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Abstract

Under a nonlinear regression model with heteroscedastic errors, the consistency and
asymptotic normality of the least squares estimator are proved and consistent estimators of the
asymptotic covariance matrix of the least squares estimator are obtained. Statistical inference
methods based on tt’lese results are then asymptotically valid in both homoscedastic and

heteroscedastic models.
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1. Introduction

The purpose of this article is to establish an aymptotic theory for statistical inference by

using least squares method in the following heteroscedastic nonlinear model:
(1.1 2 =f(x‘,, 0) + e i=1,..,n,

where 0 OcR? is a p-vector of unknown parameters of interest, X, are known g -vectors,
f (xi, 0) are known nonlinear functions of 0e®, and e, are independently distributed errors

. . 2 2 .
with means zero and variances G, . The G, are unknown and unequal (heteroscedastic).

The least squares estimator of 6 based on data { Y, }in=1 is defined to be any vector Gne ®

which minimizes

(12) 0@ =n"3%" 0, 0"

The existence and measurability of the least squares estimator Gn are ensured by the compact-
ness of the parameter space ©. In the general case where © is not compact, we shall follow
Richardson and Bhattacharyya’s (1986) approach, i.., construct an increasing sequence

{ C'l } of compact subsets of ® such that v Cn is dense in ® and obtain the least squares

estimator én by minimizing Q (6) (1.2) over 8 C_ for each fixed n.

The method of least squares plays a central role in the statistical inference in the
homoscedastic model, i.e., the model (1.1) with ci2=02 for all i{. In the heteroscedastic model
(1.1), there may exist more efficient estimators of 0 such as the weighted least squares estima-
tor. See Fuller and Rao (1978), Carroll (1982) and Miiller and Stadtmiiller (1987) for some
asymptotic theory of the weighted least squares estimatoré in linear models, i.e., f (xi, 0)= xiTO,
where x° is the transpose of the vector x. However, we will concentrate on the (unweighted)
least squares estimator for the following reasons:

(1) In an applied context, an investigator may overlook the error heteroscedasticity and use
the unweighted least squares method because of its familiarity and simplicity. A relevant
problem is then whether or not the statistical inference methods based on the least squares are

robust against the error heteroscedasticity.

(2) The weighted least squares method involves a problem of choosing adequate weights and

an additional computation of the weights.



(3) In many cases the 0i2 are unequal but close to each other and therefore the weighted least
squares estimator may not be better than the unweighted least squares estimator (see Jacquez,
Mather and Crawford (1968) and Shao (1987)).

When f (xi, 0) are nonlinear in 0, the least squares estimator does not enjoy any tractable
finite sample optimality property. Theoretical asymptotic properties of the nonlinear least
squares estimator in the homoscedastic model (G‘_ZEO'Z) were established by Jennrich (1969),
Malinvaud (1970), Wu (1981) and Richardson and Bhattacharyya (1986). We will prove,

under the heteroscedastic model (1.1), the consistency and asymptotic normality of the least

squares estimator Gn in Sections 2 and 3, respectively. Due to the error heteroscedasticity, the
customary estimator of the asymptotic covariance matrix of Bn based on the "residual sum of

squares” is inconsistent. Consistent estimators of the asymptotic covariance matrix of én,
which are essentially jackknife-based estimators, are obtained in Section 4. The conditions we
impose on the functions f (xi, 0) are the same as (or similar to) those in Jennrich (1969) and
Wu (1981).

2. Consistency

Denote f (xi, 0) by fi (0) and the unknown true parameter by 60. In the homoscedastic
model, Jennrich (1969) proved the consistency of the least squares estimator under the follow-
ing conditions.

(Ch © is a compact subset of R”.
: “1an : . .
(C2) hmn_mn > f '(t)fi (s) exist uniformly for all # and s in ©, and

=1t

Q(0) = limn_)“n_lzi';l(fi (9)—fi (60))2 has a unique minimum at 6=0 v

Theorem 1(i) is an extension of Jennrich’s result to the heteroscedastic model. Some

minor assumptions are added to handle the error heteroscedasticity.

Theorem 1. Assume (C1) and (C2). Let { én } be a sequence of least squares estimators.

(1) If for a 8>0,



2.1) sup E e | < o,

then

A
6 50 as.
n 0

(ii) If the errors e in model (1.1) satisfy ei=0'i28‘,, where g, are independently and identically

distributed and sup, 6i2<°°’ then

A

On —>p90,

where ——>P denotes convergence in probability.

Remark 1. By adopting Richardson and Bhattacharyya’s approach (see Section 1), our
results can be extended in a straightforward manner to the general case where ® is not com-

pact.

Proof. (i) Under Condition (2.1),
len , 2 2
n Zi=1(ei —-o",) - O a.s.

(see Chung (1974, Theorem 5.4.1)). Let w={ e, }:’ ) be fixed such that n_lz'" l(ef—c‘?)-»o,
= =

and 9n=9n (w). Suppose that 6’ is a limit point of { On }:= X Then there is a subsequence
{ n }]c=1 such that

lim 6 =6
k—oo n,

Denote n_lz_n 10? by An. Since {An }:_1 is bounded under (2.1), there is a subsequence
1= ) =

{ nj }j=lc{ n }k=1 such that A=1imj_)°°Anj exists. Under (Cl). and (C2),
hmj_anj(O) =0@®+A

uniformly for all 6 © (see Jennrich (1969, Theorem 4)). Then
limj_)“an(Onj) =0(0) + A

By the definition of the least squares estimator,

Q0 (6)<0 @)= nj‘lzi";-lef = A.



Hence Q(6)=0 and 6'=90 follows from condition (C2). This proves en —0 o @S-
(ii) It suffices to show that for any subsequence {nk };;1, there is a subsequence

{ nj }j.—;lc{ n, }k=1 such that Onj—>90 a.s.

2 o0 . oo oo
By the boundedness of S, for any2 { n }k=1 there is a {"1 }l=lc{ n }k=1 such that

: : -lgqn
A=lim A exists, where A =n Y~ ©..
100 1y n i=1

Then from Jamison, Orey and Pruitt (1965),

-lan, , 2 2 -lan 2 2
n E 1 -0 - Z 1 -_ - X
l ,'=1(ei i ) nl i=1(£i l)oi po
Hence there is a subsequence { ", };lc{ n };:1 such that

=-1_.n, 2 2
nj Eiél(ei —6‘,) -0 as.
Then the proof of 6n —0 o &5 is the same as that of (i). O
j

Under a different set of conditions Wu (1981) proved the consistency of én. See his

Theorems 2 and 3 and the remarks after them.

We state the following result from Wu (1981, Appendix), which will be used in the

proofs of our main results in Sections 3 and 4.

Lemma 1. Let C be a compact subset of R” and { h.(t) };l be a sequence of continuous

functions in re C satisfying

| (t)h, ()]

(2.2) SUP st 5. teC l2=s |

<M supteC]hi(t)l,

where O<M < is independent of i and | || is the Euclidean norm on R?. Let { §i }; . be a

2
sequence of independent random variables with E§i=0 and supiEii <oo, If as n—oo,
— n 2 0o
dn_ Z,'_—.lsupteclhi O = e,
then

. n _
hmn-—)eosuptec IZi:lhi (t)ﬁi |/dn =0 a.s.



For differentiable functions hi (2), a sufficient condition for (2.2) is
supteclhi(t)l > c > 0 and suptecll h:_(t)ll < ¢, < oo,

where ¢ 1 and ¢ , are independent of i and h:, (¢) is the gradient of hi @®).

3. Asymptotic normality

Assume that 90 is in the interior of ® and the second order derivatives of f ; (8) exist and

are continuous in 8e{ ||6-90 0 | < 28 }, where 8>0 is a constant. Denote

,oay— 0 P o
5@ =50-i® £,®=5555F,®

(3.1) g,® =(f,0)...f,©®)), AO®=3"¢®gO),
where g:(e) is the transpose of 8; (0), and

H®)=1f®]1, -

The asymptotic normality of the least squares estimator Gn is established under several of

the following conditions:

(C3) There are positive constants v and p such that VSGiZSp for all i.
C4) i. For sufficiently large n, the inverse of An (90) exists, A;l(e O)=0 (n_l) and
An (60)=0 (n).

il A’l (G)A;I(OO) converges to the identity matrix Ip as n—o and 6—0 o

T -1

iil. max, g © O)An (Oo)gi ) 0) — 0 as n—eo.

. —1 . —1 y7 Y7 .
(C5) lim __n" %" f,(0)f,(s) and lim __n" 3" fr ()f;(s) for all (&, I) exist

uniformly for all + and se C={ || 6—90||.<_5 }.

. g -l v 2
(C6) i lzmsupn_mn El_:lsupee C(fikl (0))” < oo for all (k, ).

.o . g Y74 2 144 hed

ii. If for a pair (k, /), E‘_ﬂsupee C(fiu (6))"= o=, then the sequence { ftkl (©) }i=1

satisfies Condition (2.2) with C={ || 6—60 |<6 }.



Remark 2. (i) Condition (C4i) is equivalent to that the minimum and maximum eigenvalues
of n_lAn (90) are bounded away from O and o, and is much weaker than n—lAn (60) converg-

ing to a positive definite matrix, a condition assumed in Jennrich (1969).
(ii) Condition (C4ii) implies that A;I(O) exists for sufficiently large n and 0 near 90.

(iii) Condition (C4iii) is implied by either the existence of a positive definite matrix
s -1 -1 -~
A(OO)-,-hmn_Mn An(eo) or An (90)—>O and sup, IIg‘.(Go) | €c <eo.

(iv) Condition (C6i) is implied by the boundedness of { sup, C(f;;c,l (9))2 };.

For any positive definite matrix P, there is a positive definite matrix A such that P=A 2,
Define P"*=A and P™"=A""

Theorem 2. Let { (3n }:’= . be a sequence of (weakly) consistent least squares estimators and
_ a1 n 2 T -1
D ®)=A O)F o5 O OA ©).
(i) Assume Conditions (C3), (C4) and (C5). Then

) ~
(3.2) Dn (90)(6n—60) -, N (O, Ip),
where -, denotes convergence in distribution.

(i1) Assume Conditions (C3), (C4) and (C6). Then (3.2) holds.

. -1 1 .
Remark 3. Under (C3) and (C4i), Dn(eo)—O (n ) and Dn (60)—0 (n). If hmn_mnl?n (60)
=2(0 0) exists and is positive definite, which might be a too strong assumption, then n~ 2(90)

is the asymptotic covariance matrix of On. For practical usrs, Dn (90) can be treated as the
asymptotic covariance matrix even if nDn (90) does not have a limit. Consistent estimators of

Dn ® 0) are given in the next section.

Proof. Let Q;(e) and Q;’(G) be the gradient and hessian matrix of Qn(e), I 6—60||< 285.
Then

Q0 ®) = n-lzi’;l(f‘, ©)-f,(8)—¢,)g,(6)



and

’r -1 n T n _ _
Q/@) =n" (X & OO+ (F,©O)F,O)-¢ H,O.
On the set { || én —90 | <61, Q; (én )=0. By the mean-value theorem,
Q/6)=0"(6)6, ),
where 9: is a point on the line segment between 6 , and én. Thus,

n A
Z,-=1g ;Ope, =B A 80 8,
where
LS | n * * —1
B =A (®)A (6)+ Zi=1(f ;0,)-f,8)—e)H (8 )A 6,
Then (3.2) follows from

3.3) B —» I,
n P P
and
) -1 n
(3.4) Dn (¢ O)An ® O)Z,'=1gi (Go)ei — 4 N (O, Ip ).

Proof of (3.3). From (C4ii) and the consistency of 6n, An (6:)A;1(60)—>p1p. By the
Cauchy-Schwarz inequality,

n ¥ * 1
X, (), O )H, @ )A @) — 0
follows from 6:—>p 60, (C4) and either (C5) or (C6i). Then (3.3) follows from
-1 n
n Z;=1Hi (6)ei —)pO
uniformly on C={ [|6-6 0” <0 }, which is implied by either (C5) or Lemma 1 under (C6ii).
Proof of (3.4). Let A be a fixed p -vector and
AT~ -1
¢, = A Dn (Go)An (Oo)gi (60).
Then by the Cauchy-Schwarz inequality and (C3),
2 .1 0t -1 -1 -1
¢, SAAg(B)A "(6)D "(8)A "(6 )8, (0)
<V g0 O)A;l(eo)gi ®,).



Also,
)

T el =ND 04T @) 2,8 )8 A @)D O N

® )7\.

-

~lh —/2

—?»D (9 )A (6 )D

>p xD (e)D GRS CINY
= p A",
Hence
ax_ (cf/zi’;lcf) <v'pmax_ g0 )A ' )g.(6,) = 0
by (C4iii). Thus, the Lindeberg’s condition holds and therefore
fD:’z(eo)A;‘(eO)zi”:lgi e, =, N, D).

This shows (3.4) and completes the proof. [J

4. Consistent estimators of the asymptotic covariance matrix

For the purpose of inference, the result in Theorem 2 is useful only if we can find a con-

sistent estimator of Dn © O), the aymptotic covariance matrix of © . That is, an estimator Dn
n

such that
n[bn—Dn(GO)] 0 as. (or in probability ).

. . A-La . .
The estimator based on the residual sum of squares, Qn (9’l )A’l (Bn), is consistent in the

homoscedastic model but inconsistent in the heteroscedastic model.

In linear models (ie, f (xi, 0)= x:G ), the following estimators are shown to be con-

sistent in both homoscedastic and heteroscedastic models (Shao and Wu (1987)):

(4.1) @ XX E (W) 0 0 )xx(Z xa

which is equal to Hinkley’s (1977) weighted jackknife estimator if w.=p /n, and is equal to
Wu’s (1986) weighted jackknife eshmator if W, =X, (E XX ) x

llll i

Natural extensions of estimators (4.1) to the nonlinear model are



A

_ _1 A n _ _1 2 A T A __1 A
“42) D =A 0 X" (1-w)'r’g,® ) ® )4 @)
where A’l (0) and g; (0) are defined in (3.1), r= yi—fi (én) is the ith residual, and w, equals
either p/n or g:(én)A;l(én)gi(én). From Remark 2(ii), A;l(én) exists for large n if (C4)

holds and én is consistent for 90. If we assume
(43) lg,®)ll sc, for0e{ |60 [I<3 1},

then

T A _1 A A
max._ g (Gn )A'l (Gn )gi (6'l ) —>p 0.

Thus, the estimators defined in (4.2) for two choices of w, are asymptotically equivalent. We

will show in Theorem 3 that f)n (4.2) are consistent estimators of Dn ) 0) for any choice of w,

satisfying OSwi <1 and

4.4 max,  w. — 0 a.s. (or in probability) if 6;; 7—>90 a.s. (or in probability).

A

When w, in (4.2) are chosen to be identically equal to zero, Dn is the variance estimator
obtained by the linear jackknife (Fox, Hinkley and Larntz (1980)). There exist other estima-
tors of Dn (60) such as the estimator obtained by the exact jackknife (Duncan (1978)) and its
modifications (Simonoff and Tsai (1986)). However, the consistency of these estimators has
not been justified thus far.

. Some of the following conditions will be used in proving the consistency of f)n. For a
fixed pair (k, ), let h, (6)=fi’]c (G)fi'l (6).
(C7 sup, Eei4 < oo,
(C8) i sup, g, @)1< c< oo
i. {g,® }; , are equicontinuous in 6e C={ |66 [I< 3.

(C9 The sequence { hi (6) }; . satisfies condition (2.2) with C={ ]]6—60 I<d }, if



X supy, [h @) = o

(C10) The limits of n_lz_n 1hi (t)hi (s) exist uniformly for # and s in C.
=

Remark 4. Under (C8), (4.3) is satisfied. Condition (C8) is implied by that g (0)=¢ (xi, 0) is

continuous on X xC, where X is a compact subset of R? and x.eX for all i.
We establish the following lemma first.

Lemma 2. (i) Assume (4.3), (C7) and (C9). Then
“lanr , 2 2 '
4.5) SUp. |n Zi=1(ei —0; )hi @) >0 as.

(ii) Assume (C7) and (C10). Then (4.5) holds.

. 2 -1 2 2 . .
Proof. (i) Let dn=2in=lxs‘upte C[hi (#)]” and §n= sup, Cln Z:;l(ei —0; )hi (#)|. Since dn is
increasing in n, we have either dn —o0 Or dn —>d <eo,
Case 1: dn —oo, By (C7), (C9) and Lemma 1,
n/ld -0 as.
n n
Under (4.3), { n”'d_}"_ is bounded. Hence (4.5) holds.
Case 2: dn —d<es. From
Yo sl , 2 220
§, <d n 1Z" (¢ -6,
the result follows if
(4.6) n_2Z_" 1(e‘,z—(')'iz)2 -0 a.s.
i=
2 22 2 22 -
Let zi=(ei —o",) ~E (e‘, —oi) . Then by (C7), S"piE |Zi | <eo and therefore
S Elz|/i% < oo,
i=1 i
From Theorem 5.4.1 of Chung (1974),
-2 n
n Zi:lzi -0 as., |
which implies (4.6). This completes the proof of (i).
(ii) The result follows from Theorem 4 of Jennrich (1969). O

10



Theorem 3. Suppose that én —0 0 &5 Let f)n be defined in (4.2) with W, satisfying (4.4).
(i) Assume Conditions (C4), (C7), (C8) and (C9). Then

@.7) n[f)n—Dn ©)1 -0 as.
(ii) Assume Conditions (C4), (C7), (C8) and (C10). Then (4.7) holds.

Remark 5. (i) Condition (C8) implies that w, =g7(§n )A;l(én )gi (6n) satisfies (4.4). Thus, the
class of estimators (4.2) with w, satisfying (4.4) includes the linear jackknife estimator

(wiEO), the extensions of Hinkley’s weighted jackknife estimator (wiEp /n) and Wu’'s

weighted jackknife estimator (wi =g:(§n )A;l(én )gi (én )). They are all consistent according to

the theorem.

() If Gn is only weakly consistent, ie., Gn—>p 90, then Dn is weakly consistent, i.e.,

n[Dn—Dn (90)]—>p 0. The proof remains the same except that — a.s. should be replaced by

- .
P

Proof. Under Conditions (C7), (C8) and either (C9) or (C10), the conditions of Lemma 2 are

satisfied. Hence by the consistency of Gn and Lemma 2,

-1 n 2 2 A T A
" Zi=1(ei ~0.)8,0 )g;® ) =0 as.

Then from Condition (C4),
4.8) na 63" (€-o0, ®)E®)A@ ) >0 as.
Let U, =f ; (90)—f ; (én). Then r=e +ui. From the mean-value theorem,
u.=g1(8)0,0 ),
where 9: is on the line segment between 90 and én. Under (C8), there is a constant M >0

11



such that

2 * * A 2 2 2
max,_ " <max,_ [g°(6 )g,(0 )10 ~8 <M 6 -6 ||° >0 as.
and therefore
-1 A n 2 A T A -1 A
nAn (Gn )Zi=1ui g (Gn)gi (Gn)A’l (On) -0 a.us.
Thus, by (4.8) and the Cauchy-Schwarz inequality,

4.9) Cl )zi’;l(rf—of)gi ©®)E'® IA'® ) >0 as.

From (C8), for any pair (k, /), -

max. . Ifi'k(en)fi’z (en) - fi’k (eo)fi’l (90)| -0 as.
Under (C7), { 0'i2 };1 is bounded. Hence

@10) @)% o7lg,©,)6®,) ~ g,0)g[®)A ) >0 as.
From (C4),
4.11) nA”@ DIRAAC JE®IAT@ )~nD 8) -0 as.

Then the result follows from (4.9)-(4.11) and that w, satisfy (4.4). O

Thus, the following result can be used in making statistical inferences about 6.

Corolléry. Assume that the conditions in Theorems 2 and 3 hold and Gn is weakly consistent
for 60. Then
A—/2 A

D’l (en—eo) -, N(O, Ip )s

for any 13" defined in (4.2) with W, satisfying (4.4).

12



-« oummary

Under the heteroscedastic model (1.1), the least squares estimator of 0 is consistent and
asymptotically normal. The estimators defined in (4.2) are consistent for the asymptotic
covariance matrix of the least squares estimator. These results hold, of course, in the special
case of 0'1,2=<)'2 for all i. Thus, any statistical inference method based on the least squares and
Corollary in Section 4 is asymptotically valid and is robust against error heteroscedasticity, if

the model is assumed to be homoscedastic.
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