). Both approaches yield a classical multivariate linear regression model in which
a matrix A of slopes satisfies unknown linear constraints. Consequently, the columns X;
of the least squares estimators A of A obey a linear functional relationship model, and
the residual covariance matrix provides an independent consistent estimator of the error
covariance matrix ¥ of these X;’s. Statistical inference (maximum likelihood estimators,
likelihood ratio tests of hypotheses) for such a model under normality assumptions is
thoroughly treated by Anderson in [14]. Unfortunately, this important paper has often
been overlooked by researchers, with the consequence that its main results have been

repeatedly rediscovered. (For a comment on one such case, see Gleser, 1983.)

The results in [14] apply only to linear functional relationship models. Similar results
are obtained for linear structural relationship models by Anderson in [108], who indicates
that his results had been obtained in 1946, but left unpublished. (See also Anderson,
Anderson, and Olkin, 1986). The procedures obtained in [14] and [108] have important
applications in psychometric mental test theory (see Healy, 1979) and in statistical genetics.
In [14], and many of his later papers, Anderson exblicitly points out the application of the
results in [14] to estimation and fitting problems arising in studies of systems of linear

stochastic equations by econometricians. (See also [8], [11], written with Herman Rubin.)
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Because estimators and test statistics in LSR models have complex distributions,
large-sample distributions are usually used to construct confidence regions for structural
parameters and rejection regions for tests of hypothesis. These tests and estimators (par-
ticularly likelihood ratio tests and maximum likelihood estimators) are derived from the
principal components and corresponding eigenvectors of sample covariance matrices, or
more generally (see [14], [108]) from roots and corresponding eigenvectors of determinan-
tal equations in sample covariance matrices. Anderson has made basic contributions to
the determination of the asymptotic distributions of these roots and eigenvectors ([7], [11],
[13], [23], [37]).

Earlier in this article it was noted that LSR models can be expressed in various
mathematical forms, and that statistical identifiability of the parameters of such models
require imposing restrictions on these parameters that are not intrinsic to the model.
Different contexts of application of LSR models have led to different identifying restrictions.
Consequently, specialists in the use of LSR models in various fields of applications have
not always been aware that they are working on common problems, and considerable
duplication of effort has occured. In his 1982 Wald lectures [106], Anderson set himself
the task of expounding the relationships among the various linear statistical relationship
models used by statisticians and by specialists in econometrics, psychometrics and other
scientific fields. This paper succeeds brilliantly in providing an elegant unifying framework
for such models, and in summarizing several decades of research. The debt owed by the

present article to [106] is apparent.

For reasons of space, it has not been possible mention all of Ted Anderson’s contri-
butions to the statistical formulation and analysis of linear statistical relationship models.
Enough has been said, hopefully, to indicate his seminal influence on this area of research,

and his continuing leadership in its development.
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APPENDIX

The following is a list of publications by T.W. Anderson cited in this report (see
footnote on page 1).

[1] Some significance tests for normal bivariate distributions (with D.S. Villars), An-
nals of Mathematical Statistics, 14 (1943), 141-148.

[3] Some extensions of the Wishart distribution (with M.A. Girshick), Annals of Math-
ematical Statistics, 15 (1944), 345-357. [Correction: 35 (1964), 923-924.]

[4] The non-central Wishart distribution and certain probiems of multivariate statis-
tics, Annals of Mathematical Statistics, 17 (1946), 409-431. [Correction: 35 (1964), 923-
924.]

[7] The asymptotic distributions of the roots of certain determinantal equations, Jour-
nal of the Royal Statistical Society, Series B, 10 (1948), 132-139.

[8] Estimation of the parameters of a single equation in a complete system of stochastic
equations (with Herman Rubin), Annals of Mathematical Statistics, 20 (1949), 46-63.
[Reprinted in Readings in Econometric Theory (J. Malcolm Dowling and Fred R. Glahe,
eds), Colorado Associated University Press, 1970, 358-375.]

[11] The asymptotic properties of estimates of the parameters of a single equation in
a complete system of stochastic equation (with Herman Rubin), Annals of Mathematical
Statistics, 21 (1950), 570-582. [Reprinted in Readings in Econometric Theory (J. Malcolm
Dowling and Fred R. Glahe, eds.), Colorado Associated University Press, 1970, 376-388.]

[13] The asymptotic distribution of certain characteristic roots and vectors, Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and Probability (Jerzy
Neyman, ed.), University of» California Press, Berkeley, 1951, 103-130.

[14] Estimating linear restrictions on regression coefficients for multivariate normal
distributions, Annals of Mathematical Statistics, 22 (1951), 327-351. [Correction: Annals
of Statistics, 8 (1980), p. 1400.]

[23] Statistical inference in factor analysis (with Herman Rubin), Proceedings of the
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Third Berkeley Symposium on Mathematical Statistics and Probability (Jerzy Neyman,
ed.), University of California Press, 1956, 5, 111-150.

[37] Asymptotic theory for principal component analysis, Annals of Mathematical
Statistics, 34 (1963), 122-148.

[66] Distributions of estimates of coefﬁcients of a single equation in a simultaneous
system and their asymptotic expansions (with Takamitsu Sawa), Econometrica, 41 (1973),
683-714.

[67] An asymptotic expansion of the distribution of the limited information maxi-
mum likelihood estimate of a coefficient in a simultaneous equation system, Journal of the
American Statistical Association, 69 (1974), 565-573. [Correction: 71 (1976), 1010.]

[69] Estimation of linear functional relatioﬁships: Approximate distributions and con-
nections with simultaneous equations in econometrics (with discussion), Journal of the
Royal Statistical Society, Series B, 38 (1976), 1-36.

[72] Two-stage least squares: In which direction should the residuals be minimized?
(with Takamitsu Sawa), Journal of the American Statisiical Association, 72 (1977), 187-
191.

[73] Asymptotic expansions of the distributions of estimates in simultaneous equations
for alternative parameter sequences, Econometrica, 45 (1977), 509-518.

[83] Evaluation of the distribution function of the two-stage least squares estimate
(with Takamitsu Sawa), Econometrica, 47 (1979), 163-182.

[90] Recent results on the estimation of a linear functional relationship, Multivariate
Analysis-V (P.R. Krishnaiah, ed.), North-Holland Publishing Co., Amsterdam, 1980, 23-
34. |

[97] Exact and approximate distributions of the maximum likelihood estimator of a
slope coefficient (with Takamitsu Sawa), Journal of the Royal Statistical Society, Series B,
44 (1982), 52-62.

[100] Evaluation of the distribution function of the limited information maximum like-
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lihood estimator (with Naoto Kunitomo and Takamitsu Sawa), Econometrica, 50 (1982),
1009-1027.

[101] Some recent developments on the distributions of single-equation estimators,
Advances in Econometrics (Werner Hildenbrand, ed.), Cambridge University Press, Cam-
bridge, 1982, 109-122.

[104] The numerical values of some key parameters in econometric models (with Kimio
Morimune and Takamitsu Sawa), Journal of Econometrics, 21 (1983), 229-243.

[105] Comparison of the densities of the TSLS and LIMLK estimators (with Naoto Ku-
nitomo and Takamitsu Sawa), Global Econometrics, Essays in Honor of Lawrence R. Klein
(F. Gerard Adams and Bert G. Hickman, eds.), MIT Press, Cambridge, Massachusetts,
1983, 103-124.

[106] Estimating linear statistical relationships (1982 Abraham Wald Memorial Lec-
tures), Annals of Statistics, 12 (1984), 1-45.

[107] Best invariant estimation of a direction parameter (with Charles Stein and Asad
Zaman), Annals of Statistics, 13 (1985), 526-533.

v[108] Components of variance in MANOVA, Multivariate Analysis-VI (P.R. Krishna-
iah, ed.), North-Holland, Amsterdam, 1985, 1-8.
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