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Abstract

A half-sample estimator is proposed for estimating the coverage probability of a fixed-

width interval |0—0|<3, where 0 is a parameter of interest and @ is its point estimator.
Theoretical finite sample properties of the half-sample estimator are obtained. Some exten-
sions and the robustness of the method are also studied. Numerical results show that the

half-sample estimator works very well in general situations.
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1. INTRODUCTION

When presenting a point estimate in statistical applications, it is usually necessary to
indicate the accuracy of the estimate. Suppose that the parameter of interest is 0, a charac-

teristic of an unknown population distribution F, and an estimate of 6 based on n samples is

é. Then any measure of the accuracy of 6 depends on the sampling distribution of 6 and has

to be estimated from the samples. For example, a commonly used measure of the accuracy of
6 is the mean squared error (MSE) of é, which is the second order moment of 6—9 under the

sampling distribution of 6, ie.,
MSE = MSE (8) = E (6-6)*.

Another measure of the accuracy of 6, which is suggested and discussed by Kiefer (1977), is

the coverage probability of a fixed-width interval:

p®) =pE8) =P(16-013), (1.1)

where 8>0 is a fixed constant. Both MSE and p(8) are characteristics of the sampling distri-

bution of é MSE and p(d) are related, i.e., MSE =j [1-p (81/2)]d 8. An advantage of using
0

p(d) as an accuracy measure is that p(8) is always finite whereas the finiteness of the MSE of

0 requires some moment conditions on F .

When the sample size n is large, a standard technique is to apply asymptotic theory.
That is, after obtaining the limit of the sampling distribution (assume it exists), we approxi-

mate the characteristics of the sampling distribution by the corresponding characteristics of the
limiting distribution. Even if the MSE of 6 does not exist, we can still use the variance of the

limiting distribution as a measure of the accuracy of 0. Setting confidence interval for 0, a

closely related problem, can also be done by using the limiting sampling distribution.

The limitations of this approach are: (1) obviously, n» needs to be large; (2) the existence

of the limit of the sampling distribution requires some condition on the tails of the population



distribution F (e.g., the second moment of F exists if 0 is the sample mean).

Resampling methods such as the jackknife (Quenouille, 1956; Tukey, 1958) and the
bootstrap (Efron, 1979) are convenient nonparametric methods for estimating MSE or p(5).
They can be used in both large sample and small sample situations. Large sample (asymp-
totic) properties of the resampling methods have attracted a lot of attention in the statistical
literature in recent years. In particular, the resampling methods are proved to be superior to
the classical asymptotic methods for their accuracy (Abramovitch and Singh, 1985; Hall,
1986; Beran, 1987) and robustness (Hinkley, 1977; Shao and Wu, 1987). However, much
less attention has been focused on finite sample (exact) properties of the resampling methods.
The study of the finite sample properties of the resampling methods is perhaps more important
since few methods are available for estimating the statistical accuracy when the sample size is
not large. Except for the bias of the jackknife variance estimator (Efron and Stein, 1981;
Bhargava, 1983; Rao and Wu, 1985; Wu, 1986), not much has been known yet about the

finite sample properties of the resampling methods.

In this paper, we propose a resampling estimator of p(d): the half-sample estimator
(defined in Section 2), and study its finite sample properties under weak or no assumption on
F. The half-sampling method was used for estimating standard error in the literature of sam-
ple surveys (McCarthy, 1969).

Descriptions of the half-sample estimator and its theoretical properties are given in Sec-
tion 2. We discuss the robustness of the half-sample estimator and some extensions in Sec-
tion 3. Section 4 contains a method of alleviating computational burden of the half-sample
estimator when n is large and Section 5 contains a brief discussion of the asymptotic theory.

In Section 6, we study by simulation the performances of the half-sample estimators of p(6)

when O is the sample mean or other types of estimators such as the sample median or the
reciprocal of the sample mean. The numerical results indicate that the half-sample estimator

works very well in general situations.

Since the estimation of p(d) is closely related to the estimation of the sampling distribu-

tion of 0-0, our results can be applied to the latter case with minor modifications.



2. THE HALF-SAMPLE ESTIMATOR

Suppose that X o Xn are independent and identically distributed (i.i.d.) samples from

the population distribution F. Let the parameter of interest be 6 and its point estimator be

ézTn X o Xn), where Tn is symmetric. Suppose that the sample size n is even. Let r=n/2

and Sr be the collection of subsets of { 1,....n } which have size r. For s={ i 1,...,ir le Sr, let

~

6s=Tr (Xl, yeues Xl_ ). The half-sample estimator of p(d) defined in (1.1) is
1 r

A

& =Ly rclig -
PO =3 1168 1<), Q.1)

where N=(;"), I(A) is the indicator function of the set A, s¢ is the complement of s and Y
s

is the summation over all subsets in Sr. 1;(8) is related to the delete-r jackknife histogram

(Wu, 1987). See also Section 5 (c).

Fors, s and szeSr, let

1

a(8) = P( %'6s‘6sc 1<), 2.2)

k be the number of integers common to s ) and s 5 and

~

(= Covl (18 —B . 1<8), 1(>16 -8, I<B) 1. 2.3)

a(®) and C . are independent of the choices of the subsets since X o Xn are i.i.d.

Theorem 1. The half-sample estimator ;(8) has the following properties:

E[p@®)] = a®); 24

Varp®) = L3 O 25)



and

Var[p(8)] < -;-a @[ 1-a(S)]. (2.6)

Proof. Since X P Xn are i.i.d.,

E[p@®)] = P( —;-Iés—ésc 1<) = a(5).

Note that p(5) is a U-statistic with a kernel 1(% Iés —8_,1<8), 5,=( 1,...r }. Thercfore (2.5)

and (2.6) follow from standard results on U-statistics (Hoeffding, 1948) and

A

Var [1(% |§s -6,.1<8)] = a@[1-a®)]. O

From (2.4), the bias of p(8) is a(3)—p(3). The exact expression of Var [p(8)] in (2.5) may
be hard to evaluate. The upper bound for Var [p?(S)] in (2.6) is quite efficient in many cases.
This upper bound achieves its maximum 0.125 when a(8)=0.5. For the accuracy of ;(8),

sometimes it is appropriate to look at a relative measure

Varp@®N . (a@I1-a@1/2}" @7
@ p®) ‘

For the purpose of estimating the accuracy p(d), it is desirable to have an unbiased esti-

mator, i.e., a(8)=p(d) for all F, or a conservative estimator, i.e., a(8)<p(d) for all F. We
show in the following that we do achieve the unbiasedness of ;(8) in the situation where O is

. —_— " =_ -1 .
the population mean (assume it exists) and 0 is the sample mean X=n Zn 1Xi. Even for this
1=

simple case (é:f ) there is no satisfactory method of estimating the accuracy of X available



when the sample size n is not large and/or the population distribution F has heavy tails. For
instance, the sample variance, a customary estimator of the population variance, is highly
fluctuating when r is small and the population has a large variance and becomes meaningless
when the population variance does not exist. In fact, if the population variance is nearly

infinity or very large, it is not appropriate to use it as an accuracy measure. The following

properties of 1,7\(5) are established under very weak assumption on F'.

When 6=X, 6 =X =r_12 X for seS
A A

ies ¢ r

p(®)=P ( 1X—01<3 ) reduces to:

From (2.1), the half-sample estimator of

A1 1.7 %
p(®) = NZsI(Z IXs Xs‘ | <3). (2.8)

Let Hs be the distribution function of fs. Note that )_(-s have the same distribution for all

s since Xl,..., Xn are 1.i.d.

Theorem 2. Suppose that HS is symmetric about 8. Then in the case of éz}? , (2.4)-(2.6)
hold with a (3) replaced by p(d).

Proof. We only need to show a(d)=p(8). This is a direct consequence of Lemma A in the
Appendix. O

Hence ;’;(8) is unbiased. The relative measure defined in (2.7) is now bounded by (0.5)1/2
times the square root of the odds ratio [1—p(8)]/p(8), which is a decreasing function of p(d)

and tends to zero (infinity) as p(d) tends to one (zero).
The symmetry assumption of HS is not serious. It is implied by the symmetry of the
population distribution F. HS is approximately symmetric if » is large and a ()? —0) is

asymptotically normal, where a is a sequence of positive constants. Data transformation can

also be used to achieve the symmetry. The robustness of ;(8) against asymmetry will be dis-

cussed in Section 6.



3. SOME EXTENSIONS AND ROBUSTNESS OF THE HALF-SAMPLE ESTIMATOR

We discuss in this section the robustness of the half-sample estimator p(8) and some

extensions. Some other extensions will be discussed in Section 6.

(a) Robustness against heavy-tail distributions. The results in Theorem 2 hold even if the
mean of F does not exist. For example, F is Cauchy with density E_16[62+(x—9)2]_1. In this

case 6 is the center of the symmetric distribution F. In fact, we have

Theorem 3. The results in Theorem 2 are true without any moment condition on F.

Proof. From the proofs of Theorems 1 and 2, the results follow from

%(is—fsc) and X—0 has the same distribution. 3.1)

From Lemma A in the Appendix, (3.1) is true without any moment condition on F. O

(b) Robustness against non-identical distributions. When 6=X , another interesting robustness

property that p(8) has is that p(8) is unbiased even if Xi are not identically distributed. This
is certainly a very nice property of an estimator since in practice often we are not so sure

about whether the Xl, have exactly the same distribution. An example is

X =0+e

X
i i

where e are independently distributed as F (x/Gi ), F(x) is symmetric about zero, and the

scale parameters G, may or may not be equal.

Theorem 4. For §=)? R 5(8) is unbiased even if the Xi are not identically distributed.

Proof. From Lemma A in the Appendix, (3.1) still holds if Xl_ are not identically distributed.

This proves the result. [

(¢c) The case that n is not even. When n is odd, the estimator 1’;(8) defined in (2.1) can still



be used with r=(r—1)/2. This is motivated by the fact that in the situation where 6=f and

the variance of X ) exists and is equal to 0'2, we have

2 > iGZ.

Lx X 1= —u>n
Varly X XN = e 2 7

Thus 2(8) will usually be a conservative estimator of p(3). Two examples are given below.

For the variance of ;(8) when n is odd, we have

Varp® =% HCDE, < ELa@-a @),

where a (8) and Ck are defined in (2.2) and (2.3), respectively.

Example 1. Suppose that F belongs to a family F satisfying the following properties:
(A) The variance of F exists for any F €F;

(B) Ile,..., Xn are i.i.d. with FeF, 6=EX1 and C;s di, i=l1,...,n, are constants, then
n n
Var (Ei=1ciXi) = Var (Z,-=1diXi)
implies

POIT ¢, X -0)I8)<P(IX" d.(X-0)I3).

Then ;(8) defined in (2.8) with r=(rn—1)/2 is a conservative estimator of p(d), i.e.,

E[p@®)] <P(1X-01<8).

An example of a family of distributions having properties (A) and (B) is the normal dis-
tribution family { N (0, 6°), —e<B<co, -0 }.



Example 2. Suppose that F belongs to the Cauchy distribution family with location parame-

ter O and scale parameter 6. Thus F has a density

fx,0,0)=n"lo[c+x—0)T", —eecB<oo, G >0.

Note that if X P Xn are iid. as F, then X—0 and %(is—fsc) have the same distribution

with density f (x, 0, 6). Hence ;(8) is still unbiased for p(8).

(d) Extension to regression. Another non-i.i.d. situation is the regression problem
Y, =%, B+ e i=1,..,n, (3.2)

where y, are observations, X, are known p -vectors, B is an unknown p -vector, and the random
errors e, are iid. as F. We want to estimate the statistical accuracy of the least squares esti-

mator of 6=c’P, where ¢ is a known p-vector. Let r=n/2 if n is even and r=(n—1)/2 if n is
odd, S be defined as before, A=Z_n xx." and A =Y. x.x'forseS . Define
r i=1 i i s r

ies +

T .
Sr ={ seSr. As and A, are nonsingular }.

Assume the number of subsets in SrT is T>0. The least squares estimators of  under model
(3.2) and the submodel

y, = xi'B +e, ies, seSrT
are B=¢’ (A_lzin:lxiyi) and §s=c' (As_lziesxiyi), respectively. Denote
p@®) =P (16-81<5).
Then p(8) defined in (2.1) can be extended to

p(8) = Tzsesfl( 218 -8 1<8). (3.3)



Theorem 5. If FeF satisfying the properties (A) and (B) stated in Example 1, then the esti-

mator defined in (3.3) is a conservative estimator of p(5).

The proof is given in the Appendix.

4. RANDOM HALF-SAMPLE ESTIMATOR

The computation of ;(8) requires N =(,"1) evaluations of és. Table 1 gives the values of

N for even n ranging from 6 to 20. For n larger than 20, it may be hard to evaluate ;(8).

However, it is not necessary to compute all N terms in (2.1) in order to obtain a good estima-

tor of p(8). Shortcuts can be taken by applying various techniques with 6S evaluated only for
s in a subclass Sr(l) of Sr. If the size of Sr(l) is T, then

A A

- -1 1
p1(8) = TZSGS:D I(-i- Ies—esc <6 )

A ~ 1
is an incomplete U-statistic. p;(8) has the same expectation as p(8) for any fixed Sr( ). Hence

p1(8) is still an unbiased estimator when the conditions in Theorem 2 are satisfied.

Obviously ;’;1(8) has larger variance than 1;(8) and we would like to choose a subclass
from Sr such that the increase in variance is as small as possible. There are some results
(e.g., Blom, 1976; Brown and Kildea, 1978) of choosing a suitable subclass to obtain an
efficient incomplete U-statistic when the size of the kernel of the U-statistic is much smaller

than n. Since in our case the kernel size is r=n/2, these results can not be applied directly.

The problem of choosing a fixed subclass to obtained an efficient approximation to ;(8), such
as the construction of a "balanced" subclass (see Blom (1976) and Brown and Kildea (1978)),
is interesting and needs further theoretical investigation. In the following we will focus on a
simple but useful method: random sampling. That is, we select a simple random sample (srs)

of size m (with or without replacement) from Sr. This technique is not new and is applied in

9



many statistical applications. Advantages of using random sampling are (1) the random sam-

pling is simple and easy to use; and (2) the loss of efficiency of the resulting approximation to

1,9\(8) can be controlled by selecting a suitable m, as the following discussion indicates.

Suppose that S:rs of size m is an srs from Sr. The approximation to 5(8) is then

~ A

" =1 Lig -

p,, (8 = - Zses:” I( 5 IGS 9s° 1<3). 4.1)
There are actually N/2 terms on the right hand side of (2.1). Hence m<N/2. Let E , and
Var, be the expectation and variance taken under the second stage random sampling for given
X ,..X . Then

1 n

Elp,,(®]=E({E,[p,,®)]1} = E[p®)].

Hence ;srs (0) is unbiased (or conservative) if ;(8) is. Note that
Var{p, )] =E{Var,Ip, &)} + Var (E_[p,, (O]}

=E {Var, [1'; s O]} + Var [1')\(5)].

Hence the increase in variance by using random sampling is E {Var*[; (8)]}. From sam-

srs
pling theory (Cochran, 1977),
5 = _1_.L _1_ 0 _A < _A 2
Var, Ip,,,(8)] (=) > U« 5 19, 0,10 )p@)I,
where f=m/N if the samples are taken without replacement and f=1/N otherwise. Therefore

E{Var,[p, (1) sLta®) <L, 42)
m m

where a (8) is defined in (2.2). Define the following relative measure of efficiency loss

10



A = ([Var(p, (G)I"~Var @)1} Var @)%,

which is the relative increase in root mean squared error if p(8) is unbiased. It is not possible

to control A under a fixed level by just choosing an m (unless S:’S=Sr), since Var [;(8)] can

be arbitrary small. However, when Var [;(8)] is very small, say <&, Var [;m (®)] < 2¢ is
plenty enough for practical use, although A may be large. According to this idea, we have the

following working rule (for choosing m).

Theorem 6. Let €, T and p be given positive small constants, T> €. If we choose an m

according to

m =1+ the integer part of min{N/2, max[e " ((p+1)=1)", (—&) 1}, (4.3)

then we have either

A<p

or

Varp@®)l <e and Varlp, (9] <.

The proof of this result is given in the Appendix. € and t are predescribed accuracy of
5(8) and ; s (8), Tespectively, and p is a desirable control level of efficiency loss. We can
choose a small € (e.g., €=0.01) and a 1=2¢ or 1.5e. Then if Var [;(8)] is smaller than €, (4.3)

ensures that Var [1; s (8)] does not exceed T. On the other hand if Var [[;(8)] is not small, the

relative efficiency loss A is controlled to be smaller than p under (4.3). Table 2 gives some
values of m (n is assumed to be larger than 14) obtained from (4.3) for some combinations of

g, T and p.

11



Table 1

10 12 14 16 18 20
N 20 70 252 924 3,432 12,870 48,620 184,756

=
[=)}
o0

Table 2
€ .05 .05 .05 .01 .01 .01
T .06 .06 .06 .02 .02 .02
p .10 .05 .01 .10 .05 .01
m 100 196 996 477 976 4,976

5. ASYMPTOTICS

Although  we are mainly focusing on the finite sample properties of 5(8), it is also
interesting to know some asymptotic properties of 5(8). We glance over the consistency of

;(8) for the case (3:)? in this section.

(2) Limiting behavior of 5(8) when n is fixed. When n is fixed, p(8) tends to one (zero) as &
tends to infinity (zero). From (2.6) and a(8)=p(d), the variance of ;(8) tends to zero if &

tends to infinity or zero. Hence p(8)-p(8)—0 in L , Space as d tends to infinity or zero.

(b) Limiting behavior of ;(8) when 8 is fixed. If the mean of the population distribution

exists, then as 7 —eo, X —0 a.s. according to the law of large numbers. Hence 1imn_)°°p(8)=1

and therefore limn_mVar [p?(S)]=O and 5(8)~p(5)-—>0 in L , space.

(c) The case 8 is a function of n. In practice, & can be taken as a function of the sample size

n. For example, if we take 8=8n=80n_1/2 for some 80>0, then p(8n) is the same as the jack-

knife histogram (Wu, 1987). If we assume that the variance of the population distribution

12



exists and is equal to 02, then by the central limit theorem,

p® ) ="P( n%lf—GISSO ) = B /o) — B(-3/0),

where ®@(z) is the standard normal distribution function. In this case, the upper bound of

Var [p(Sn )] in (2.6) does not tends to zero. However, 1’;(8”‘) is still consistent, i.e.,

2(8’1) —p(8n) -0 a.us.

according to Theorem 1 of Wu (1987).

(d) The random half-sample estimator. The assertions in (a)-(c) are true for ; s ®) if

min(n, m)—oo.

6. DISCUSSIONS, EXTENSIONS AND NUMERICAL RESULTS

Theorem 1 in Section 2 provides some ideas about the bias and the variance of 5(8).

Theorem 2 gives more precise results when 0 is the sample mean and Hs is symmetric.

Extensions of the results in Theorem 2 to the following cases are of both theoretical and prac-
tical interests: (a) the situation where 6=X but Hs is not symmetric; and (b) the general case

where the point estimator 0 is arbitrary. Further theoretical studies are called for. In this sec-

tion we give a discussion with some numerical results.

(a) Numerical results for symmetric distributions and 6=X. We first present some simulation

results for the simple case where 0 is the sample mean and the population distribution is sym-
metric. Two symmetric distributions are considered: normal distribution with mean 1 and

variance 0.25 and Cauchy distribution with median 1 and shape parameter 0.2. Thus 6=1.

The sample size is n=16. The estimator of p(d) is ;srs (8) defined in (4.1) with m=200 (see

Table 2). All the results presented below are based on 3000 simulations on a VAX 11/780 at

the Purdue University.

13



The biases (BIAS) and root mean squared errors (RMSE) of 1’;er (3) are shown in Table 3

for two choices of 8: 0.1 and 0.2. The values of p(d) are also included. The results show

that ; (8) performs very well. The biases are all relatively negligible. In the normal popu-

Srs

lation case, the RMSE of ;)Srs (8) is much smaller than the bound given in (2.6).

(b) Numerical results for asymmetric distributions and 6=X. To see the effect of asymmetry,

we also study the BIAS and RMSE of f;m (0) for the cases where the distributions are
Gamma with mean 1 and variance 0.5 and scaled Poisson with parameter 5. © in both cases

are 1. Note that Hs are asymmetric for both cases and is discrete in the Poisson case.

The results are included in Table 3. It is clear that the half-sample estimator works well

in these asymmetric situations.

Table 3. BIAS and RMSE of p__(8) (0 = the sample mean)

6=0.1 0=0.2
Distribution | p(d) BIAS RMSE p©®) BIAS RMSE
Normal .569 007 .096 .889 001 .070
Cauchy 292 —-.005 272 491 —.000 372
Gamma 417 022 126 748 .002 137
Poisson 306 -.002 .081 518 014 104

(c) The case of sample median. We now focus on other types of point estimators. In some
situations we are interested in the population median instead of the population mean. The

point estimator is then the sample median defined to be (Yn/2+Y )/2 if n is even and

(n+2)/2

Y if n is odd, where Y ..., Y are the order statistics of the samples X ,..., X . We
(n+1)2 1 n 1 n

study the performances of ;,; <(8) given in (a) when the population distributions are normal,

Cauchy and Gamma described in (a)-(b). The results are reported in Table 4. The half-

sample estimator still works well. The biases of p_ (0) are slightly larger.

14



Table 4. BIAS and RMSE of p___(8) (0 = the sample median)

srs

6=0.1 6=0.2
Distribution | p(8) | BIAS | RMSE | p(8) | BIAS | RMSE
Normal 487 026 180 818 018 146
Cauchy 784 | —038 .189 971 | -015 .081
Gamma 398 013 175 .699 017 .184

(d) The reciprocal of the sample mean. Another type of estimator considered is the reciprocal

of the sample mean (as an estimator of the reciprocal of the mean 0). The same distributions

as in (c) are considered and the results are given in Table 5. The performanceé of [; s (0) are

again very good. The biases are all relatively negligible.

Table 5. BIAS and RMSE of Py (8) (6 = the reciprocal of sample mean)

6=0.1 6=0.2
Distribution | p() | BIAS | RMSE | p@) | BIAS | RMSE
Normal 574 | —.006 143 884 | —028 | .123
Cauchy 294 004 282 502 001 374
Gamma 420 002 118 738 | —020 | .138

(e) Concluding remarks. The half-sample estimator of p(8) works very well in all the situa-

tions under consideration. The results in (d) indicate that the half-sample estimator performs

well if é=g ()? ) and g is smooth at 0. Another observation from Tables 3 and 4 is that for the
estimation of the center of a symmetric distribution, the sample median is better than the sam-
ple mean when the population distribution has heavy tails (such as Cauchy) whereas the sam-
ple mean is preferred when the population distribution has second order moment (such as nor-
mal). Thus, good estimates of the coverage probabilities p(3) enable us to compare the

efficiency of the point estimators.

15
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APPENDIX

Lemma A. Suppose that Wi is distributed as Fl,, i=1,2, Wi are independent and Fi are sym-

metric about 0. Then W l—W ) and W 1+W ) have the same distribution.

Proof. Let ¢i be the characteristic function of Fi, i=1,2. Then (])i (t)=<])i (~t) since Fl, is

symmetric. The characteristic function of W 1_W ) is
6,(10,(-1) = 6, (1)0,(2),
which is the characteristic function of W 1+W ” This proves the result. O

Proof of Theorem 5. We only need to show that when se S;r,

Var[+® -8 )] = Varb. (A1)
2°s s

Denote Var (e,) by o°. Then Varf=6>c’A™'¢ and Var [% (és—ésc)]=026’ (As_l+As:1 )e /4. Thus

(A1) follows from

which is simply the matrix version of Jensen’s inequality. [J

Proof of Theorem 6. If N/2<max[e ((p+1)°~1)"", (t—€) "], then m=N/2 and p__(5)=p(5).
Suppose that N/2>max[e ((p+1)-1)", (v-€) 1. ¥ Var[p@)l<e, then Var[p,, (8)l<e+m™

by (4.2). Hence Var [p? s (8)]<t since mz(’l:—z-:)_1 from (4.3). If Var [;(5)]>8, then

16



A < {(m ™' Var @) +1Y%-1 < n e 4 1)%1 < p,

since m is chosen to be not smaller than e-l[(p+1)2—1]_1. a
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