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Abstract

Consider k populations 1, ..., 7k, where an observation from population 7; has a
binomial distribution with parameters N and p; (unknown). Let ppz) = lrgr_l%xk pj. A popu-
lation 7; with p; = pyy) is called a best population. We are interested in selecting the best
population. Let p = (p1,...,pr) and let a denote the index of the selected population.
Under the loss function L(p,a) = px] — Pa, this statistical selection problem is studied
via a parametric empirical Bayes approach. It is assumed that the binomial parameters
pi, 2 =1,...,k, follow some conjugate beta prior distributions with unknown hyperparam-
eters. Under the binomial-beta statistical framework, an empirical Bayes selection rule is
proposed. It is shown that the Bayes risk of the proposed empirical Bayes selection rule
converges to the corresponding minimum Bayes risk with rates of convergence at least of
order O(exp(—cn)) for some positive constant ¢, where n is the number of accumulated

past experience (observations) at hand.
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1. Introduction

Consider k populations 1,..., 7, where an observation from m; has a binomial dis-
tribution with parameters N and p; (unknown). Let p;) < ... < pjx) denote the ordered
values of the parameters py,..., pk. ‘It is assumed that the exact pairing between the
ordered and the unordered parameters is unknoWn. Any populétion associated with ppz)
is considered as the best population. A number of statistical procedures based on single
sampling or sequential sampling rules have been studied in the literature for selecting the
best binomial population. Sobel and Huyett (1957) have studied a fixed sample procedure
through indifference zone approach. Gupta and Sobel (1960), Gupta and Huang (1976),
and Gupta, Huang and Huang (1976) have studied this selection problem using a subset
selection approach. Bechhofer and Kulkarni (1982) and Kulkarni and Jennison (1986) have
studied a sequential selection procedure. Recently, Abughalous and Miescke (1987) have
studied Bayes selection procedures under “0—1” loss and some linear loss for certain priors

(also, see Gupta and McDonald (1986) for some new work and an application).

Now, consider a situation in which one will be repeatedly dealing with the same selec-
tion problem independently. In such instances, it is reasonable to formulate the component
problem in the sequence as a Bayes decision problem with respect to an unknown prior dis-
tribution on the parameter space, and then, use the accumulated observations to improve
the decision rule at each stage. This is the empirical Bayes approach of Robbins (1956,
1964 and 1983). Recently, Gupta and Liang (1987) have studied the problem of selecting
the best binomial population by using the nonparametric empirical Bayes approach. They

assume that the form of the prior distribution is completely unknown. However, in many
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cases, an experimenter may have some prior information about the parameters of interest,
and he would like to use this information to make appropriate decisions. Usually, it is
suggested that the prior information is quantified through a class of subjectively plausible
priors. In view of this situation, in this paper, it is assumed that the binomial parameters
pi, t =1,...,k, follow some conjugate beta prior distributions with unknown hyperparam-
eters. Under the binomial-beta statistical framework, an empirical Bayes selection rule is
proposed. It is shown that the proposed empirical Bayes selection rules possess the fol-
lowing asymptotic optimality property: The Bayes risk of the proposed empirical Bayes
selection rules converges to the minimum Bayes risk with rate of convergence at least of
order O(exp(—cn)) for some positive constant ¢, where n is the number of accumulated

past experience (observations) at hand.

2. A Bayesian Formulation of the Selection Problem

Let 71, ..., 7 denote k populations, each consisting of N trials. Foreachz =1,...,k,
let p; be the probability of success for each independent trial in w;, and let X; denote
the number of successes among the associated N trials. Then, conditional on p;, X; is
binomially distributed with probability function fi(zilp:) = (i\f WL — )Nz =
0,1,...,N. Let f(z|p) = z_]fIIf,-(:c,-|p,-), where £ = (z1,...,zx) and p = (p1,...,px). For
each p, let p;) < ... < ppx) be the ordered values of the parameters py, ..., pr. It is assumed
that the exact pairing between the ordered and the unordered parameters is unknown. A
population m; with p; = pz is considered as a best population. Our goal is to derive an

empirical Bayes rule to select the best binomial population.
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Let Q = {plp = (p1,..-,Pk), i € (0,1), ¢ =1,...,k} be the parameter space. It is
assumed that the parameter p has a prior distribution G with a joint probability density

k
function g(p) = [1 gi(pi), where for eachi=1,...,k,
=1

F(ami)ﬁ((z;é = u,-))p?im—l(l — pi)*GTHI, (2.1)

and where 0 < y; < 1,a; > 0, both y; and a; are unknown. Thus, we call the statistical

9i(pi) =

model under study as a binomial-beta model.

Let A= {i|ls = 1,...,k} be the action space. When action 7 is taken, it means that
population 7; is selected as a best population. For the parameter p and action ¢, the loss

function L(p,%) is defined as
L(p,7) = px) — pis (2.2)

the difference between the best and the selected population.

Let X = (Xi,...,X) and let X be the sample space generated by X. A selection
rule d = (dj,...,d) is a mapping from the sample space X to [0,1]* such that for each
observation £ = (z1,...,2%) in X, the function d(z) = (di(z),...,dr(z)) satisfies that
0 <diz) <1, ¢=1,...,k and idi(:f) = 1. Note that di(z), ¢ = 1,...,k, is the

probability of selecting the population m; as the best population when z is observed.

Let D be the class of all selection rules defined above. For each d € D, let r(G,d)
denote the associated Bayes risk. Then, r(G) = diél}f) r(G,d) is the minimum Bayes risk.

From (2.1) and (2.2), the Bayes risk associated with the selection rule d is:

k
(G, d) = /Q ™Y L(p,i)di(z) f(z|p)dG(p)

TEX i=1

k
=C - Z [Z di(ﬁf)soi(wi)] f(z), (2.3)

TeX Li=1
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k
where f(z) = l:[ fili), fi(zi) = Jy filzilp)gi(p)dp, @i(z:) = Elpilzi] = (zi +aips) /(N +
a;), the posterior mean of p; given X; = z;, C = 2 Jo Pry9(plz)dpf(z), being a constant,

T(Nto; Z§ ipi—1
and g(BI:E) H gz(pzlxz)’ where gz(p,l:v,) F(z;+aiu-)F((N+ ¢)+a.(1 z Pi ok (1 -

p,-)N‘ﬂ“"“’;"'(l““')"1 is the posterior density function of p; given X; = z;.

For each z € X, let

Ale) = 15 = e S, (2.4

Thus, a randomized Bayes selection rule, say dg¢ = (dig,-..,drg), can be obtained as
follows:

dote) = { O Tic e @9

where |A(z)| denotes the cardinality of the set A(z).

It should be noted that nonrandomized Bayes selection rules do also exist. For ex-
ample, let I(z) = min{i|¢ € A(z)}. Then, a nonrandomized Bayes selection rule, say

dg = (cilg, ... ,Jkg), can be obtained as follows:

dig(z) = {1 Hi=Ia),

0 otherwise.

Note that the Bayes selection rule dg is dependent of the values of the parameters
(aiy pti), ¢ = 1,...,k. However, since the values of these parameters are unknown, it is
impossible to apply the Bayes selection rule dg for the selection problem at hand. As we

mentioned above, we study this selection problem via empirical Bayes approach.



3. The Proposed Empirical Bayes Selection Rule

For each : = 1,...,k, at stage j, consider N independent trials from population ;.

Let X;; stand for the number of successes among the N trials. Let pi; stand for the

probability of a success for each of the N trials. Let P; = (P ,..., Pr;). We assume that

Pj, 3 =1,2,... areiid with a prior density g(p) = ﬁl gi(p:), where g;(p;), i =1,...,k, are
jem

given by (2.1). Conditional on P;; = p;j;, Xijlpi; ~ B(N,p;;). Let X; = (X1j,...,Xk;)

denote the random observations at the jth stage, j = 1,...,n. We alsolet X, 1; = X =

(X1,...,Xx) denote the random observation at the present stage.
Under the binomial-beta statistical model, we have, for each : = 1,...,k,
E[X;/N] = p:
{ [Xi/N]=p 3.1)

E[(Xi/N)*] = pi/N + (aipi + Dps(N — 1)/(N(ai + 1)) = piz (say).

From (3.1), through direct computation, the parameter «; can be written as o; = B;/A;,

where

{Bi=ﬂi—#i2 (3.2)

Ai = pig —pi N7+ p2 N1 — 2.
Note that under the binomial-beta model, 0 < (X;/N)? < X;/N <1 and therefore B; > 0
since X; is a non-degenerate random variable. Also, A; > 0 since a; > 0. Thus, y; and
piz satisfy the following inequalities: pu; N7 — p2 N1 + p2 < pip < pi. From (3.2), a; can
be viewed as a function of u; and p;e for y; € (0,1) and pie € (s N7 — p2N71 + 2 u,).
For each fixed p;, a; is decreasing in p;2 and lim «; =0, lim a; = oo, where a; =

Ri2—> i Hiz—ag

piN=h — p2 N~ 4 pd.



Let p;n and piz, be the moment estimators of y; and w2, respectively, based on the

n past observations at hand. That is,

fin = ¥ . IXij/Na
]=
. (33)
Hizn = % . (Xij/N)Z-
J=1
Also, let
Ain: i2n — z'nN_l Z‘N_l— 27
{ Hi2 K + Hin Hin (34)
Bin = Win — Ki2n-

Then, we propose some enipirical Bayes estimators for the unknown parameter a; and the

posterior mean ¢;(z;) = (z; + a;pi)/(N + a;) as follows:

[ Bin/Ain if Ain >0,
Qi = { [Ain 1 _ (3.5)
00 otherwise;
(wi + aznﬂzn)/(N + ain) if Ui < 00,
Pin(Ti) = { - (3.6)
Win if aip = 0.
We then propose an empirical Bayes selection rule d}, = (df,, ..., d},) for the selection
problem under study, as follows:
For each z € X, let
An(z) = {ilpin(z:) = max @jn(2;)} (3.7
and for eachz =1,...,k, let
G(0) = { I i€ dite) 53
~ 0 otherwise.

We denote the associated Bayes risk of the proposed empirical Bayes selection rule d}, by

r(G,d:). Then, from (2.3),

r(G,dy)=C—- ) [Z dfn(ff)soi(wi)] f(z). (3.9)

TEX Li=1
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Remarks

1. Note that a; = oo = Var(P;) =0, which means that the prior density g¢;(p;) is
degenerate at the point p; = p;. In this situation, the posterior mean ;(z;) = ;.
Hence, it is reasonable to estimate ¢;(z;) by pin when a;, = co. We consider the case

where a; = 0o as an extreme case for the family of beta distributions.

2. Definition 3.1. A selection rule d = (di,...,dr) is said to be monotone if for each
¢ = 1,...,k, di(z) is nondecreasing in z; while all the other variables z; are kept
fixed, and nonincreasing in z; for each j # ¢ while all the other variables are kept

fixed.

For the fixed past observations Xi,...,X,, we see from (3.6) that for each i =
1,...,k, @in(z;), the estimator of the posterior mean o;(z;), is increasing in z;. Thus, from
(3.7) and (3.8), one can see that the proposed empirical Bayes selection rule d}, possesses

the monotonicity property.

4. Asymptotic Optimality of the Selection Rules {d*}

Consider an empirical Bayes selection rule d, = (dip,...,dkn). Let r(G,d,) be the
associated Bayes risk. Then, r(G,d,) — r(G) > 0 since r(G) is the minimum Bayes risk.
Thus E[r(G,dy)] — r(G) > 0, where

k
E[r(G,da)]=C— ) [Z E[din(if)]%(wi)] f(z) (4.1)

rex Li=1
and the expectation E[d;n(z)] is taken with respect to (X1,...,X,). The nonnegative

difference E[r(G,d, )] — r(G) is always used as a measure of performance of the selection

rule d,,.



Definition 4.1. A sequence of empirical Bayes rules {d,}32, is said to be asymptotically
optimal at least of order B, relative to the unknown prior distribution G if E[r(G,dn)] —

r(G) < O(B,) asn — oo, where {f,} is a sequence of positive values such that lim B, = 0.

In order to investigate the asymptotic optimality of the empirical Bayes selection rules

{d%}, we need the following lemmas.

Lemma 4.1. If random variables Y3,...,Y, areiid such that a <Y; < b, ¢ =1,...,k,

then for each t > 0,

P{Y — p >t} < exp{—2nt*/(b—a)’},

— n S—
where Y = 2 3 Y}, and p = E[Y].
=1
Proof: This lemma is a special case of Theorem 1 of Hoeffding (1963).

Lemma 4.2. Let y;, pi2, fin and pgio, be as defined in (3.1) and (3.3), respectively.

Then, for any ¢ > 0,
a) P{pin — pts < —c} < O(exp(—2nc?)),
b) P{in — pi > c} < O(exp(—2nc?)),
c) P{pizn — piz < —c} < O(exp(—2nc?)) and

d) P{pizn — piz > ¢} < O(exp(—2nc?)).

Proof: Note that under the framework of the statistical model under consideration, X;;/N,

j=1,...,n, are iid and 0 < X;;/N < 1. Then, 0 < pin = £ 3 X;;/N < 1. Thus,
=1

]:
P{pin — pi > ¢} =0 if pi4+¢ > 1, and P{pin — pi > ¢} < exp{—2nc?} if y; +c¢ < 1, which

follows from Lemma 4.1. This completes the proof of part b).
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The proof for the other inequalities are analogous and hence omitted.

Lemma 4.3. Let A4;, B;, A, and B;, be as given in (3.2) and (3.4), respectively.

Then, for any ¢ > 0, we have
a) P{Ai, — A; < —c} < O(exp(—nc?/8)),
b) P{A;n — A; > ¢} < O(exp(—nc?/)),
¢) P{Bin, — B; < —c} < O(exp(—nc?/2)), and
d) P{Bin — Bi 2 c} < O(exp(—nc*/2)).
Proof: The techniques used to prove these four inequalities are similar. Here, we give the
proof of paft a) only.
P{A;, — A; < —c}
= P{(uizn ~ i) + [ (3= 1) Gin + 1) = | (in = ) < =)
N N
< P{|(§=1) Guin b ) = | Guim = ) < 5} + Pliian = <=5
Since 0 < pin <1, 0 < p; < 1, and N is a positive integer, then 0 > (7 — 1)(pin +

i) — % > (% —1)2 - T{f = l:]—gﬂ Therefore,

PA[(55 — Dotin + i) — 35 )(pin — ) < =5}

1-2N c
< P{—Fx—(pin —pi) < =5}
Nc
— )Y —
Plum =) 2 3553y}
o
< Plptin — i 2 Z}'



Thus,
P{A;, — A; < ¢}

C C
< P{pizn — iz < ——2'}+P{,Min—,ui > 1
C C
< P{pign — piz < _Z} + P{pin — i > 1

< O(exp(—nc*/8)),
which follows from Lemma 4.2.

For each z € X, let A(z) be as defined in (2.4), and let B(z) = {1,2,...,k}\A(z).
That is, B(z) is the set consisting of the indices of nonbest populations given X = z. Thus,
for each z € X, ¢ € A(z), j € B(z), pi(zi) > @j(z;). From (2.4) and (4.1), following
straightforward computation and using the fact that 0 < ¢i(z;) < 1, 0 < f(z) < 1, we see

that for the empirical Bayes selection rule df,,
0 < E[r(G,dy)] —r(G)

<D, Y D Plpi(@) < pjulzi)}- (4.2)

TEX i€A(z) jEB(T)
Since the sample space A’ is finite and for each z € X', |A(z)| + |B(z)| = k, therefore,

it suffices to evaluate the asymptotic behavior of the probability P{pin(z:) < ¢jn(z;)}

where 7 € A(z), j € B(z). Now, for each z € &, i € A(z), j € B(z),

Ploin(z:) < wjn(z;)}
= P{pin(zi) < vjn(z;) and (ain < 0o and aj, < 00)} (4.3)

+ P{pin(z;i) < pjn(z;) and (ain = 00 or aj, = o)}

Let
a=min{A;lt=1,...,k} (4.4)
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where A;, 1 = 1,...,k, are defined in (3.2). Then, a > 0 since 4; > 0 forall: =1,...,k,

and k is a finite number.

Lemma 4.4. For each z € X, i € A(z), j € B(z),
P{oin(z:) < pjn(z;) and (ain = 00, or aj, = 00)} < O(exp(—na®/8)).
Proof: Note that
P{pin(z:) < @jn(z;) and (ain = 00 or ajn = o0)}
< P{ain = oo} + P{ajjn = oo}
= P{A;, < 0} + P{A;, <0}
= P{Ai, — A; < —A;}+ P{Ajn, — A; < —Aj}
< P{Ain — A; < —a} + P{Ajn — Aj < —a}

< O(exp(—na®/8)),

which is obtained from Lemma 4.3.

For each 7 = 1,...,k, and n = 1,2,..., let Ci(z;) = z;A; + Biui, D; = NA; +

B;, Cm(:l,'z) =z;Ain + Binpin and D;, = NA;, + Bin. Also, let
b = min{Ci(z:)D; — Ox(z;)Dili € A(a), j € B(z)} (45)
Then, b > 0 which is a consequence of the definitions of the sets A(z) and B(z) and the

fact that the sample space X is a finite space. Thus, for i € A(z), j € B(z),
P{pin(zi) < ¢jn(z;) and (in < 00 and ajn < 00)}
= P{Cin(2i)Djn — Cjn(z;)Din < 0}
< P{[Cin(z:)Djn — Cjn(2)Din] — [Ci(z:)D; — Ci(x)Di] < —b} (4.6)
< P{Cin(@)Dsn — Ci(#:)D; < =} + P{Cya(w5)Din — Ci(a)Di 2 3}

11



Now,
P{Cin(z)Djn — Ci(s)D; < —3}
— P{[Cin(e)Dsn — Cin()D;) + [Cin(e)D; ~ Ci(w)Dj) < —3)  (47)
< P{Cin(z0)Din ~ Di] < =3} + P{[Cin(ei) — Ci(@)ID; < ~ 3}
Similarly,
P{Cjn(zj)Din — Cj(2;)Di 2 g}

< P{Cin(@))(Din — D) 2 3+ PACin(es) ~ Ci(eIDi 2 ). (49)

Lemma 4.5.
a) P{Cin(2:)[Djn — Djl < —2} < O(exp(—b(n))),
b) P{Cin(2:)[Djn — Dj] 2 §} < Oexp(—b(n))),
¢) P{[Cin(2i) — Ci(2:)]D; < — %} < O(exp(—b(n))), and

d) P{[Cin(z;) — Ci(z:)]Dj > 2} < O(exp(—b(n))), where b(n) = nb?/(512N?(N + 1)?).

Proof: We prove part a) and c) only. Proofs for b) and d) are similar.

2
P{Cin(z:)Dsn — Dj] < -3}

b
- P{(szzn + Bin#in)(NAjn + Bjn - NA] — B_;) < —Z}
b
< PN + DIN(Ajn — 45) + (Bjn ~ B)] < 3}

(Since 0 < $1Azn + an,u'zn < N + 1) _

| b b
< AL B
< P{Ajn—4; < 8N(N+1)}+P{B’" Bj < 8(N+1)}

nb? )
512N2(N +1)2”

< O(exp(—
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which follows from Lemma, 4.3.

c)
P{[Cin(:) — Ci(a)ID; <~ )
< P{Cin(2s) — Ci(s:) < —-4(Nb—+1)}(since 0<D;<N+1)
= P{z;(Ain — Ai) + pi(Bin — B;) < —m}
< Plai(Ain — 4) < —gryrgs) + PUs(Bin — Bi £~}
where :
P{p;i(Bin — B;) < —m}
< P{Bj, — B; < —g(Nle)}(since 0<pi<1)
2
< Ofexpl~ 35"
and
Plei(Ain — A;) < —ﬁ} —0ifaz; =0
and for z; > 0,
Plai(Ain — A1) < ‘§(7vb+—1)}
< P{Ajn — A < _SN(Tb-l—l)-}
= O(GXP(_slzN;E?\zf T

Thus,

P{[Cin(2) ~ Cil@i)]D; < ~ 7} < O(exp(~b(n))).

Therefore, from (4.6) to (4.8) and Lemma 4.5, we conclude that: For ¢ € A(z), j €

B(z),

P{pin(z;) < pjn(z;) and (aip < 00 and aj, < oo)} < O(exp(—b(n))), (4.9)

13



where the expression at the right-hand-side of (4.9) is independent of the present observa-

tion z.

Now, by the finiteness of the sample space X and from (4.2), (4.9) and Lemma 4.4,

we conclude the following theorem:

Theorem 4.1. Let {d%} be the sequence of empirical Bayes selection rules defined
in Section 3. Then,

E[r(G,d;)] — r(G) < O(exp(—cn)),
where ¢ = min( W’ "8—2) > 0 and a and b are defined in (4.4) and (4.5), respectively.
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