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SUMMARY

In a heteroscedastic linear regression model, the ordinary jackknife estimator of the
asymptotic covariance matrix of the weighted least squares estimator is proved to be incon-
sistent. A modified jackknife procedure is proposed and shown to produce consistent estima-
tor of the asymptotic covariance matrix. Finite sample performailces of the jackknife, the
modified jackknife and the customary O-method are discussed. Some empirical results are

also presented.
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1. INTRODUCTION

In this article we study the jackknife method for estimating asymptotic covariance matrix
of the weighted least squares estimator in a regression problem. Consider the following

heteroscedastic linear regression model:
’ . . k
Vi =% B+ € J=heon,, i=1,...k, Zz=1”i="’ (1.1)

where y.. is the jth response at the ith desi oint x., x, are known p-vectors,  is a p-
ij J P gn p i % p 4

vector of unknown parameters, and e; are mutually independent with Eel.j=0 and

2

Eei?=o'i2, J =1,...,ni. The variances o, are unknown and unequal (heteroscedastic). A matrix

form of model (1.1) is

y=XB+e,
where
Y=y Vg oe o Yer - Yim, Vst »
e=(ey...€, .. ... €1+ G Vna 0
and
X =(xy Xip v v on e Xy + o Ky, )'nxp  X= X;s j=1,on,.

Note that X and y depend on the sample size n. Strictly, we have X=X and y=y,, but the
subscript n is omitted for simplicity. The design matrix X is assumed to be of full rank. In
most of practical applications, we need to estimate the parameter 6=g (§), g: R’ -RY, and
make statistical inferences for O such as setting confidence intervals or testing statistical

hypotheses.

Fuller and Rao (1978) introduced a weighted least squares estimator of B obtained by the

following two steps.

(1) Obtain the ordinary least squares estimator (OLSE) of B:
B - (XIX )—lxl ,

and estimates of GiZ:

1 2

n; — 4
rg Ty =YyxB. (1.2)

vi = ni =1 ij’



(2) By using the reciprocals of v, as weights, obtain the weighted least squares estimator
(WLSE) of f:
BY = @x'wx)1x'wy) (1.3)

where

W = block diag.(w, In1 ceeWy In,‘ ) (1.4)

I, is the ¢ identity matrix and w,=v,"". The WLSE of 6=g (B) is then §” =g (§").

The weighted least squares method provides more efficient estimators than the ordinary

least squares method in some situations (Fuller and Rao (1978)).

The number of replicates at a design point is usually small for a regression problem. In
view of this, Fuller and Rao (1978) and Shao (1988a) obtained the asymptotic distribution of
6" (k—e and ns<n_ for a fixed n_) under some conditions (see Proposition 1 in the next

section).

For further statistical inferences for 0, one needs a consistent (as k—oo) estimator of the
asymptotic covariance matrix of 6. A customary approach is to use the 8-method (described
in Section 2). Another approach is to use the resampling methods such as the jackknife
(Quenouille (1956), Tukey (1958)), the half-sampling (McCarthy (1969)) and the bootstrap
(Efron (1979)), which involve resampling the original data and estimating the variances from
the resamples. Because of the availability of inexpensive and friendly computing, the resam-
pling methods have caught on very rapidly in recent years. The validation of the resampling
methods were justified in many situations. See Efron (1982), Parr (1985), Shao and Wu
(1986) and their references. For applications of the jackknife method in linear regression, see
Miller (1974), Hinkley (1977), Wu (1986), Shao and Wu (1987) and Shao (1988b).

However, in the present problem the usual jackknife estimator of the asymptotic covari-
ance matrix of the WLSE (described in Section 2) is inconsistent and tends to underestimate
(Theorem 1 of Section 3), because of the inconsistency of the estimators of 6;'2 defined in
(1.2). Although there are several other estimators of 0".2 proposed by various authors (see
Section 5(iv)), no consistent estimator of ()'i2 is available unless n,—eo or we assume that
0'1.2=H (xi), where H (t) is a smooth function (Carroll (1982), Muller and Stadtmuller (1987)).

In Section 3, a modified jackknife estimator is proposed and shown to be consistent and

asymptotically equivalent to the estimator obtained by the d-method. Finite sample empirical



comparisons of the variance estimators obtained by the jackknife, the modified jackknife and
the d-method are presented in Section 4. Section 5 contains some concluding remarks about

the comparisons of the jackknife and the d-method and some other issues.

2. THE JACKKNIFE AND THE 3-METHOD

We will use the following assumptions in proving the main results:

Assumption (a). There are positive constants 0'3, 0'3 and c¢_, and positive integers n; and n_
such that 65<07<02, ny<n,<n_ and lix, lIi<c__ for all i, where lix ll=(r'x)*%,

Assumption (b). There is a positive constant ¢ o Such that

o< k71( the minimum eigenvalue of XX ).

Assumption (c). The errors € satisfy the following moment conditions:

Ete; l/zjnlleijg )=0 and Ele; e,/ (Z;Lei?)t] =0 2.1)
for all i and t=1,2, and

E| e, |2+8 <b and FE (Z;;oleijz')_(“a) <h (2.2)

for all i, where b and d are positive constants.

Most of the error distributions encountered in practice satisfy (2.2). See Shao (1988a).
Condition (2.1) reflects certain degree of symmetry of the error distribution.

Proposition 1. Suppose that Assumptions (a)-(c) hold. Let ﬁw be defined as in (1.3) and
éw=g (Bw ). Assume that the function g is continuously differentiable at B and Vg (B) is of
full rank, where Vg (B) is the gradient of g at . Then

(VY 48" -0) — N(0, I,) in distribution,

where (V& )_1/2 is the inverse of a square root of

V& =VgBV(VgPB)Y (2.3)

with



V=D X)" +4XD Xy'XDXXD X)! (2.4)
+4(X'D X)"X'D X X'X)"'X'DX XX y'X'D X (X'D X)7,
D = block diag.( 621 G )
I i P ¥
D, = block diag.( o7 wnn , ... o unn I, ),

D, = block diag.( o, "t(n ), ... o, wm ), ),

and (n,)=0E (L e

The proof of this result can be found in Shao (1988a). The matrix V¥ is called the

asymptotic covariance matrix of 6”. An estimator of V¥ based on the 8-method is
VE =VeB"Ws(Ve "),
where
V= XWX)™" + 4WX) XWX XWX )
+ 4X'WX) XWX XX )XW X)W X XWX,
W, = block diag.( nl_lw1 L ... nk—lwk I, )s

and W is defined in (1.4). Under Assumptions (a)-(c), Shao (1988a) proved the consistency

of this estimator, i.e., kﬁg AL =, 0, where -, denotes convergence in probability.
Let zl.=wi%xl., Z=W*X and n‘.j=wi1/’y‘.j. The jackknife estimator estimates V¢ from the
f e . AW AW AW AW fw : .

variations in © —O(i’j), where (-)(i’j)—g (B(i,j)) and B(i’j) is the WLSE of B after deleting the
(i,j)th "data" z, and ure We will focus on the following weighted jackknife variance estima-
tor (Wu, 1986):

58 __ k n; _ A" _AW\AY _AvyV

14 _Zi=lzj=1(1 h‘.)(O(i'j) 0 )(6(‘.,].) 0", 2.5)
where

h, =max,_ z(ZZ) 'z, (2.6)

and { (1-h,)/(n—p) } are the weights. If w,=1, then *=p and Vf defined in (2.5) is simply



the weighted jackknife estimator of the asymptotic covariance matrix of the OLSE é=g (ﬁ).
The weighted jackknife provides better variance estimators than the unweighted jackknife
(Shao and Wu (1987), Shao (1988b)).

To compute the jackknife estimator without repeatedly fitting model (1.1), we can use an
updating formula to obtain the WLSE’s (Miller, 1974):

B = B"-(-h) @2y z,(n,—2B"). @7

Shao and Wu (1987) proved the consistency of the jackknife variance estimator of the
OLSE. However, we will show in the next section that 17}9' is inconsistent. A consistent

modified jackknife estimator is also proposed.

3. ASYMPTOTIC RESULTS

We state some lemmas before proving the main results. The proofs of these lemmas are

given in the Appendix.

Lemma 1. Let u‘.=ni_12;';1e;. Under Assumptions (a) and (c),
-1 -1
k E(maxiskul. ) — 0.
Lemma 2. Let A=ly, ui_l—l |, where v, is defined in (1.2). Under Assumptions (a)-(c),
max,_ A, -, 0.
Lemma 3. Let zi=vi_%xi and h; be defined in (2.6). Under Assumptions (a)-(c),

max, Sk[z‘.'(l3w—l3)]2 —,0 and max,_ h — 0.

Lemma 4. Suppose that Assumptions (a)-(c) hold. Then

w w
max;_, ol 3(,-,,-)—3 I 0.

We first consider the special case of éw=Bw. Denote the jackknife estimator (2.5) by V
P J

in this case. The following result shows the inconsistency of VJ.



Theorem 1. Suppose that Assumptions (a)-(c) hold. Then

KV, k@D X)" = 0. (3.1)

Proof. From 2.5)-(27), u=n %% e and 28" =w*[e,,~x,'B" -P),

5 2y \— k ; — ’, A Py \—
KV, =k@Z)TE B (A-h) gz =2 BZ ) =5, + S, - S,
where
S =k@ZY'EF n(-h) 22w (ZZ)7,
S,=k@Zy'TE n.(-h) 2.z w Ix B -PNAZZ)7,
and

S =2X@ZY T T (-h) gz e Ix BT -BIZZY

From Lemmas 2 and 3, max, g h,—,0 and max, Iw,u,~11— 0. Thus S~k (Z'Z)™"— 0.
From Lemuma 4 of Shao (19884), k(Z'’Z)'~k (XD X)™'— 0. Hence

’ -1
S~ &'D X)" = 0. (32)
From Lemma 3, k(ZZ) -k (D X)™'— 0 and k(XD XY 's[c ngt(n ) '62 I, we have

S, < k@Zy ! (1-max, b, "max,  [2,/(B* -B)P -0, (33)

]

Then (3.1) follows from (3.2)-(3.3) and the Cauchy-Schwarz inequality. O

The asymptotic covariance matrix of P* is given by (2.4). From (3.1), the jackknife
estimator VJ is inconsistent and tends to underestimate. The bias of VJ is approximately
—4(X’D X)'[X'D X+X'D X X’X Y'X'DX X’Xy"'X'D X1(X'D X)!
and can be estimated by
AR A
where
7 _ xk onm -1, Aw AW\ AW AW\,
VJ = Z,'=1Zj=1(l_hi)"i (6(,’1) )(B(l,]) ) >
7wk A Av Ay’
UJ = Z,'=12j_—_1(1_ci)(B(i,j)—B)(B(i,j)—B)
is the jackknife estimator of the asymptotic covariance matrix of the OLSE, ¢,=x,"(X'X )‘lxi
and ﬁ(i P is the OLSE of B after deleting x; and Yy By adjusting the bias of VJ, we obtain



the following modified jackknife estimator:
A A ~ ~ A _1 ~ A
Vy=V,+4V, +4V,V, U,V

1~
V.

Theorem 2. Under Assumptions (a)-(c), the modified jackknife estimator VM is consistent,

ie.,

kv, —kV -, 0.
Proof. From Lemma 4 of Shao (1988a), k‘lzi’; i ’—k'l(X'DzX )—)p 0. Following the same
proof as given in Theorem 1, we have

kV, — k&X'D X)'X'D XX'D X)™ - 0. (3.4)

From Theorem 3 of Shao and Wu (1987),
kU, — kXXX’ DX X'X)™ 0. (3.5)

The result follows from (2.4), (3.1), (3.4) and (3.5). 00

~

In the important special case of n,=m for all i, VJ=m‘117] and therefore the modified

jackknife estimator simplifies considerably:
- o oA
Vy =Q+4m™)V, +4m™7U,.
We now consider the nonlinear case, i.e., the estimation of V& defined in (2.3). The
jackknife estimator is defined in (2.5). The modified jackknife estimator is -
38 _ V8 4 ATE 1 AU8(VE 177808178
Vy =V, +4Vy + AVE(VUR(Vy) VS, (3.6)
where
78 _ k n; _ -1,AWw _AW AW _'\W ’
Vi =2 25 A-hn 0 ;578730 ;07
8 ok o1 wA _AVA Av
Uy = 2 2L, (16,8 ;=00 ;,0Y’,
and e(i,j)=g (B(i,j)). For the case of n,.=m,

Ve = (14+4m ™V + 4m 208, (.7



Theorem 3. Suppose that Assumptions (a)-(c) hold and Vg is continuous in a neighborhood
of B. Then

6)) kﬁf - kVg(B)X'D X Y (Vg B —,0 and therefore 17;’ is inconsistent;
(ii) In the special case of n,=m, Vlﬁ defined in (3.7) is consistent, i.e.,

78 _ .
kVE — kv — 0;

(iii) In general Vfl defined in (3.6) is consistent if g: R” -R? and (Vg ([3))"1 exists.
Proof. From Theorem 4 of Shao and Wu (1987),

kU% ~ kVg BYEX)XDX (XX (Vg B)Y —,0.

From Lemma 4, for any 8>0,

lim,  P{ ||B(‘§’j)-BW I<§ forall (i,j)}=1.

k —yo0
The same argument used in the proof of Theorem 4 of Shao and Wu (1987) yields (i) and

kV8 - kVg B)X'D X) XD X X'D XY (Vg B)Y -,0.

This proves the results. O

For the application of Theorem 3 in the general case where some n, are not equal and
g: RP5R?, g<p but Vg (B) is of full rank, we can construct a function A: RP -RP™? such
that f=(g’, 1’): RP ->R”? satisfies the conditions in the theorem. Let \71{4 be the modified

jackknife estimator of the asymptotic covariance matrix of f (Gw). Write ‘71{1 as
Vi Vi ]

V21 V22
where V., is a ¢xq matrix. Then V,, is a consistent estimator of the asymptotic covariance
matrix of 6¥=g (B*).
The above results show that the modified jackknife and the 3-method are asymptotically

equivalent. Some finite sample empirical results are presented in the next section. Remarks

about the comparisons of the modified jackknife and the 3-method are given in Section 5.



4. SIMULATION RESULTS

We report in this section some simulation results of the performances of the variance
estimators obtained by the jackknife, the modified jackknife and the 8-method.

4.1. The models
(1) Univariate quadratic regression. The first model we considered is
vy =B+ Bx +Bx’ e, j=123,i=1..2, M1)
X, = 3,4,5.6,.7,8,1,15,2,25,3,35,4,45,5,55,6,7, 8, 10, 12, 14, 16, 18.
The errors e;; are independently distributed as N (O,GI.Z). Two variance patterns under con-
sideration are: (i) ()'i2= x,/2 and (ii) O'i2 are not related to the design and given by:
62 = 21, .99, 60, 91, 97, 35, .38, .10, .36, .70, .99, .72, (4.1)

.24, .74, 35, .74, 45, .76, .19, 42, .11, .96, .62, .39.

(2) Multiple regression. Two models are considered. A simple one is

Y = By + Byxy; + Boxy; e j=123,0i=1..24, (M2)

where the design values x,; and x, are given by Neter, Wasserman and Whitmore (1988,
p.712). The errors are independent and have variances o“.Z given by (4.1). Both normal and
non-normal errors are considered. For the non-normal situation, the distribution of Gi_leij is
(i) a uniform distribution on [-3%, 3%]; (ii) a double exponential distribution with shape
parameter 2% and (iii) a distribution F (¢) with density

F () = 37130 1(13) 1 17 Pexp(—213). (4.2)
A more complex model is from Gunst and Mason (1980):
¥; =B+ B+ €r J=Lwully, i=1,..40. (M3)

The errors are independently normal. We consider both equal replication case (n,=3 for all i)
2

and unequal replication case. The n, for unequal replication case, the error variances o; and

the values of x,; are given by Table 3(b).

(3) Response surface. We consider a bivariate third order polynomial response surface:



2 2
Yij = Bo+ Byxy; + Byxy; + Byxyxy + Byxy; + Bsxy; (M4)

2 2 3 3 : P—
+ Bex Xy + Bpxyxs; + Bexy; + Boxs + €is  J=Louwnsltyy i=1,,24,
The errors are independently normal with 0".2=(x12i + x22i)1/’/2. Both equal replication (n;=4)
and unequal replication cases are considered. The values of n, (for unequal replication case),

Xy; and X, are given in Table 4(b).

4.2. The estimators

For the above four models, we consider the estimation of the asymptotic variance of each
component of §*. The root mean squared errors (rmse) and biases of the variance estimators
obtained by the jackknife, the modified jackknife and the §-method are reported in Tables 1-4.

These values are independent of the parameter 8. The asymptotic variances are also given.
For models (M1) and (M2), we also study the rmse and biases of the estimators of the

covariances of ¥ and the asymptotic variances of 8”=g (B”) (nonlinear case), where g (B) is

equal to (i) IBN; Gi) B_, =B,/2B,, which maximizes the quadratic function [30+[31x+[32x2
over x. The rmse, the biases, the asymptotic variances and the values of § under considera-

tion (in nonlinear cases) are included in Tables 1 and 2.

All the results are based on 3000 simulations on a VAX 11/780 at the Purdue University.

4.3. Summary of the simulation results

(1) The jackknife. The rmse and biases of Vf are large. VJg is severely downward-biased.

The relative bias of Vf can be as large as 77.6%.

(2) The modified jackknife. The modified jackknife generally improves the original jackknife
and performs well except in the cases of estimating Cov ([32‘," , [3;’ ) and Var B;’ under model
(M1) with Gi2= x,/2 and Var [3{" under model (M3).

(3) Comparisons of the modified jackknife and the 8-method (normal errors). The modified
jackknife out-performs the 8-method under models (M2), (M3), (M4) and model (M1) with
o'i2 given by (4.1). For model (M1) with Gi2=xi /2, no definite conclusion can be made. For
the nonlinear situation, the modified jackknife estimators are better especially when B is close
to a discontinuity point of Vg (The improvement in rmse can be as high as 30%.). A discus-

sion of this phenomenon is given in Section 5(ii).

10



(4) Non-normal errors. Table 2(b) contains the results for model (M2) with non-normal
errors. The modified jackknife performs well in all three cases and is clearly better than the
d-method. The improvement in rmse can be as high as 47%. Note that the error distribution
given by (4.2) does not satisfy Assumption (c) (see Shao (1988a)). Therefore, the perfor-
mance of the modified jackknife is less susceptible to violations of the assumptions for the
asymptotic theory.

(5) The number of replicates. Except for the computational complexity, the effect of unequal
n; is not appreciable. As expected, the variance estimators perform better when there are

larger number of replicates.

5. CONCLUDING REMARKS

(i) The ordinary jackknife estimator Vf is not recommended in view of its both small

sample performance and large sample property.

(ii) The modified jackknife and the 6-method are asymptotically equivalent and provide
consistent variance estimators. In terms of the finite sample performances, the results in Sec-
tion 4 show that for the models under consideration, the modified jackknife is preferred. A
general finite sample theory is not available. However, one may decide whether to use the

modified jackknife or the 8-method by considering the following aspects.

(a) The discontinuity of Vg. When the true parameter § is close to a discontinuity point of
Vg, Vg (ﬁw) is highly fluctuating even if ﬁw is an efficient estimator of P, since a small
difference between ” and B may result in a large difference between Vg(B”)and Vg (B). In
this situation, the 3-method may not provide an accurate variance estimator and therefore the

modified jackknife is recommended.

Section 4 provides two examples: (1) g(B)=lp!l and Vg (B) is discontinuous at p=0 and
(2) g B)=B,,,,, and Vg (B) is discontinuous at B,=0. This explains why the modified jackknife
out-performs the 8-method when Bl or IB, ! is small.
(b) The computational cost. Because of equation (2.7), the modified jackknife does not

involve a large number of computations, if the function g can be easily evaluated. If the

evaluation of g is expensive, then the 8-method is preferred. On the other hand, the modified

11



jackknife is preferred if the evaluation of Vg is more expensive. Thus, one may select a vari-

ance estimator which is computationally cheaper.

(c) The derivation of Vg. The use of the &-method requires a theoretical derivation of Vg,
which may be very complicated. The jackknife avoids this theoretical derivation. In some
situations g does not have an explicit form and therefore Vg can not be directly evaluated.
For example, Y= tp =0[.’>t,7c‘.t+eij, p24 and g(B)=B_, . a point maximizes Zf’ =0th' over x.
Therefore, the modified jackknife is preferred in this case.

(d) Robustness. Tukey and subsequent workers recognized the distribution robustness of the
jackknife method. This is supported by our empirical results in Section 4 (see Summary (4)).
In addition, since the modified jackknife does not depend on Vg explicitly, its performance is

less susceptible to violation of the smoothness assumption on the function g.

(iii) It is known that when the estimators of Gi2 are not consistent, the WLSE may not be
more efficient than the OLSE. A comparison of the OLSE 8=g () and the WLSE 8" =g (")
can be carried out by estimating the relative efficiency Var®” [Var (assuming g 1is real-

valued) by a consistent estimator Vﬁ/ U Jg.

(iv) Alternative estimators of o".Z can be found in Hartley, Rao and Kiefer (1969), Rao
(1970), Horn, Horn and Duncan (1975) and Shao (1988a). Let
v, =v, + 5i
with Si satisfying max, _, I8i I=0p (1), where v, is defined in (1.2). Then all the results in

1

Section 3 still hold if the weights w,=v,” is replaced by wl.=i‘zl.—1. An example is (Shao,

1988a)
2

V.=v, +c.5%

! ] i

v 2y -1 2_r, 1k n 2. . 2
where ¢,;=x,"(X'X)"'x; and s°=(n—p) Zi=12j=1rij is the usual estimator of 6> when o; =c2

for all i.
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APPENDIX

Proof of Lemma 1. Let >0 be given in Assumption (c). Then

[k~ lE (max )] 1+8 < k—(1+8)E (maxl_k ‘ (1+5)) < k—(1+5)Z Eu —~(1+8)

148, —(1+8) ¢k 1+8 1+8, -3
n O >):i=1E(z"°1 U)* )<bn %% 5 0. O

Proof of Lemma 2. Note that A,=u" |[x,"(B-P)I*~2x, ’(B—ﬁ)(n,.‘lzj 18

e.)l and
7R 2. -1 21fh -1
max, _, [x; B-P] u scll BB Zmaxi k-

The result follows from Lemma 1, I| B—p I 0 (¢1) and the Cauchy-Schwarz inequality. O0

Proof of Lemma 3. From Assumptions (a)-(c), there is a positive constant ¢ such that

-1

2.z, < ck 'max, -, 0. (Al

-1
k lnaxt<k i~ sk i

From Proposition 1, II*—B II2=0p (k71). Then the first assertion follows from (A1) and
max, , [z, (BY B < 1Y -BI Zmaxi %%

By Lemma 4 of Shao (1988a), k(Z'Z Yl X’'D X )‘1—-)p 0. Then by Assumptions (a) and (b),

there is a positive constant a such that

P{k@ZZ)Y'>a I} -0 B (A2)

7z )"lz < ak‘lmaxl «%;%+- Then the second

On the set { k(ZZ)'<a I }, max,_, z
assertion follows from (A1) and (A2).0

Proof of Lemma 4. From (2.7),

o) A ’ 2
max; ., ;o I B(’:’j)—Bw 12 < (1-max,_, k)" 2(max 2 "Z'Z)? z;) max, ien ikl
On the set { k(ZZ)'<a I }, k max,, (Z AR z; Sa max,_,z Z’Z)“ . Hence the

result follows from (A2), Lemma 3 and

max; ,l_k ;J 22 an e j + Zmaxisk [xi’(B—B)]Z = OP (k) O

jsn;
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Table 1(a): The rmse and biases of V¢, nV¥, and V¢
(model (M1) with 62 given by (4.1)).

1.9428 -.5187 0257

Linear case nV = 2273 -.0131

0008

V‘} VM ‘?8

1.2827 3323 0161 7426 .1853 .0098 1.0030 2670 0138
mse 1415 .0080 0767 .0050 1126 0069
0005 0004 0005
~1.2472 3235 -.0156 -.1540 0166 .0004 5848 -1701 0089
bias -1380 0077 .0026 —-.0008 0772 -.0046
-.0005 0001 .0003

Nenlinear case B~—1)

g=Ipil  B=04 B,=0 g=Iipl B=04  B=05 | g=IBI B,=0 B,=05
nV4=2.0640 nV4=1.6762 nV£€=1.5339
Ve vy vé Ve vE A 4 vy vE
mse 1.4577 .8960 1.0420 1.1905 8610 1.0795 1.0701 8330 | 1.1121
bias | -1.4203 | —.4086 2924 -1.1443 | —3067 2512 | -1.0181 | -2050 3368
g=lpi '31:4 Bz"_"_s g=Bm ﬁ]=4 B2='_'5 g =Bm Bl=4 B2="'1
nV#=.2538 nV8=0709 nV2=0340
ve vE Ve Ve vh Ve Ve vE Ve
mmse .1590 .0970 .1388 0458 0234 0341 0217 0137 0165
bias -1540 .0030 0869 —0447 | —.0038 0229 —0210 | —0004 0113

Table 1(b): The rmse and biases of V%, nV% and nV¢
(model (M1) with 6% x,/3).

2.7629 ~-1.4191 .0876

Linear case n = 1.2545 —-.0850

0067

‘7] VL ‘75
2.0269 1.0471 .0642 9725 4695 .0402 1.1870 5517 .0376
rmse .8680 .0575 6469 0625 4936 - .0372
.0044 .0075 0034
-1.9962 1.0368 —-.0635 —-3873 —-0203 .0125 6528 —~.2679 0154
bias -.8564 .0566 3648 -.0397 2423 -.0170
—0042 .0051 .0015
Nonlinear case B~—1
g=lgl B,=.04 B,=0 g=Iph B,=04 B,=.05 g=Ipll B,=0 B,=.05
nV8=3.5335 nV8=2.8219 nv8=2.1416
Ve vE vE Ve vE vE Ve Ve vE
rmse 2.7743 1.4626 1.5522 2.1722 1.2867 1.5780 1.5339 1.2178 1.7393
bias -2.7425 —.8194 —.0869 -2.1324 —4355 .1748 -1.4775 .1551 7420
g=lpl B,=4 B=5 8=Brax B=4 B =35 =P, B,=4 B=1
nV$=1.3275 nV8=3219 nV€=.1703
vE Ve Ve Ve vE vé Ve Ve vE

rmse 9231 .6770 .5349 .2253 .1357 .1296 1194 .0724 0656
bias -.9107 3623 .2499 -.2222 0591 .0672 —-.1178 0326 .0328
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Table 2(a): The rmse and biases of »V¥, nV¢, and »V§
(model (M2) with normal errors).

2.5086 -.0627 1119
Linear case nV = .0032 -.0139
.0959
A Vy Ve
1.6419 .0402 .0798 9402 0247 .1023 1.3238 .0336 1118
rmse .0020 .0085 0014 .0069 .0018 .0085
.0583 .0399 .0534
-1.5969 .0389 -.0682 -.1709 .0002 .0108 7919 -.0187 .0233
bias —.0019 .0080 .0003 -.0015 0010 —.0046
—-.0561 .0079 .0330
Nonlinear case (g=Hpl, B=1
B,=04 B,=05 B=04 B=25 | B=4 =5
nV8=1.7489 nV8=.0904 nV4=.0899
Ve Ve A VE Ve A Ve vE VvE
rmse 1.1956 9591 1.3671 .0516 .0483 .0701 .0535 .0396 5450
bias -1.1310 -.1630 5010 -.0483 .0186 .0487 | -.0512 .0104 .0358
Table 2(b): The rmse and biases of »V,, nV,, and nV;
(model (M2) with non-normal errors).
(i) Uniform
nVar ﬁ: =2.9912 nVar Blw =.0039 nVar 6; =.1180
Vy Vs v, Vy Vs v, Vi Ve
mse 1.8604 9398 1.3162 0023 .0015 .0018 0690 .0423 .0532
bias —1.8187 —.0156 .8696 0022 .0004 .0011 -.0670 .0136 .0349
(i) Double exponential
nVarf7'=1.5947 nVarf"=.0021 nVarf,= .0651
', Vy A v, Vy Ve v, Vy Vs
rmse 1.0382 .8073 1.5222 .0013 .0012 .0019 .0403 0345 |7.0549
bias —9839 -.0032 1.0501 -.0012 .0002 .0012 —.0380 0066 .0361
(iii) F (r) given by (4.2)
nVarB,=1.7859 nVarp"=.0022 nVarf)= 0671
Vy A v, v, Ve v, Vy A
nmse 1.1572 .8671 1.4430 .0014 .0014 .0019 .0402 0398 .0575
bias —1.1005 -.0159 1.0005 -.0013 .0003 .0012 -.0371 0120 .0399
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Table 3(a): The rmse and biases of V,, V,, and V; (model (M3)).

Equal replication
Var f,=.0101 Varf;'=.0046 Var ;= 0034
A Vy A v, Vy A v, Vy V,
mse 0064 [ 0026 | .0038 0027 0057 | .0047 0019 | .0019 | .0021
bias | —0063 [ —0003 [ 0025 [ -0016 0003 | 0002 | —.0017 | 0008 | .0012
Varfy=.0011 Var ;=047 Var ;= .8290
A Vy Vs v, Vy V, v, Vy A
mse .0006 .0006 | .0006 0280 | 0170 | 0229 4569 | 4461 | 4983
bias | —0005 0003 | 0004 | —0271 0049 | 0151 | —4258 | .1879 | 3036
Varf'=.2864 Varf,;'=.1531 Varfy=.0431
v, Vy Vs v, Vy A v, Vy v,
mse .1696 1208 | .1605 0921 0471 | 0672 0235 | 0206 | .0267
bias | —.1629 0299 | .0854 | —.0901 0072 | 0455 | —0223 | .0096 | .0191
Unequal replication
Var f,=.0092 Var,'=.0045 Varp;'= 0030
v, V., A v, Vy v, A u A
mse .0058 0023 | 0030 0026 0052 | 0045 0017 | 0013 [ .0016
bias | —0057 [ —0008 | .0019 | -.0016 0003 | .0002 | —0016 | .0003 | .0008
Vary'=.0010 Varf,'=.0443 VarBy'=.8040
v, Vv, Vs v, Vy vV, v, Vy A
rmse .0006 .0004 | .0005 0263 0135 | .0191 4456 | 3950 | .4615
bias | —0005 .0001 | .0003 | -0258 0013 | 0122 | —4184 | .1443 [ 2800
Varfi5=.2793 Varf,'=.1401 Varfg= 0380
A Vy A A Vy A v, Vy V.
mse | 1663 1083 | 1494 0855 0379 | 0547 0215 | 0148 | .0197
bias | —1604 0172 | 0797 | 0839 | -0033 | 0352 | —.0206 | 0042 | .0134
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Table 3(b): The values of x;;, 62 and n; for unequal
replication case (model (M3)).

: X X2 X3 X4 Xsi X6i *7i g S; n
1 0.1020 0.6900 1.3300 1.2500 0.3600 0.5300 1.0600 0.5326 0.21 3
2 1.2200 7.2300 26.1200 9.5300 1.3200 2.5200 5.7400 3.6138 0.99 3
3 0.1390 1.3800 0.4600 0.3500 0.0600 0.0900 0.2700 0.2594 0.60 4
4 0.2210 6.3700 1.5300 1.1500 0.1600 0.4100 0.8300 1.0346 091 4
5 0.0120 0. 0.0100 0.0900 0.0100 0.0200 0.0700 0.0381 0.97 3
6 0.0010 0.5000 0.0300 0.2500 0.0200 0.0700 0.0700 0.3440 0.35 3
7 1.0460 1.2700 3.1300 3.9200 0.5600 0.6200 2.1200 1.4559 0.38 3
8 2.0320 0.4400 4.0900 5.4000 0.9800 1.0600 2.8900 4.0182 0.10 5
9 0.8950 0.5400 1.6800 1.1700 0.3200 0.2000 0.7600 0.4600 0.36 3
10 0. 0. 0.0200 0. 0.0100 0. 0.0700 0.1540 0.70 3
11 0.0250 0.0200 0.2400 0.7800 0.1500 0.2500 0.5000 0.6516 0.99 4
12 0.0970 0.1200 0.9100 1.3500 0.2400 0.2800 0.5900 0.6011 0.72 4
13 0.0010 0. 0.1500 0.4600 0.1100 0.3500 0.4000 0.1922 0.24 3
14 0.0040 0.0100 0.1800 0.2300 0.0800 0.1300 0.2800 0.0931 0.74 3
15 0.0420 0.0400 0.7800 0.4100 0.6100 0.8500 0.4900 0.0538 0.35 3
16 0.0870 1.6200 5.9900 0.1100 0.0300 0.0300 0.2300 0.0199 0.74 5
17 0.0020 0. 0.2600 0.2400 0.0600 0.1100 0.5000 0.0419 0.45 3
18 0.0020 0.0900 0.2900 0.1100 0.0200 0.0800 0.2500 0.1093 0.76 3
19 0.0480 0.1800 1.0100 0.2500 0.0400 0.2400 0.0800 0.0328 0.19 3
20 0.1310 1.2600 3.8700 0.0600 0. 0.0200 0.0400 0.0797 0.42 3
21 0.0040 0. 1.0300 0.4900 0.0900 0.1800 0.5900 0.1855 0.11 4
22 0.0010 0.0400 0.4600 0.1600 0.0200 0.1600 0.2400 0.1572 0.96 3
23 0. 0. 4.6800 0.5600 0.0200 0.1100 0.2100 0.0998 0.62 3
24 0.0070 0. 0.5200 0.3700 0.0500 0.2400 0.4300 0.2804 0.39 4
25 0.0050 0.0100 0.0600 0.9500 0.1100 0.3900 0.2900 0.2879 0.55 3
26 0.1740 1.1300 6.8500 0.6900 0.1800 0.1100 0.4300 0.6810 0.57 3
27 0. 0. 0.0600 0.3500 0.0400 0.0900 0.2300 0.3242 0.39 3
28 0.2330 1.5300 6.8200 4,0400 0.8500 1.3300 2.7000 2.6013 0.41 3
29 0.1550 0.5600 0.9400 0.7500 0.1700 0.3200 0.6600 0.4469 0.95 5
30 0.1200 0.7400 0.5500 1.2000 0.0800 0.1200 0.4900 0.2436 0.82 5
31 8.9830 0.3700 2.3600 0.7700 0.3800 0.1800 0.4900 0.4400 0.71 3
32 0.0590 0.5400 1.3800 0.5500 0.1100 0.1300 0.1800 0.3351 0.53 3
33 0.0720 1.1200 1.6900 2.2800 0.3900 0.3800 0.9900 1.3979 0.25 K]
34 0.5710 0.7800 2.5400 1.6200 0.4300 0.4600 1.4700 2.0138 0.76 3
35 0.8530 10.0200 10.1700 4.1800 0.5700 1.1600 1.8200 1.9356 0.63 3
36 0.0050 0. 0.1700 0.1400 0.1300 0.0300 0.0800 0.1050 0.74 3
37 0.0110 0.3400 0.0300 0.2000 0.0400 0.0500 0.1400 0.2207 0.54 4
38 0.2580 0.0100 0.3300 0.4800 0.1300 0.1800 0.2800 0.0810 0.83 3
39 0.0690 0.1400 1.2600 1.0800 0.2000 0.9500 0.4100 0.1017 0.91 3
40 4.7900 20.4600 37.1900 0.3100 0.0700 0.0600 0.1800 0.0962 0.52 3
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Table 4(a): The rmse and biases of V,, V,, and V,; (model (M4)).

Equal replication
Varf,=.0901 Varf'=.1255 Var = 1.6701
v, Vy vV, v, Vy v, A . v,
mse | 0522 | 0424 | .0505 0734 | 0415 | .0529 9747 | 5247 6666
bias | —0496 | .0137 | 0309 | -0717 | 0140 | .0367 | -.9550 | .1993 4620
Varf,=.5173 Var,;'=1152 Var .= 2.4046
v, Vy v, v, Vy Vs v, Vy Vs
mse 2969 | 1771 | .1946 0656 | 0402 | .0477 14095 | 6996 | .8726
bias | —2909 | .0911 [ .1201 | -.0641 | 0186 | .0334 | -1.3872 | 2950 | .6067
Varfi7=.1449 Var ;=127 Varfi;=.1146
v, Vy vV, v, Vy v, v, Vy A
mmse 0824 | 0549 | .0537 0726 | 0476 | 0477 0678 | .0301 0412
bias | —0807 | .0318 | .0348 | -0710 | 0259 | .0304 | -0668 | .0106 | .0301
Varf,=.2572
A Vy Ve )
mse .1505 0749 .0899 :
bias | —.1483 | 0351 | .0622
Unequal replication
VarBy'=.0954 Var B'=.1494 Var,= 1.8742
VJ Ll V6 VJ VM VS VJ VM VS
mse 0547 | 0440 | .0602 0851 | 0616 | .0825 10613 | 5977 8941
bias | —0512 | .0100 | 0383 | —0814 | 0194 | .0586 | -1.0322 | .1936 | .65%
Varf,=.6210 Varf,=1375 VarBs=2.7555
A Vy v, v, Vy v, A Vy v,
mse | 3382 | 2451 | 3110 0740 | 0578 | .0754 15610 | 8612 | 1.2697
bias | -3265 | .1267 | 2245 | -.0709 [ .0288 | .0558 | -1.5230 | 3174 | .9310
Varf;=.1732 Var,'=.1468 Varf;'= 1363
v, Vi Ve v, Vy A A Vy vV,
rmse 0931 | 0754 | .0867 0804 | 0562 | .0698 0778 | 0426 0645
bias | —0895 | .0421 | 0603 | -0778 | 0281 | .0488 | -.0759 | .0143 0491
Var f;=.2980 ,
v, Vy v, i
mse 1680 | 0951 | .1359
bias | -1639 | .0397 | .0991

Table 4(b): The values of xy;, x,; and »; for unequal
replication case (model (M4)).

i 12 3 4 5 6 1 8§ o 10 u 12
x; |-t -1 -1 -1 -1 -1 -5 -5 -5 -5 -5 -5
|1 3 5 1 15 2 a1 3 5 1 15 2
n |3 3 4 3 3 4 5 3 4 3 3 3

i |13 14 15 16 17 18 19 20 21 22 23 %
x, | S s 5 5 5 05 1 1 1 1 1 1
|1 3 5 1 15 2 1 3 5 1 15 2
n |3 3 3 a4 4 3 3 3 5 3 3 4
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