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ABSTRACT

A theorem of Brolin states that if Q(z) is a polynomial of degree > 2 and if £ is a
randomly chosen solution of Q"(§) = 2z then as n — oo the distribution of ¢ converges
to the equilibrium distribution on the Julia set of Q. A simple probabilistic proof of this
theorem is given. Some new results about the distribution of the branches of Q—" relative
to Brownian paths are also obtained.

KEY WORDS AND PHRASES:
Brownian motion, conformal invariance, Julia set, strong mixing property.



1. Introduction
Let Q(2) be a complex polynomial of degree > 2 and let Q™(z),n =0,1,2,..., be its
iterates:
Qo(z) =2,
Q"*(2) = Q(Q"(2)),n =0,1,... .

The Julia set J of @ is the set of complex numbers at which {@"}r>0 is not a normal
family of analytic functions. It is well known (and easy to prove) that J is a nonempty,
compact subset of the complex plane C (sec.2).

Fix z € C; consider the set Q~"(2) of complex numbers ¢ such that Q"(¢) = =.
Observe that Q~"(2) has cardinality d™ where d = degree of Q, provided multiple roots of
Q"(€) = z are listed according to their multiplicities. Let uZ be the uniform distribution
on Q7 "(2), i.e., uZ is the probability measure that puts mass d—" at each point of Q7 "(2).

THEOREM (Brolin [2]): As n — oco,uZ converges weakly to the equilibrium distribution
i on J, except for at most one point z € C.

See [8] for the classical definition of the equilibrium distribution. Probabilists know [4]
that the equilibrium distribution of a compact set J coincides with the hitting distribution
for J by a Brownian motion started at co. Brolin’s proof, which is based on results from
classical potential theory, gives no probabilistic insight into why this limit distribution
occurs. The purpose of this note is to give a simple probabilistic proof of Brolin’s theorem
that explains the occurrence of the equilibrium distribution. This proof is elementary,
using only one result from (probabilistic) potential theory, namely, Lévy’s theorem on the
conformal invariance of Brownian motion (sec. 3).

The probabilistic arguments used here also give some information about how the
various branches of Q™" are distributed relative to Brownian motion Z; started at oo and
stopped at J. Let 7., be the connected component of ¥ = J° containing oo and let L be
a closed subset of 7y,. Define T = inf {t: Z; € J}. In sec. 3 we prove

COROLLARY 1: For any continuous f : J — C,
nlim Ef(Zr)1{Z hits Q"(L)} = Ef(Z7)P{Z hits L}
— 00

and

—1
lim n~1"S 1{Z hits Q"™(L)} = P{Z hits L} a.s.
n—oo m=0

Brolin’s theorem is not the only way to describe the distribution of points in the
pre-orbit of a given z € C (nor even necessarily the most natural). Consider 0~(z) =

Y, Q@7 "(2), and let pe be the uniform distribution on {¢ € 0 (2) : dist (¢&,J) > €}. If
n—

Q is expansive on J (i.e., there exists n > 1 such that [(Q")’(¢)| > 1 for all ¢ € J) then it
is apparently the case that as € — 0, u. converges weakly to to normalized é-dimensional
Hausdorff measure Hs on J, where § = Hausdorff dimension of J. (See [7] for a somewhat
weaker result in this direction, and [5] for similar results in the context of Kleinian groups.)
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Brownian motion appears to play no natural role in this problem, so we shall not discuss
it further in this paper.

No prior knowledge of complex analytic dynamics is necessary to follow the arguments
of this paper. Some elementary results are collected in sec. 2; these may all be found (in
some form) in [1].

2. Preliminaries

For our purposes it is usually more convenient to think of Q(2) as a self-mapping of
the Riemann sphere C = C U {00} than as a mapping of the plane C, since C is compact.
Note that the point co is an attractive fixed point of Q, because degree (@) > 2. Thus
there is a neighborhood U of co such that Q"(z) — oo as n — oo uniformly for z € U.
Note also that the only solution of Q"(2) = oo is 2 = oo.

Of fundamental importance in complex analytic dynamics is the notion of a normal
family of meromorphic functions [1]. A normal family is a set {f } of functions meromor-
phic in a domain D such that any sequence f, has a subsequence that converges uniformly
(with respect to the spherical metric on E) on each compact subset of D. By the Arzela-
Ascoli theorem, this is equivalent to the statement that {f)} is uniformly equicontinuous
in each compact subset of D.

A family of meromorphic functions {f)} is said to be normal at a point z € C if it is
' normal in some neighborhood of z. The Fatou set 7 of a polynomial Q(2) is defined [1]
to be the set of z € C at which {@"}n>0 is normal. The Fatou set ¥ is clearly open, and
if degree (@) > 2 then oo € ¥ because Q™ — oo uniformly in a neighborhood of co. The
Julia set J of Q is defined to be the complement of ¥, hence J is a compact set of C.

Clearly Q(¥) = ¥ and Q(V) = J.
PROPOSITION 1: If degree (Q) > 2 then J # @.

PROOF: If J = @ then {Q"},>0 would be a normal family on €. But Q*(z) — oo
uniformly for z in a neighborhood of co. It would then follow from normality that Q"(z) —
oo uniformly for z € C. But this is impossible, because each Q" : C — C is surjective. O

Henceforth we shall assume that Q(2) is a polynomial of degree d > 2, so that J # @.
Since d > 2 the inverse function of Q™,n > 1, is multiple-valued, with d" branches and
branch points in §,,, where

| 90={z€C:Idz-Q(z) = 0},
gn = G Qm(go)a

m=1
— oo m
9+ - mLiOQ (go)'
The branches of the inverse function of Q™ will be denoted Q;"i=12,...,d"

PROPOSITION 2: If @ = {Q; "}n,: ts a collection of certain branches of Q™™ such that
each Q;™ € Q is single-valued and analytic in the domain U, then Q is a normal family

in U.



PROOF: First notice that co ¢ U, because there is no branch of Q=" analytic in a
neighborhood of oo for any n > 1. Let ¢ € U be arbitrary; it suffices to show that Q
is a normal family in a neighborhood of ¢. Since Q(z) has degree d > 2 there exists
R < oo such that if |z| > R then |Q(z)| > |z|. It follows that for some neighborhood

N of &, :L’J_c_,1 @~ "(N) is disjoint from some neighborhood of co. Therefore Q is uniformly

bounded on N. It follows by standard arguments that Q is a normal family in N (uniform
boundedness implies that the derivates are uniformly bounded on compact subsets of N ,
by the Cauchy integral formula for derivatives, thus Q is uniformly equicontinuous on
compact subsets of N). a

Define 7o, to be the path-connected component of co in the Fatou set 7, i.e., %, is
the set of all points z € ¥ such that there is a continuous path in ¥ beginning at co and
ending at z.

PROPOSITION 8: If z € 7o, then lim Q"(z) = oo.
n—00

PROOF: Let 7(t),0 <t < 1, be a continuous path in ¥ such that 4(0) = co and ~(1) =
z. Since {Q"},>; is a normal family in F every subsequence of Q" has a subsequence
that converges uniformly to a meromorphic function in a neighborhood of ~(|0,1]). But
Q™(¢) — oo uniformly for ¢ in a neighborhood of oo, hence Q® — oo uniformly in a
neighborhood of 7([0,¢]) for some € > 0. It follows that any subsequence converging
uniformly in a neighborhood of ([0, 1]) must in fact converge to co. Therefore, Q™(z) —

00. O

Consider the set G4 N 7. Recall that 4 is the union of the forward orbits of the
critical points G,. If ¢ € §, and the forward orbit of ¢ ever enters %,, then Q" (&) — oo, by
Proposition 3; since §, is a finite set it follows that the only possible accumulation point
of G+ N7 in Fy is co. Consequently, each point of 7, not in §, has a simply connected
neighborhood disjoint from §, in which all branches Q; " are single-valued and analytic.

PROPOSITION 4: For eachn > 1,Q (%) C Foo-

PROOF: Fix { € 7, and let 4(t),0 <t < 1, be a smooth path in ¥ such that 4(0) =
00,7(1) = ¢, and for each 0 < £ < 1 there is a neighborhood of ~(t) in which all branches
of @~ are single-valued and analytic. Let z be a point such that Q"(2) = £. Then there
is a continuous path §(t),0 < t < 1, such that (1) = z and Q"(5(t)) = 4(t) for each
0 <t < 1. Clearly, 4(0) = oo, because the only root of Q"(¢) = co is ¢ = co. Moreover,
lies entirely in 7, because ¥ is Q-invariant. Thus z € F,. O

PROPOSITION 5: Let Q'._(:)(k) be single-valued and analytic in U, for each k > 1, where

U is a connected open subset of Foo. If Q,-_(;:)(k) converges uniformly on compact subsets of

U then the limst is a constant function, and the constant is an element of the Julia set J.



PROOF: Call the limit function f. By Proposition 4, f (U) € Foo. But on the other hand
Proposition 3 implies that 7o N f(U) = @, because {Q™(2)} cannot accumulate at any
point of U if 2 € F (note that co & UY). Therefore, f is constant, say f = £. Since £€Fo
and £ € Fo, £ € J. O

Finally, we introduce the notion of an ezcluded value of Q(2). A point ¢ € C is called
an excluded value of @(z) iff Q has the form Q(2) = C(z — £)¢ + ¢. This implies that ¢
is a d-fold root of the equation Q(2) = ¢; consequently, there is no z # ¢ mapped onto ¢
by any Q" (hence the terminology). Observe that there is at most one excluded value for
any polynomial Q(z), because any excluded value is a (d-1)-fold root of Q’ () =0.

Suppose that { is not an excluded value of Q(z). If Q(2) is not of the form Q(2) =
C(z—¢)%+ £ then there are at least two distinct roots of Q(2) = €, and at least two distinct
roots of Q%(z) = £. On the other hand, if Q(2z) = C(z — ¢)? + ¢ there is only one root of
Q(2) = &, namely z = ¢, but in this case the only root of Q’(z) = 0 is z = ¢, so there are
at least two distinct roots of Q2(z) = ¢. It follows that there are at least 2™ distinct roots
of Q%"(2) = ¢, also of Q2"*1(z) = £. Thus the cardinality of Q=™(¢) — oo as n — oo.

In section 4 we will show that the conclusion of Brolin’s theorem holds for every z € C
that is not an excluded value.

3. Brownian Motion in 7

According to a well-known theorem of Lévy [3], if Z; is a Brownian motion in C started
at 2, and if f is a nonconstant, entire, meromorphic function of z such that f (20) # o0,
then f(Z,() is 2 Brownian motion started at f(z,), where

r(t) = inf{f : / "1F(Z)2ds > ). (3.1)

Lévy’s theorem is of a local character, as is apparent from Ito’s formula, hence generalizes
to meromorphic functions and Brownian motion on arbitrary Riemann surfaces. Thus, for
example, if f : C — C is meromorphic and Z; is a Brownian motion on C started at 2,
then f(Z,()) is a Brownian motion on C started at f(z,), where 7(t) is given by (3.1)
but |f'(2)| is interpreted as the local expansion factor for the mapping f relative to the
spherical metric on C. Also, if f is a function that admits an analytic continuation along
every continuous path in € — F, where F is a finite set of points, and if Z; is a Brownian
motion in C started at z, € C — F, then f (Z;()) is a Brownian motion in C started
at f(2,). In all of these scenarios, 7(t) is almost surely a strictly increasing, continuous
function of ¢ satisfying 7(0) = 0 and 7(t) — oo as t — oo.

Let Z; be a Brownian motion on C started at Zy = oo, and let Q(z) be a polynomial
of degree d > 2 with Julia set J. Define

T=inf{t>0:Z € J}. (3.2)

We will prove shortly that T < oo w.p.1. Observe that Z;,0 < ¢ < T, is a stochastic process
with continuous paths in ¥, starting at Z, = oo and either terminating at a point of J or
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avoiding J forever. The distribution of this process is a probability measure P = P on
the space {1 = 1 of continuous paths in %, starting at co and terminating at J, where 02
is equlpped with the o-algebra B generated by sets of the form {Z; € A}, A a Borel subset
of C.

By Lévy’s theorem, Zt Q(Z,(t)) is a Brownian motion on C where 7(t) is defined

by (3.1) with f’ = Q'. The transformed process Z, also has initial point Z, = oo, because
@Q(o0) = oo. Moreover, if T < oo then 7~1(T) < oo, and

r‘l(T) =mf{t>0: Zt € J}

because ¥ and J are Q-invariant sets. On the other hand, if T = oco_then 7~(T) =

so Z, does not hit J in finite time. Thus, the transformed process Zt,O <t< 'r—l(T),
is a Brownian motion started at oo and terminated upon reaching J; in particular, the
process Zt,O <t < 77}(T), has the same distribution as Z4,0 <t <T. It follows that

the sequence {Z; : 0 <t < T},{Z; : 0<t < r“l(T)},{Zt :0<t<7737)},...,isa
stationary process valued in {1, where Z; = Q(Z;(t)), etc. In other words, '

PROPOSITION 6: Q induces a measure-preserving transformation on the probability space
(0, B, P), specifically, if 2,0 <t < T 1s an element of N then (Qz)tﬁQ(z,(t)) where

T(t) = inf{r: /or |Q'(2,)|2ds > t}.

Next we will show that P{T' < oo} = 1. Since Brownian paths are continuous, the
terminal point Zr is a B-measureable function of the path Z;,0 < ¢t < T. Hence, by
Proposition 6, the distribution of Zr (the equilibrium distribution on J) is an invariant
measure for the mapping Q : C — C.

LEMMA 1: Let X; be a Brownian motion in R%, and define Tp = inf{t: |X;| = R}. If
1<r <R then
log r

log R’

P{Tr < Th||X,| =1} =

This is well known: see [3], sec. 2.

LEMMA 2: For each R < oo there exist Ry > R; > Rand0<p< % such that
)< Lol _
~ logl@™(¢)| ~
for all |z| = Ry, |¢| = Ry, and n > 1.

PROOF: This follows from the fact that Q(z) looks like a monomial near co. Choose
€ > 0 small; then there exists R < oo such that for |z| > R,

<1l-p

laz|*(1 — €) < |Q(2)| < laz|*(1+¢)
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for some constant 0 < a < co. If R; is chosen large enough that a?R§(1 — €) > R, then
induction shows that for |z| > R,,

Iazld" (1 _ e) 14-d+...4d"? < IQn(z)I < Iazldn(l_ + e)1+d+...+d"“_

Now choose any Ry > Rp(3££)Zi:47", O
Let Z; be a Brownian motion on C started at co and let T be defined by (3.2).

PROPOSITION 7: P{T < oo} =1.

PROOF: LetT'; = {z € C: |2z| = R;},i = 1,2,3,4 where R; > R;. We will not distinguish
between I'; and its image in C by stereographic projection. Assume that R, is sufficiently
large that {z: |2| > R,} is entirely contained in 7.

A Brownian motion on C started at oo or at any point in the circular neighborhood of
oo bounded by I'y will hit T'; in finite time w.p.1. Consequently, to prove the proposition
it suffices to show that for a Brownian motion started at any point of ', the probability of
hitting J before T'; is at least p for some p > 0, provided R;, R, are suitably chosen. For
this it suffices to show that for any € > 0 the probability of coming within ¢ of J before
hitting I'; is at least p. -

~ Choose R3 so that {z : |z > R3} C 7, and so that in some annulus 4 = {z :
R3 — 6 < |z| < R3 + 6} there is no point of §, (recall that G is a countable set whose
only accumulation point in %, is 00). Then in every open, simply connected subset of A
all branches Q™ are single-valued and analytic, so Proposition 2 implies that in each such
subset {Q; "} is a normal family. Now I'3 may be covered by two simply connected, open
neighborhoods U,V for which ¥ C 4 and V C A. Proposition 5 implies that for each ¢ > 0
there exists n > 1 such that if z € T UV then dist (Q;"(2),J) < ¢ for each branch Q;™
of @~". Choose R4 > Rj so that 'y is contained in ¥ U V; then by construction Q@ ™(T4)
lies entirely within a distance € of J.

Now consider a Brownian motion Z; started at a point 2z, € I';. The probability that
Z; comes within a distance € of J before hitting I'; is at least the probability that it hits
Q@ "(T'4) before hitting T';. By Lévy’s theorem, this is no less than the probability that
a Brownian motion Z; started at Q™(2,) hits T'y before Q™(I';), which in turn is at least
the probability that Z; hits I's before Q"(T1), provided |Q"(2,)| > R4. (If R; is chosen
sufficiently large then this will hold for all n > 1.) By Lemmas 1 and 2 this probability is
> p > 0, provided R; and R are suitably chosen. O

We shall now consider in greater detail the action of Q@ on the measure space (n,8,P).
This action is d to 1, hence not invertible; if (2t)o<t<T € 1 then there are d distinct paths
-all mapped into (2;)o<:<1 by Q. We will show how to permute these d paths in such a way
that P is preserved, thus proving that the Wiener measure P is “equidistributed” among
the d branches of Q1.

Consider first the special case where Q(z) = 2%. Let ¢1,¢s,...,¢ be the ¢~ith roots of
unity. If Z; is a Brownian motion started at co then for any ¢ = 1,2,... ,d)Zt = ¢; 7 is
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also a Brownian motion started at oo, by Lévy’s theorem (or more elementary arguments).
Consequently,
(2t)o<t<r — (izt)o<t<T

is a measure-preserving transformation of (1, 8, P) that permutes paths mapped into the
same path by Q. (NOTE: T is the same for both z; and ¢;z; because for Q(2) = 24,7
is just the unit circle.) It follows that the distribution of (Zt)ogts'r conditional on the
value of (Q(Z:))o<t<7 is the uniform distribution on the d paths (@7 1(Q(2:))o<i<ri =
1,2,...,d.

In the general case the permutations of paths cannot be defined quite so easily. Let
I'= {2 : |z| = R} where R < o is chosen so that §+NI' = @ and {z : |2] > R} C 7. Then
each z € T has a neighborhood in which all branches of Q1 are single-valued and analytic;
consequently, if R is sufficiently large then Q@~(T) is a simple closed analytic curve, and
Q:Q () » I'is ad to 1 covering projection (i.e., each z € Q~1(T') has a neighborhood
in which @ is a homeomorphism). Fix z € Q~!(T); then in some neighborhood of z we
may define analytic functions F; = Qi_l oQ,t =1,...,d, where Ql_l,...,Q;1 are the
distinct branches of @1 near Q(z). Observe that each F; has an analytic continuation
along any curve that avoids the set §, of critical points of @, and, in particular, along
Q@™ 1(T). Note that Qo F; = Q, that the d functions {F;} form a group under composition,
and that each is a homeomorphism of Q~!(T') onto itself.

Now consider the Brownian motion Z; started at co and terminated at J. Since Z
must hit I’ before it hits J, it must also hit Q~!(T') before J (recall that Q(Z;) is, after
a time change, also a Brownian motion started at o0). Let o be the first time Z; hits
Q~1(T'). With probability one, the paths -

Z;,0<t<o and
Zy,o<t<T

are continuous curves that avoid §,, so each F; may be analytically continued from Zy
both backwards and forwards in time, allowing us to define

Zt(i) = Fi(Zo'.'(t))’o <t< a"._l(T),
Zé') = 00, |
where .

oi(t) =inf{s: /0‘ |Fi(Z,)|2dr > t}

and |F{| is the local expansion factor in the spherical metric. (NOTE: Fj(z) ~ agz as
|2| — oo for some o # 0 and one of the d** roots of unity ¢, so |F!(Z,)| is continuous and

finite at r = 0.) By Lévy’s theorem, each Zt(') is a Brownian motion started at oo and

terminated at J. Moreover, Zt(l), Zt(z), ceey Zt(d) are the d distinct Brownian paths mapped
by Q into the path (QZ); (after the appropriate time changes).

PROPOSITION 8: Conditional on the value of the path (QZ);, the distribution of the
path Z; is the uniform distribution on the d paths Zt(l), Zt(z), ceey Zt(d)
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PROOF: By the foregoing discussion, each of the processes Z () = 1,2,...,d, is a
Brownian motion started at co and terminated at J. Consider the followmg method of
generating a path Zy: (1) generate Z; according to P; (2) calculate the corresponding
Z, M, Zt ; (3) choose one of Z; M, Zt( ) at random (using the uniform distribution)
a.nd ca.ll it Z,. Clearly, Z; i is again a Browman motion started at co and terminated at
J, so the processes Z; and Z; have the same law. Given the value of the path (QZ )¢ the
distribution of Zt is obviously the uniform distribution on the d paths Z, (1) A (2) A (9) s
which is the same as the uniform distribution on the d paths Z, (l) A, (d) . O

PROPOSITION 9: The measure-preserving transformation of (1, B, P) tnduced by Q is
strongly mizing, i.e., for any events A, B € B,

'!ingo P(Q™™AnN B) = P(A)P(B) (3.3)
The proof depends on a simple lemma. Let U,,n =1, 2 ., be a decreasing sequence

of neighborhoods of oo in C such that NU, = {oo}, e.g., U, = {z € C: |z > n} U {oo}.
For a Brownian motion Z; on C started at oo let 7(n) = min{t : Z, ¢ Upn}; note that
7(n) | 0 a.s. Define B, to be the o-algebra generated by Z;,t < 7(n).

LEMMA 8: For any event A € B,

lim P(A|B,) = P(A) a.s.

n—oo0

PROOF: By the (backward) martingale convergence theorem, P(A|B,) — P(A|Bo) a.s.,
where By, = NBy,. It follows from the Blumenthal 0 - 1 Law by an easy a.rgument that B,
is a 0 - 1 o-algebra, since 7(n) | 0 a.s. O

PROOF of Proposition 9: First we will show that it suffices to prove (3.3) for a smaller
class of events A, B. Let \

Un = {z: |2] > n} U {00},
Vn = {2 € Fo : dist(z,J) < %}

Define 4, to be the o-algebra of events A € B such that 1, depends only on the behavior
of the path after it first exits Uy, and define A}, to be the o-algebra of events B € B such
that 15 depends only on the behavior of the pa.th before it first enters V,. Any events
A, B € B may be arbitrarily well approximated by A€Uyd,and Be Un4;, i.e., for any
€>0, A B may be chosen so that

P(AAA) < e and P(BAB) <e.

Since @ is a measure-preserving transformation of (02, B, P) it therefore suffices to prove
(3.3) for A€ U A, and B € U, 4}.



Let Z;,0 < t < T, be a random path with distribution P and let 7 = Q*Z =
(Q™(Zo(z))) where o(t) is the appropriate time change. Thus Z,Z are both Brownian
motions started at co and terminated at J. Then

P(Q™ANB)=P{Zc A;Z € B}.

If A€ 4,, and B € 4%, then the event {Z € A} depends only on the behavior of the path
Z after it exits Um, while {Z € B} depends only on the behavior of the path Z before
it first enters V,,. By Prop. 8 the conditional distribution of Z given Z is the uniform
distribution on the d™ paths mapped into Z by Q"; it follows that P{Z € BIZ} is a
function only depending on the path Z up to the time it first exits Q" (Foo — Vin). Now
F50 — Vm is a compact subset of 7, so, by Prop. 3, Q™(z) — oo uniformly for z € Foo, — Vps.
Hence, for large n,Q"(#c — Vp,) is a small nelghborhood of oo contained in U,,, and as
n — 00,Q" (% — Vm) shrinks to co. Let B, be the : o-algebra of events depending only
on the behavior of the path Z up to the first time Z exits Q" (#o0 — Vm) and let B, be
the o-algebra of events depending only on the behavior of Z up to the first time Z exits
QR™"(#oo — Vm); then P{Z € A|B,} and P{Z € A|B,} have the same distribution, so by
Lemma 3
P{Z € A|B,} — P{Z € A}

in probability as n — oco. Therefore, for large n
P{Z € A;Z € B} = E1{Z € A}P{Z € B|%}

= EP{Z € A|B,}P{Z € B|Z} .
~ P{Z € A}P{Z € B}. 0

COROLLARY 1: Let L be a closed subset of 7o, and let f : J — C be continuous. If Z is
a Browntan motion started at co and terminated at J then

lim Ef(2r)1{Z hits Q~(L)} = Ef(Z7)P{Z hits L} (34)
and .
lim n~! "{_:: 1{Z hits Q"™ (L)} = P{Z hits L}a.s. (3.5)

PROOF: (3.4) follows from the strong mixing property by a standard approximation
argument, and (3.5) follows from Birkhoff’s ergodic theorem, since strong mixing implies
ergodicity. _ O

COROLLARY 2: The equilibrium distribution on J is a strongly mizing invariant measure
Jor the transformation Q : J — J.

PROOF: This follows immediately from (3.3) applied to évents A, B that only depend on
Zr. O



4. Brolin’s Theorem

Let D be a simply connected region contained in #,, such that D N 6+ = 3. Assume
that the boundary 8D is smooth. Then all branches {Q@; "} of the inverse functions Q—"
are single-valued and analytic in D and, by Proposition 2, the collection {Q; "} is a normal
family in D. Define

D}=Q;™(D); D" = L;ID:'l = Q~™(D).

Then each D? is a simply connected region with a smooth boundary, and D n DJ'-‘ =
& if 1 # j. Proposition 5 implies that

lim maz diam(D}) =0, (4.1)
n—oo 1

lim maz maz dist(z,J) =0. (4.2)
n—o00 T zGD'!‘

Let {4n}n>1 be any sequence of Borel probability measures on C such that pn(D?)=d™™
fori=1,2,...,d".

PROPOSITION 10: As n — oo,y converges weakly to the equilibrium distribution on J.
PROOF: Let Z;,0 <t < T, be a Brownian motion started at oo aﬂd stopped at the first
time T it hits J, and let f be an arbitrary continuous function on C. We must show that

lim [ fduy = Ef(27).

Define 7, = inf{t : Z; € D™}. For large n, if 7, < 0o then r, is close to T, by (4.2),
hence
lim E|f(Zr) - {(Z.,)]1{ra < 00} =0.

It now follows from Proposition 9 that for large n,

Ef(Z,,)1{rn < oo}
~ Ef(Zr)1{r, < oo}
= Ef(Z1)1{Z; hits Q"™(D)}
~ Ef(Z7)P{Z, hits D}.

It remains to show that
lim |Ef(Z,,)1{ra < 00} — ( / fdun)P{ra < 00}| = 0.

The event {7, < oo} = {Q"™Z; hits D} depends only on the path Q™Z. By Proposition 8,
conditional on the value of the path Q" Z, the distribution of Z is the uniform distribution
on the d™ paths Z(¥) = Q; "(Q"Z); consequently ’

Ef(Z,,)1{r, < oo}
= B@™ 3 £(Q7™(@"(Z:.)))1{ra < oo}.
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Since Q"(Z;,) € D there is exactly one point among Q; *(Q"(Z,)) in each D?. It follows
from (4.1) and the continuity of f that for large n,

| & 8 1@ @2 ) ~ [ fdun
on the event {r, < oo}. O

COROLLARY 8: Letz € 30,2 ¢ G+, and define uZ to be the uniform distribution on the
d" points in Q~"(2). Then as n — oo, uZ converges weakly to the equilibrium distribution
onJ. O

To complete the proof of Brolin’s theorem we will show that uz,ué are eventually
close in the weak topology for any 2, £ € C, provided neither z nor ¢ is an excluded value
of Q (recall that there is at most one excluded value). The argument involves no further
use of Brownian motion or the results of section 3.

Suppose that both z and ¢ are elements of a simply connected domain D C C such
that DN G, = &. Then all branches Q; ™ of Q" are single-valued and analytic in D, and
D} = Q;*(D),s = 1,2,...,d", are pairwise disjoint domains satisfying (4.1) and (4.2),
and each containing precisely one root of Q"(¢) = z and one root of Q"(¢) = £. Clearly,
(4.1) implies that pZ and pé are close in the weak topology. : '

Unfortunately, not all 2, ¢ are contained in a simply connected domain disjoint from
G+, so not all z, ¢ are contained in a connected domain in which all branches Q" are
single-valued and analytic. Consequently, we must deal with domains that contain branch
points of Q™™ for infinitely many n. For a simply connected domain D C C define 8, (D)
to be the number of branches of @ ™" that are single-valued and analytic in D. Recall that

Go is the set of critical points of Q and §,, = .'_l'J'1 @*(G,) is the set of finite branch points
of Q™. = '
LEMMA 4: If DN Gy = O then for n > 0,
| ﬂm+n(D) > dmntnr _ gn+l +d.
NOTE: see [6] for a similar result.

PROOF: By induction on n. By hypothesis D contains no branch points of Q™™, so
all branches of Q™™ are single-valued and analytic in D, whence 8,,(D) = d™, proving
the case n = 0. Suppose now that the result holds for some n > 0. Each of the single-
valued, analytic branches of Q—(™+%) maps D homeomorphically onto a simply connected
domain D; (since each branch of Q—(m+n) j5 obviously 1-1 in D), and the various regions
Dy, D,,...,D, are pairwise disjoint. By the induction hypothesis, r > d™+" — gn+l 4 d,
Now there are at most (d — 1) branch points of Q~!, so at most (d — 1) of the regions
Di,Dg,...,D, contain branch points of @—!; hence in at least r — (d — 1) of the regions
D; all d branches of Q! are single-valued and analytic. Therefore the number of single-
valued, analytic branches of Q—(™+7+1) ip D is at least

dr—d+1) > d(d™t" —d"*! +d—-d+1)
= dmntl gt g, O
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" Let £ € C— G4 ; then £ is not a branch point of any Q. Fix z € %o — G+. Then for
any m > 1 there is a simply connected domain D containing both ¢ and 2 and such that
DN Gy = D, because Gy, is a finite set with neither ¢ nor z as a member. Let {Q: "} be
the set of all branches of some Q~",n > 1, that are single-valued and analytic in D. By
Proposition 2, {Q; "} is a normal family in D. Define D? = Q; (D) for each Q; " that
is single-valued and analytic in D; then Proposition 5 implies that (4.1) and (4.2) hold.

Each D} contains precisely one element of Q"(z) and one element of Q~"(¢). Pair
off the elements of Q7" (¢) and Q7"(2) in such a way that if ¢’ € Q~"(¢) and 2’ € QR "(2)
are in the same set D} then they are paired together. Observe that for pairs (¢',2') such
that ¢’,2’ € D} for some D? the distance between ¢’,2’ is small if n is large, by (4.1).
The number of such pairs is '

Bn(D) > d™(1 — d~(m=1) _ g=(n=1)),

by Lemma 4, provided n > m. The total number of pairs'is d" = |Q™"(z)| = |Q~"(¢)]. It
now follows that if f is any continuous function on C then

tim sup| [ fduz — / Fdut] < 2|f||ed— ™D, (4.3)

n—oo

But m > 1 was arbitrary; consequently, as n — oo the measures ui,ui become close
in the weak topology. According to Corollary 3, uZ converges weakly to the equilibrium
distribution on J. Therefore, for any ¢ € C — §,, as n — oo the measures ué converge
weakly to the equilibrium distribution on J. ‘

It remains to consider points ¢ € §,. Assume that ¢ is not an excluded value (recall

that there is at most one excluded value). Then as n — oo the cardinality of Q~"(¢) — oo.

It follows that for any € > 0 and each m > 1 the proportion of points in Q7 ™(¢) that are
in Gm is < € for all n > n(e,m) > m.

Fix 2 € oo — . For each £ € Q7 "(¢), £ & G, there is a simply connected domain
D containing both ¢ and 2 such that DN G, = &. By the same argument as earlier, if f
is any continuous function on C then (4.3) holds. Now

n(elm) 2 #6

g — —
I"n+n(e,m) =d tcq-ntem (g) n

and pf — p weakly, where u is the equilibrium distribution on J ; consequently, by (4.3),

lim sup| [ fdus, — / fdu] < 2||f|loo(d™™F + €).

n—00

Since € > 0 and m > 1 are arbitrary, this proves that u$, — u weakly. This proves Brolin’s
theorem. O
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