SOME RESULTS ON CONVOLUTIONS
AND A STATISTICAL APPLICATION

by
M. L. Eaton!
University of Minnesota

and

L. J. Gleser?
Purdue University

Technical Report #87-56

Department of Statistics
Purdue University

December 1987

! Supported by NSF Grant DMS 8319924.
2 Supported by NSF Grant DMS 8501966.



SOME RESULTS ON CONVOLUTIONS AND A STATISTICAL APPLICATION

BY M. L. EATON! AND L. J. GLESER?

University of Minnesota and Purdue University

Classes of distributions, of both discrete and continuous type, are introduced for which
the right tail of the distribution is nonincreasing. It is shown that these classes are closed
under convolution, thus providing sufficient conditions for nonincreasing right tails to be
preserved under convolution. A start is made on verifying a conjecture concerning the
extension to the left of nondecreasing right tails under successive convolution. The results
give properties of the distributions of random walks on the intege}s. A statistical applica-
tion is the verification of a conjecture of Sobel and Huyett (1957) concerning the minimal
probability of correct selection for the usual indifference zone procedure for selecting the

Bernoulli population with the largest success probability.

1. Introduction. A well known result of Wintner (1938, pp. 30, 32) asserts that the
class of symmetric (about 0) unimodal densities on the real line R is closed under convolu-
tion. The corresponding result for symmetric unimodal probability mass functions on the
integers is proved by Gupta and Sobel (1960). Consequently, for symmetric distributions

~ the property of having a nonincreasing right (or left) tail is preserved under convolution.

In the present paper, a larger class of distributions is introduced in which convolution

preserves nonincreasing right tails. In Section 2, the following two theorems are proved.

Theorem 1. For any real number m, let 7(m) be the class of density functions f(-)

defined on the real line R which satisfy

(1.1) (i) f(m—1t)> f(m+1t) for t > 0,

! Supported by NSF Grant DMS 8319924.
2 Supported by NSF Grant DMS 8501966.
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(i) f(z) > f(v) when m <z <y.

Then, if f;(-) belongs to F(m:), ¢ = 1,2, the convolution f; * f2(-) of f1(-) and f2(-) belongs

to F(my + my).

Theorem 2. For any integer m, let P(m) be the class of probability mass functions p(-)

defined on the integers which satisfy

(1.2) (i) p(m—j)>p(m+y), J7=0,1,2,...,

(i) p@() = p(+1), forj=m,m+1,... .

Then if p;(-) belongs to P(m;), ¢ = 1,2, the convolution p; *ps(-) of p1(-) and pz(+) belongs

to P(m1 + ma).

Note that symmetric (about 0) unimodal densities belong to #(0), and that symmetric
unimodal probability mass functions belong to P(0); for these distributions the inequalities

(i) in (1.1) and (1.2) are actually equalities.

Suppose that a probability mass function p(-) belongs to P(0), and that p(-) is not
symmetric about 0. Theorem 2 says that for every n > 1 the n-fold convolution p(n)(-) of

p(-) with itself satisfies

pn)(7) = P4 +1), all § =0,1,2,....

Thus, p(n)(-) has a nonincreasing right tail beginning with 7 = 0 for all » > 1. However,
under these circumstances the mean (if it exists) of the distribution defined by p(-) is
negative. Hence, the weak law of large numbers implies that the probability mass of p(y) ()
moves to minus infinity as n — oco. Also, if the variance of p(-) exists, the Central Limit
Theorem suggests that pn)(7), j = 0,£1,%2,..., becorpes part of the right (decreasing)
tail of the standard normal distribution as n — co. These observations lead to the following

conjecture.



Conjecture. There exists a nondecreasing sequence {ni: ©=1,2,...} of positive integers

such that p(n)(—?) > p(n)(—7 +1), all n > n;, for 1 = 1,2,... .

In Section 3, a special case of this conjecture is verified. Suppose that p(-) has support

on the integers —1,0,1. That is

p(=1)>p(1),  p(0) > p(1),

and p(7) = 0 for 5 # —1,0,1. In this case, it is shown that

1
(1.3) P(n)(—1) = p(n)(0), n > max{3, i 1},
where oo = p(—1) — p(1). The proof depends upon the following result, which is of inde-

pendent interest.

Theorem 3. Let ¢(-) be the probability mass function of the uniform distribution on
{—1,0,1}, and let g(,)(-) be the n-fold convolution of ¢(-) with itself. Then q(n) (0) —q(n) (1)

is nonincreasing in n for all n > 2.

Both (1.3), in the case where p(-) has support {—1,0, 1}, and also Theorem 3 give

properties of the distribution of the n-th stage of a random walk on the integers.

Finally, in Section 4, the above probability results are applied to the problem of
choosing the Bernoulli population with the largest probability of success when independent
random samples of size n are chosen from each of two Bernoulli populations. If the two
probabilities of success differ by at least an amount A, 0 < A < 1, it is shown that the
probability of correct choice for the standard procedure (Sobel and Huyett, 1957) is, for
all n > max{4, A~'}, minimized when the smaller probability of success is (1 — A) and
the larger probability of success is %(1 + A). This verifies a conjecture of Sobel and Huyett
(1957).

2. Proofs of Theorems 1 and 2. Let X; have density f;(-) in #(m;), or mass

function p;(-) in P(m;), i = 1,2. It is easily seen that ¥; = X; — m; has density in 7(0),
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or mass function in P(0). Further, X; + X, has density in F(mj + m3), or mass function
in P(my + my), if and only if Y¥; + Y2 has density in 7(0), or mass function in P(0).
Hence, Theorems 1 and 2 follow if it can be shown that #7(0) and P(0) are closed under

convolution.

Lemma 1. 7(0) and P(0) are closed under convex linear combinations. That is, if

fi(-) belongs to 7(0), ¢ = 1,...,k, and a;, 1 < ¢ < k, are nonnegative constants sat-
k k

isfying >_ a; = 1, then ) a;f;(-) belongs to F(0). Similarly, if p;(-) belongs to P(0),

=1 1=1

k
1=1,2,...,k, then ) a;p;(-) belongs to P(0).
~

1

Proof: Straightforward from the definitions of ¥(0) and P(0). O

Let $(0) be the collection of all symmetric (about 0) unimodal densities. Let N (0)
be the collection of all densities on R having support (—00,0). It has already been noted

that §$(0) is a subcollection of 7(0). It is easily seen that N (0) is a subcollection of (0).

Lemma 2. Every density f(-) in 7(0) is a convex linear combination of a density s(-) in

$(0) and a density n(-) in N(0).

Proof: Let
a= [ (@)~ f(-a)jdz

Since f(-) belongs to 7(0), f(z) — f(~z) > 0, all £ < 0. Thus, a > 0, and also

0
a< [ f(z)dz < 1. Define
—o00

; (1-a)"tf(-2), z<0,
s(x)—{(l—a)‘lf(z), >0,

if e <1,and s(z) =0if a = 1. Let



if @ >0, and n(z) = 0 if @ = 0. It is now straightforward to show that f(z) = an(z) +
(1 — &)s(z), that s(-) is a density in $(0) when & < 1, and that n(-) is a density in N (0)

when a > 0. O

Lemma 2'. Let §(0) be the collection of all symmetric (about 0) unimodal mass func-
tions on the integers, and let N (0) be the collection of all mass functions with support
{-1,-2,...}. Then $(0) and N(0) are subcollections of P(0), and every p(-) belonging to

P(0) can be written in the form

p() = an() + (1 - o)s(),

where
o= Z(p(—Z) - p(%)), 0<acl,

n(-) belongs to N(0), and s(-) belongs to $(0).
Proof: Similar to the proof of Lemma 2. (See also the discussion preceeding Lemma 2.)0

Proof of Theorem 1.
Let f1() and f2(-) belong to 7(0). Then by Lemma, 2,
f‘i(') :'aini(') + (1 - ai)si('), 1= 1a2a

where ny(-), nz(+) belong to N(0) and s;(-), s2(+) belong to §(0), and where 0 < ey, ay < 1.

Note that
(2.1) f1* f2(-) = are[ny * na(?)] + a1 (1 — az)[ng * s2(°)]
-+ (1 — al)a2[31 * nz()] + (1 — al)(l — 062)81 * 82(').
From Wintner (1937),

(2.2) s1# s2(7) € §(0) € #(0).
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Also it is clear that

(2.3) n1 # na(?) € N(0) € 7(0).

Lemma 3. Both n; * s3(+) and s; * ny(-) = ng * s1(+) belong to 7(0).

Proof: We will show that n; * s2(:) € 7(0). The proof that s; * ny(-) € 7(0) is similar.

For0<z<y,

n1*52(z):/°° nl(t)sz(z—t)dt=/ na(t)sa(z — t)dt

—00 — 00

2/ nl(t)sz(y—t)dtzfoo na (£)s3(y — )t

—00 — 00

=Mnp* Sz(y),
since ny(t) = 0 for ¢t > 0 and s3(+) € §(0). Also, for any z > 0,

(0]

ny * s3(z) = /°° nl(t)sz(z—t)dt=/ ny(t)s2(z — t)dt

—oo —oo

:/_znl(t)sz(z—t)dt-i—/o n1(t)s2(z — t)dt

-z

< /_znl(t)sz(—z—t)dt+/o ny(t)sz(z + t)dt

—Z

= /—” ni(t)sz(—z —t)dt + /0 ny(t)s2(—z —t)dt

= . ny(t)sz(—z — t)vdt = /_°° ni(t)sz(—z —t)dt
= ny * 83(—z),

again since ny(t) = 0 for t > 0 and s3(-) € $(0). This shows that n; * s3(-) obeys the

properties (ii) and (i) defining ¥ (0). _, O

It now follows from (2.1), (2.2), (2.3), Lemma 3 and Lemma 1 that f; * f2(-) belongs

to 7(0). This completes the proof of Theorem 1.
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Proof of Theorem 2.

Let py(-) and py(-) belong to P(0). Then by Lemma, 2/,
pi(’) = aini() + (1 - ai)si(’),  i=1.2,
where 7n;(-), nz(-) belong to N(0) and s1(-), s2(-) belong to §(0), and where 0 < ay,
az < 1. Again, p; # pa(+) can be represented as a convex linear combination of n; * na(-),
n1 * s2(), $1 % na(), and sy * sz(-). Further, it is clear that n1 * na(-) € N(0) C P(0), and
it is shown by Gupta and Sobel (1960) that
s1%82(-) € $(0) C P(0).
From these facts and Lemma 1, it follows that p; * pz(-) belongs to P(0) if ny * s5(-) and

s1 * na(-) belong to P(0). Thus, the following lemma completes the proof of Theorem 2.
Lemma 3'. Both n # s2(-) and s; % na(-) = ng * s1(-) belong to P(0).

Proof: As in the proof of Lemma 3, we need only prove the assertion for n; * s3(-). For
Jj20,

ni*sy(f) = Y na(i)s2(j —i) Zm( 1)s2(s + 1)

oo [e 0]
> na(—ds2f+144) = D ny(d)sa(j +1—1)
i=1 t=—o00
=nq * s3() +1).
Also, for 7 > 1,
(o0}
nixsa(f) = D ni(—i)sa(s +1 +Zn1 i)s2(y +1)
t=75+1
o0
< Z ni(—t)s2(~s +14) +Zn1 1)s2(s —1)
1=5+1 =1
) J
= Z n1(—2)s2( ]+i)+z:n1 )s2(—7 +7)
1=75+1 1=1
= Z n1(2)s2(—J5 — 1) = nq * s2(—J)-



Thus, n; * s2(-) obeys properties (ii) and (i), respectively, defining P(0). O

3. Proof of (1.3). Let p(-) be a probability mass function on the integers, with
(3.1) p(=1) > p(1),  »(0) > p(1),

and p(y) = 0 for j # —1,0,1. Thus, p(-) belongs to P(0), and by Theorem 2 the n-fold

convolution,
p(n)(-) =psp*...%p(),

of p(-) with itself also belongs to P(0). The goal of the present section is to verify the

conjecture (1.3) in this special case.
Let o = p(—1) — p(1),

(1- a)‘lp(i), if j = —1,1,
s(7) ={ (1—a)~'p(0), ifj=0,

0, otherwise,
and :
. 1, ifj=-1,
n(j) = :
0, otherwise.
Then

p(7) = (1 - a)s(y) + an(s),

and for any m > 1,
. o~ (m i m—i .
pemy(d) = (i)(l — @) ™8 (4) * Nem—s) (7))
=0
where s(x)(-) and n(x)(-) are, respectively, the k-fold convolutions of s(-), n(-) with them-
selves. (Define s(o)(+) and n(o)(-) to be mass functions placing probability 1 on 5 = 0.) It

is easily seen that for 0 <1 < m,

1, ifj=—(m—1),

n(m—i)(J) = {

0, otherwise,



so that
8(i) * N(m—i) () = s(5)(J + m — ).

Consequently for m > 1,

(3.2) pm)(7) = Z <m> (1— a)iam_iS(i) (m+7—1),

, 7
1=0
for j = 0,%1,+2,... . Note that from (3.1), and from the definition of s(-), it follows that
s(-) € §(0). Thus S(i)(-) € $(0),2=2,3,....

Lemma 4. For all m > 2,

P(m)(=1) = P(m)(0) = (1 — )™ {ma[s(m-1)(0) = (m—1)(1)] = (1= &)[s(m) (0) — 8 (m) (1)]}-

Proof: It follows from (3.2) and the symmetry about 0 and unimodality of each s (°)

that
P(m)(=1) = p(m) (0)
=(1- a)’"[S(m)(—l) = 5(m) (0)] + me(1 — &)™ s —1)(0) = 8 (m—1)(1)]
+ E ( ) 1—a)fa™ s (m— 1 =) — s(5y (m — 4)]
>—(1- a) [50m) (0) = 8(my (1)] + ma(1 = &)™ s (rn—1/(0) = S(m_1) (1)],
from which the stated inequality directly follows. .
Let
R Lk A,
and

P
0, otherwise.

It is easily seen that



and thus that

k .
(3-3) (k) () Z( )ﬁk ‘(1= B)’q) (),

1=0

where g(0)(-) = r(:). Define

A - [93(0) —9(1), :1=0,1,2,
A()_{(1(1)(0)—11(1)() 1> 3,

and for ¢ > 1 let J; denote a random variable having a binomial distribution with sample

size ¢ and probability of success 1 — 8.

If Theorem 3 is correct, A(z) is a nonincreasing function of 7, all : = 0,1, 2 . Since

100 —gM) =1 9u)(0) ~ (1) =0,
42)(0) —aez)(1) = %, 4(3)(0) — 93)(1) = 217,
it follows from (3.3) that for m > 2,
{8(m-1)(0) = s(m—1)(1)} — {(m)(0) — s(m)(1)}
= E{A(Jm-1) — A(Im)} + B(m, B),

where

R(m,B) = ;(P{Jm_l =0} — P{Jpn = 0}) — 21—7(19{.1,,,_1 — 1} = P(J = 1})

+ 22—7(P{Jm_1 =2} — P{Jm = 2}).

For fixed B, it is known that Jj is stochastically increasing in k. Thus, A(Jk) is stochas-

tically nonincreasing in &, and

E{A(Jm—-1) — A(J)} = 0.
Some algebra shows that

ﬂm—3(1 — IB)

R(m,p) = 57

>0

{(26 +m?) |8 — (mzznlzl(i";(; D 4?7(:; J_r ;Zs) (11m — 23)}
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for m > 3. Thus, it follows from (3.5), assuming that Theorem 3 is true, that

(3-6) $(m=1)(0) = $(m-1)(1) 2 8(m)(0) — s(m) (1)

for all m > 3.

Hence, if Theorem 3 is true, it follows from Lemma 4 and (3.6) that
1
P(m)(—1) = p(m)(0) > 0, all m > max{3, ——1},

which, since a = p(—1) — p(1), verifies (1.3). Note that, as one would intuitively expect,
the nonincreasing right tail of P(m) () moves one step to the left :(from J=0toj=-1)
at a rate depending inversely on the difference o in probability mass between the left tail

and right tail of p(-).

It remains to prove Theorem 3.

Proof of Theorem 3.

The characteristic function of ¢(-) is

¢(t) = Z[1 +2cos(t)],

O =

570 = (3) +2eosti)”

is the characteristic function of g(,,)(-). Using the Fourier inversion formula (see Feller,

1966, p. 484) and the fact that ¢(t) is real-valued, we have

. 1 " m —1i5
Q(m)(J)=§ ¢™ (t)e " dt

- L _7; E(Hzcos(t))] cos(jt)dt
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for j =0,41,42,.... Therefore,

Wm = (4(m-1)(0) = ¢(m-1)(1)) — (9(m)(0) — q(m)(1))

__% " (Lzsc"s_(t))m—l_(fig"sﬁly] (1 — cos(t))dt

[/ow(l + 2 cos(t))™ (1 — cos(t))zdt]

= 273m
which is obviously nonnegative when m is an odd integer (m = 1,3,5,...). For m = 4,

direct computation of the probabilities 4(2)(0), 9(3)(1), ¢4y (0), q(4)(1), or use of (3.7), yields

LU4==0.

Note that wy, is nonnegative if and only if

3™M2r

(3.8) C Tm=—

Wm
is nonnegative. Also, 74 = 0. We now show that 7, is nondecreasing in k, k > 2, and this

will complete the proof that w,, > 0 for all even m > 4.

From (3.7), for k > 2,

Tok42 — Tok = /w(l + 2 cos(t)) 21 (1 ~ cos(t))2[(1 + 2 cos(t))? — 1]dt

(1 + 2 cos(t)) 2 ! sin®(¢) cos(£) (1 — cos(t))dt
0

4/5 1+ 2cos(t))2* ! sin?(t) cos(2) (1 — cos(t))dt,

since 1 + 2 cos(t) and cos(t)(1 — cos(t)) have the same sign for ¢ in [0, gx] J[ 2, ].

Let

(3.10) Hy(t) = (14 2cos(t))?*~!sin?(¢) cos(t) (1 — cos(t)).
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From (3.9),

(AT

1
m™ gﬂ' 1 1
(3.11) T2k4-2 — T2k 24/ Hk(t)dt=4/ [Hk(EW_u)-*_Hk(EW-l_u)]du
0

1
3

S

since sin® (17 — u) = sin? (7 + u), and

T

T

o=

sinz(%ﬂ' + u) sin(u){[1 + 2sin(w)]**'[1 — sin(u)]

— [1 — 2sin(u)]**~ 1 + sin(u)] }du

1
cos(-é-7r —u) =sin(u) = —cos(—;-7r + u).
Noting that 0 < sin(u) < :_1,- for u € [0, é—w], and that for z € [0, %], k>2,
(1+22)** 1 -2) > (1 +22)(1—2) > (1 - 22)(1 + 2) > (1 —22) %~ (1 + 2),

it follows that the right-hand side of (3.11) is nonnegative, all k¥ > 2. This completes the

proof of Theorem 3, and verifies the result (1.3). ]

Proof of the entire conjecture made in Section 1, even in the special case of p(-)
considered in this section, appears to be extremely difficult. It is possible that the methods
used to prove (1.3) can be extended, but such an approach appears cumbersome. A more
promising attack on the problem may be through the characteristic function argument

used to prove Theorem 3.

4. A Statistical Application In the indifference zone formulation for the problem
of ranking Bernoulli parameters (Sobel and Huyett, 1957), independent random samples
of size n are obtained from each of k¥ Bernoulli populations. The goal is to choose the
population with the largest probability of success, but there is concern about a correct
choice only when the largest probability of success exceeds the second largest probability

of success by at least A, 0 < A < 1, where A is a prespecified constant.

When k£ = 2 Bernoulli populations are being compared, the procedure usually recom-

mended is to compare the observed numbers X;, X5 of successes in the two samples, and
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conclude that population 1 has the largest probability of success if X; > X> and popula-
tion 2 has the largest probability of success if X5 > X;. If X; = X3, a population is either
randomly selected (without loss of generality by a mechanism that does not depend upon
the common observed value of X; and X3), or else the population believed a’priori to have
the largest probability of success is chosen. Attention then concentrates on determining
the smallest sample size n such that the probability of correctly choosing the population

with the highest probability of success is no less than a prespecified constant 4,0 < v < 1.

Let Y denote the number of successes in the sample obtained from the population
with the largest probability of success, and let X denote the number of successes in the
remaining sample. Under the given assumptions,

X and Y are statistically independent,
(4.1) X ~ binomial (n,p),

Y ~ binomial (n,p + d),

where

and p, d are unknown.

Let 0 be the (conditional) probability of selecting the population of Y when ¥ = X
(0 <8 <1). Note that § = 1 corresponds to always selecting Y when X =Y, while § =0
corresponds to always selecting X in such a situation. Since selecting the population of Y

is the correct choice, the probability of correct selection is

PCS(p,d,n) = P{Y > X} + 0P{Y = X}
(4.2) =0P{Y - X>0}+(1-0)P{Y — X >1}.
In order that PCS is never less than -y, n must be chosen so that

i inf PCS(p,d, > A,
Af o ot PCS(p,din) 2

14



However, Sobel and Huyett (1957) show that PCS(p,d,n) is (strictly) decreasing in d for

fixed p, n, 6. Thus, it can be assumed that d = A, and n is determined to satisfy

3 i > .
(4.3) ogplgf—A PCS(p,A,n) >«

Since PC'S(p, A,n) is for fixed A,n, 0, a continuous function of p, and p takes values

in a closed interval [0,1 — A], the infimum in (4.3) is achieved. The value
p* =p*(4,n,0)

which achieves the infimum (minimum) is said to be least favorable. In general, p* depends
upon n and 6, as well as on A. However, Sobel and Huyett (1957) use the 1arge sample

normal approximation to the distribution of ¥ — X to show that for fixed 6, A,

— A
(4.4) lim p*(A,n,0) = Lz_

n—oCco

Using both normal approximations and exact calculations, they give a table of the smallest

values of n needed to assure that

— A
PC'S(I—E—,A,n) >~

when 0 = % They remark that some exact calculations suggest that the limit in (4.4) is
approached rapidly, so that their table gives a good approximation to an exact solution
for determining the sample size n for the randomized selection rule with 6 = % They also

indicate how to adjust their table to find » when 6§ = 0 or 1.

In this section, it is shown that
(4.5) p*(A,n,1) = 5(1 — A), alln > 1,
and that for 0 <0 < 1,

(4.6) p*(A,n,0) = %(1 — A), all n > max{4,A"'}.
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These results permit exact determination of the sample size n for both randomized (0<
¢ < 1) and nonrandomized selection rules.

Define

for j = 0,%1,+2,...,+n. Note from (4.1) and the above discussion that

inf inf PCS(p,d,n)
A<d<1 0<p<i—d

(4.7 = 05;1%1%1—A PCS(p,A,n).

- OSIIJ%IP—A[I —(1-0)G(1; p,A,n) - 0G(0; p,A,n)].

Theorem 4. Fix A,0 < A < 1. Foralln > 1,5 > 1, G(j; p,A,n) is unimodal in p.
Further, G(0; p,A,n) is unimodal in p for n > max{4, A~'}. The mode in both cases is
p* = %(1 —A).

Proof: Let v =p— (1 — A). Then from (4.1),
- . 1
X ~ binomial (n,v + 5(1 — A)),
1
Y ~ binomial (n,v + 5(1 + A)),

and X,Y are independent. Further since 0 < p <1 — A,

~(1-A)<v< (1~ A).

DN

Also
. . 1
G(s; p,A,n) =G(j; v+ 5(1 — A),A,n)
so that G(J; p, A, n) is unimodal in p, 0 < p < 1-A, if and only if G(J; v+ 3(1—-A),A,n)
is unimodal in v, |v| < %(1 —A).
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Since X and Y are independent binomials,

n n n
X~) X Y~) Y, X-Y=) 1z
=1 i=1 i=1

where Xi,...,X,, Y1,...Y, are independent Bernoulli variables with
. 1 ) 1
X; ~ Bernoulli (v + 5(1 — A)), Y; ~ Bernoulli (v + 5(1 + A)).
Thus,
Zi=X;-Y; i=1,...,n,

are i.i.d. random variables with common mass function
114+A)2-v2, ifz=-1, )
31— A%)+202, ifz=0,

4:.8 Z) =
(4.8) p(2) I1-A)?2 -2, fz=1,
0, otherwise.
It follows that
. 1 = .
(4.9) G(s; v+§(1—A),A,n) =P{;Z,;Zj}

depends upon v only through v2, and is thus an even function of v. Consequently, (4.9) is
unimodal in v if and only if it is nonincreasing as a function of v2, in which case the mode

occurs at v = 0. [Note that v = 0 corresponds to p = 1(1-4)]

It is now convenient to change notation. Let ¢ = v2 and
. n
(4.10) H(j; t,n) = P{)_ Z; > j},
i=1

where our notation suppresses the dependence of this probablity on A. (Recall that A is
held fixed.) Let
p(¢;t) = P{Z; = ¢}, {=-1,0,1,

and note from (4.8) that
1 2 1 2‘
p(Lit) = 7(1—A) —¢, p(0;¢) = (1 - A%) +2t,
1
(4.11) p(—1;t) = il A)? -t

17



Finally, if p(,)(-;2) is the n-fold convolution of p(-;t) with itself, then

Py 1) =P{)_ Zi=1}
i=1
and

H(j; t,n) Zp(n)(z t).

In an appendix, it is shown that for all z = 0, 1, £2,...,

d . . . .
ZP() (4:) = n[2p(n—1)(5;t) — P(n—1)(? — 1;) — P(n—1)(Z + 151)].

Consequently,

H(j;t,n) Z dtp(n) 7;t)
= n[2H(J,t,n— 1)—H(j-1;t,n—1) — H(j + L;t,n — 1)]
= n[p(n-1)(J3t) — P(n—1) (4 — 1;%)],

and (d/dt)H(j;t,n) will be less than or equal to 0 for 0 < ¢ < (1 — A)? if and only if

1
1

(1-—4)2

B

(4.12) Pin-1)(J — 1;8) > p(n—1)(4;t), all 0 <t <

Note from (4.8), or (4.11), that
p(-1;8) —p(Lit) = 7(1+ A - Z(1—A) = A >0,

p(031) ~ p(1;8) = £ (1 A?) - (- A)"+3t=2(1- A)(1+34) +36>0.

4
for0<t< (1 — A)2. Theorem 2 now applies to show that (4.12) holds for j > 1, all
n > 1. Hence, H(j; t,n) is nonincreasing in ¢ for all § > 1, n > 1; and consequently, for

all n > 1, G(J; p,A,n) is unimodal in p with mode at p = %(1 — A).
For j = 0, the result (1.3) can be applied to show that (4.12) holds for

n—1>max{3, A™! —1}.

- 18



Thus, when n > max{4, A~!}, G(0; p, A,n) is unimodal in p with mode at p = 1 (1—A).00

The asserted results (4.5) and (4.6) now follow immediately from (4.7) and Theorem 4.

Appendix
For functions p(-),¢(-) mapping the integers 0, +1, +2,... into the real line, define
the convolution p # ¢(-) by
o0
pxa(d) = > p@E)a(i — i),

i=—00

provided the infinite sum exists. It is easily seen that

p*a() =q+p(),
(A.1) px(gx*r)()=(p*q) xr("),
(ap +bg) x7(-) = a[p* r(-)] + blg * r(-)],

for real constants a, b.

For each t in an interval (¢1,tv), let p(-; t) and ¢(-; t) map the integers into the real

line, and assume that for every integer j the derivatives

d . d .
. -t
——-dtp(J,t), —dt(J(J, )

exist for all t in (tz,ty). If
[e 0]
(A.2) pra(;t) = > p(i3t)q(j — i;¢)

i=—o00

exists for all j = 0, 1, +2,..., all ¢ in (¢1,ty), then under the usual conditions for

interchange of summation and differentiation, we have

(A.3) [% (p* q)] (58) = [(;ld; p> * q] (8) + [p* <d% q)] ().



Lemma A.1. Let p(»)(+;t) be the n-fold convolution of p(-;t), where p(j;t) has a derivative

with respect to ¢ for all integers j, all ¢ in (t1,ty). Then, assuming we can interchange

summation and derivative, for all n > 1, all integers 7,
d - (d .
pr Py (5t) =n [p(n—l) * <E p)] (4;%)-

Proof. Using (A.1) and (A.3),

Gt = [(59) +0| o+ [px (5 7)] 50

o (9]

The stated result now follows by use of (A.1), (A.3) and induction on n.

O

An important application of Lemma A.1 is to the case where p(;¢) is linear in t. If

p(7;t) = a(7) + b(2)t

¢ =0, £1,%2,..., then (d/dt) p(7;t) = b(¢) and
d . > . .
7 P Git) =n > Pa—n)(i5)b(j — ).
t=—00
In particular, if p(j;t) is given by (4.11), then
| 2, =0,
b(s) = {—1, i=-1,1,
o0, otherwise,
aﬁd

dt

d . . . )
— pm)(%3t) = n[2P(n—1)(4;t) = P(n—1)(t — L;t) — P(n—1) (¢ + 1;1)].
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