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1. Introduction:

Let 0 be a real valued parameter for which a confidence interval is desired based on
i.id. observations X, X3,...,X, from the unknown population distribution function F
on R*, k > 1. An approximate solution is obtained as follows. Let 0, = 0,(X1,...,X5)
be an estimator of §. Consider T, = Tp(X1,...,Xp) = (fn — 0)/sn where s2 is the
estimated variance of 6,. In a wide variety of situations, the distribution function H,
of T, approaches a standard normal distribution as n — oco. Hence an approximate
100(1 — )% confidence interval for @ is given by 6, + z, /25n Where 2, /5 is the upper
100(1 ~ c/2)% point of the standard normal distribution. The accuracy of this confidence
interval depends on how good the normal approximation is. But in most cases it is not
better than 0(n—1/ 2) (recall the Berry Esseen bound). In certain very simple cases (e.g.
normal population with known variances) the accuracy might be better.

The bootstrap technique replaces the normal by a certain data dependent distribution
as the approximating distribution. This method was introduced by Efron (1979). To
describe this method, let T, = T = T(X,F) be a statistic based on a sample X =
(X15...,X,) from F. Let X* = (X},...,X?) be asimple random sample with replacement
from (X4,...X,), i.e. X} are ii.d. from F, where F, is the e.d.f. of X1,...,X,. Let
T; = T(X*, F,) and let H; be the distribution function of T?*. Note that given the data
X1,...,Xn, H; can be explicitly computed or can be approximated to any desired degree
of accuracy by drawing repeated sets of observations (X%,...,X%,), { = 1,2,... from F,.
The bootstrap idea is to approximate H, by H.

For a wide class of statistics T, and a wide class of distribution functions F, this
approximation has a great degree of accuracy. It essentially corrects for the skewness
of the sampling distribution. See Bickel and Freedman (1981), Singh (1981), Babu and
Singh (1983, 1984a,b) and Babu (1984). The essence of these results is that under proper
smoothness conditions on F and T, n'/2||H, — H}|| = sup n'/?|H,(z) — H*(z)| — 0 a.s.

’ z

as n — co. The a.s. here means that the above result holds for almost every sequence
X1, X2,... . The 100(1 — )% confidence interval for # based on this approximation is
(0n — hn(2/2)sn, On+ hn(1— /2)sy) Where hn(a/2)(hn(1— /2)) is the 100a,/2%(100(1 —
@/2)%) point of H; and the accuracy of this is now o(n~1/2). One sided confidence
intervals can be built in a similar way. This is already an improvement over the normal
approximation. However note that a different type of error has appeared (the existence of
“almost sure”).

There are ways to improve the normal approximation directly. This depends on higher
order expansions (Edgeworth expansions) of H,. Suppose that H, has an expansion of

the form -

Ha(2) = 8(0) +n7 2 [ p(u)(u)dy + (™)

—00

where ® and ¢ denote the distribution and density functions of a standard normal variable.
Then the modified statistics Ty, = T}, +n~1/2p(Ty, F) has an expansion for its distribution
function H,, and H, (z) = ®(z)+0(n!). Then one can hope to invert the tails of T, to get
a confidence interval for § — the quantities unknown in p (usually p is a polynomial with
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coeflicients as functions of the moments) have to be replaced by their estimates. With some
more conditions, the distribution of T, can be bootstrapped and that has accuracy o(n™1).
For details see Abramovitch and Singh (1985). So in general the bootstrap outperforms
the classical normal approximation. However the disadvantage of the above procedure is
that p has to be known.

In the special case of multivariate normal populations, Efron (1985) used bootstrap
techniques to obtain two sided confidence intervals. He terms it the bias corrected per-
centile method. But this method does not seem to perform well for obtaining one sided
intervals. An improved method called BC,; method was introduced in Efron (1987). It
gives intervals which are second order correct and work under existence of certain trans-
formations. In the next section we will show that in the i.i.d. situation where Edgeworth
expansion exists for H,, the bootstrap technique can be used to get confidence intervals of
the accuracy 0(n~'(log n)®). The advantages of this procedure are (i) it does not depend
explicitly on the form of p but uses only its existence (Whlch can be guaranteed under
fairly general conditions), (ii) we do away with “almost sure” condltlons and (iii) one sided
confidence intervals pose no problems.

2. The Main Results:

We will use the following notations. For any distribution function G and any 0 < a <
1, G~Ya) = inf(z: G(z) > ), G71(0) = hmG’ () and j(G) = sup(G(:z:) G(z—)), the

maximum jump of the distribution functlon G. ¢v will denote the density function of a
normal variable with mean 0 and dispersion matrix V.

Our first lemma shows how an estimate of the difference between H, and H can be
transferred into an uncondstional probability statement about 7. This lemma is the main
tool of the paper.

Lemma 2.1: Suppose that for a positive sequence of numbers (e,),
P(||Ha — || 2 €a) < €.

Then sup |P(T < ' (0)) — a| < 2en + j(Hy)
0<a<l1

Proof: Let A, = {|H,(T) — H;;(T)| > €,}. Then

P(T < H (&) —a=PH:T) < a) —
= P(H,(T) < a+ (H,(T) — H:(T))) —
<P(A)+PHT) < a+e€) —a
< P(Ap) + €n + J(Hy)
< 2, +.7.(Hn)'

Similarly o — P(T < H,";_l (a)) < 2¢y, + j(Hyp). This proves the lemma.

.



The most commonly used statistics are generally of the type

n

T = n'*(K(Z) — K(1))/v(n™1 Y A(Z;)) where

1=1
n
7 a1
Z=n E Z,',
i=1

Z;’s are i.i.d. R valued random variables. K is a real valued function on R¥, ) is a function
from R* to RY and v is a real valued function on R?. An example is the ¢ statistic,

T =nY%3(X, — p)s;!

where X;’s are i.i.d. real valued random variables.
n n
Yn =n"1 ZX,;, sﬁ =n"! Z(X, - 7,,,)2.
i1=1 i=1

In this case take
Z; = X;
R(z)==z
A(z) = (2%, 2)
v(z,y) = max(0, (z — y2)1/2)

Our main aim is to be obtain results for such type of statistics. The first step will be
to prove the result for linear functions of Z. The general case will involve expansions of
the function K. The accuracy will depend on the smoothness of K. To treat the general
case we need the following lemma which is an extension of Lemma 3 of Babu and Singh
(1984a).

Lemma 2.2: Let ! = (Iy,...,l;) be a vector, L = (L;;) be a k x k matrix and A = (a;;,)
be a k x k x k 3 dimensional array. Let @, and Q; be two polynomials in k variables
with coefficients (a,). Let V be a k X k positive definite matrix and (u;;) = V~!. Let
M Z ma.x{|l,-|,|L,-j|, |a,~ja|, Iv,-jl, |'u,,-:,-|, |a,,|}. Let Ilkl > lo > 0 and bn = (lknl/z)_l. Then
there exists polynomials p; in one variable whose coefficients are continuous functions of
l,;, L.,;j, Aijsy Uiy, Uiy and a, such that

/ (1+n~Y2Q4 (2)) v (2)dz
{z: l24n-1/2x'Lz<u(I'V1)1/2}

N [_u (1 + bap1(y)) (y)dy + O(ng_l(log n)?/2)
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/ 1+ n72Q1(2) + n1Q2(2))dv (2)dz
{z: Vz4n—1/22'[z4n—1 E Zzjzeass,<u(l'VI)1/2}
(i) i

- / ) (1 + bnp1(y) + b3p2(v)) b(y)dy + O(n~%/%(log n)P)

and 0(-) terms depend only on M and Iy, and B depends on the degrees of @, and Q3.
Proof: The proof of (i) is contained in the proof of Lemma 3 of Babu and Singh (1984a).

The reader can also get an idea of the details from the following proof of (ii). So we will
not prove (i) here.

Define
v =u(l'Vi)!/?
h(z) =12
g(2) =lz4+n"12' Lz + n~1 Z 2i2j250454
£,5,8
z=(2,2)
Yy =2 +bp2'Lz+n"2p, Z 22250555
1,58

r(2) = (2,9)
Then clearly h(r(z)) = g(=2).

Let Cp, = {2: ||z|| < C(logn)'/2} where C is a large constant. On C,, (g:’s and §;’s
are polynomials),

y— 2k =bpz'Lz + n~Y2p, Z 2i%j250ijs
£,7,8
=bn{q1(2) + n71q1(2) + 2k(g2(2) + n152(3))
| + 2 (ga(2) +n"1s(2))}
= bnq4(Z,y) + b2d4(2, y) + 0((log n)3n—3/2)

and also,
dzi = dy/(1 + bngs(3,y) + b235(2,y) + 0(n“3/2(log n)®)).

Hence on C,,

(]. + n_l/le(z) + n_le(z))qSV (Z)
= (1+n7Y2Q1(%,9) + n™1Q2(3,9))¢v (%)
+ (bnge(Z, ) + b2ds(2,y))dv (2, 9) + O(n /% (log n)*)
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where  depends on the degrees of Q; and Q2. So

= / (1+n712Q1(2) + 7' Qa(2))gv (2)d2
{9(2)<v}[)Cn

/ (1+ bude(2) + b2d6(2)) v (2)dz + 0(n~%/2(log m)).
{z: h(z)<v} n r(Chr)

Now, there exists ng = no(M,lo) such that for n > ny,
{z:||z|| £ Clogn} C r(C})

and

/ (1 + bulgs(2)] + b |de(2) ) $v (z)dz = O(n=2/2).
{a: llall>Clog n}

Further
/ (1 +n=Y2Qy (2) + n~1Qa(2))dv (2)dz = 0(n=2/2).
2¢C,,

Thus, using the properties of Fourier-Stieljes transform,

/ (r+ n_1/2Q1(z) + n—le(z))qu (2)dz
{z: g(2)<v} '
- / (1 + bngs(z) + b2d6(z)) drvi(y)dy + 0(n3/*(log n)*)
{z:h(z)<v}

= [7 @+ buma(s) + B2pa(s))$lu)ey + 0(n=/2(105m)?)

-0
where p;’s have the properties mentioned in the lemma.

We first state the simplest version of our main theorem. This will illustrate the ideas
involved in the general case.

Result 2.3: Let F, F,,X,X™ be as in the introduction.

Let .
T(X,F) = n'*(K(X,) - K(u)) /o

T (X", Fy) = nl/z(K(X:;) ~ K(X,))/on

where

K(z) =1l(g)z, () #0)
o? = 1(u)'El(k)
02 = I(X,) Tol(Xn)

and ¥ and X, are respectively the population and sample dispersion matrices. Further
assume that '

[llar@) <00 (2.1)
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lim I/e”'”dF(z)|<1 (2.2)
Iel=>co -

Then sup |P(T(X,F) < H; (@)~ a| = 0(n—!(logn)'/2) where H} is the distribution
0<a<l1

function of T*(X*, F,).

Remark 2.4: The condition (2.2) (the so called Cramer’s condition) is needed to ensure
the existence of Edgeworth expansion for the distribution of 7. Without this, a sharp
comparison of H, and H, seems impossible. Finiteness of the fourth moment is needed to
get 0(n~1) expansion for H,. The extra eight moments are needed to tackle the sample
moment appearing in the expansion of H,;. This will be clear from the proof. This moment
condition will be strengthened when X is replaced by its estimate. Note that the conclusion
of Result 2.3 is an unconditional probability statement about T. This is an improvement
over bootstrap results which hold “almost surely”. Further, the result holds uniformly
over o, 0 < a<1.

Proof of Result 2.3: By the Cramer’s condition and finiteness of fourth moment, the fol-
lowing expansion is valid for H,,.

T z

Hy(z) = ®(z) +n~1/2 / p(y, F)é(y)dy +n1 / p1(y, F)¢(y)dy +0(n™ 1)

—o0 -
where p(-, F) and p;(-, F) are polynomials whose coefficients are polynomials in the mo-
ments of F of order < 3 and < 4 respectively. A proof of this can be found in Bhattacharya
and Ghosh (1978). The 0(n~!) term depends on the fourth moment in such a manner,
that we can write

Ha(x) = 8(2) +n7/2

—00

z

p(y, F)$(y)dy + n e, (z)

where ¢, is uniformly bounded by a constant dependent on M = [ ||z||*dF(z). The
distribution F, does not satisfy the Cramer’s condition so the above result ¢annot be
applied directly to get an expansion for H;. However, the convergence of the characteristic
function of F, to that of F is “nice enough”. This is exploited by Babu and Singh (1984a)
who obtain an Edgeworth expansion for H. Their results contain the proof of the validity
of the following expansion for H}.

H*(z) = ®(z) + n~/? / ’ p(y, Fr)é(y)dy + n~ e, ()

— 00

n
where sup |e;,(z)| < g(n~' Y ||X;||*) and ¢ is a smooth continuous function. Thus
z =1

t=

sup | Ho(a) ~ H3() < n~2sup | [ oy, )~ ply, Fa)lg(s)ds)

+n~! +n"tsup e’ (z)].
T
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Note that

wp [ 19, F) - ol F) gy < € [ lPdlF, — P

z —_

= Cln™1 Y _(I1X:]1® - Er (|1 X:]3)]-
i=1

Note that ¥; = [|X;||® are i.i.d. random variables with E|Y;|2*® < co(6 > 0). Thus by
moderate deviation results of Michel (1976),

P{|n"1/? i(Y, — E(Y3))| > 6(logn)/2} < Cn~%2(logn) "% ... ... ... (2.3)

i=1
(This is where we need § = 2 and hence 12th moment).

On the other hand,

CINC (x4 114 < -t LEUIXA D))
P{n i§=1ﬁlleII > 2Er (|| X:]%)} < V(X
<cn7! .. . L (2.4)

Combining the estimates (2.3) and (2.4), we get, P{nHH,,, — H}|| > C(logn)'/?} < Cn~1.
Note that j(H,) = 0(n~'). Hence application of Lemma 2.1 proves the result.

Remark 2.5: A completely different approach will perhaps be'needed to get rid of the
(logn)/2 factor. Also note that (2.3) is equivalent to E|Y;[?+® < 0o VO < § < 6. In
view of this the moment condition cannot be improved.

The next result deals with non linear statistics. However we still keep the “known
variance” assumption.

Result 2.6: Let F, F,, X, X™ be as in Result 2.3 except that K is not necessarily linear.
Suppose K is differentiable with the vector of first partials at x as I(u) # 0. Assume all
other conditions of Result 2.3. We have the following.

(i) If K is thrice continuously differentiable then

sup |P(T(X,F) < H: ' (a)) — &| = 0(n"(logn)®/?)
0<a<l1

(ii) If K is four times continuously differentiable then the above bound is 0(n ! (log r)/2).

Proof: We first assume K is thrice continuously differentiable.

7



Let — —
Z:, = n1/2(Xn - Xn)

Dy = nl/z(fn — ).
On ||Z;|| < C(logn)*/2, || Z,|| < C(logn)/? and |o, — 0| < Cn~1/2(logn)'/2,
onT*(X*, Fo) = U(X,)' 2% + 022 L(X,) 2 + 0(n~Y2(logn)?/2) ...  (2.5)
oT(X,F) =)' Zn + 022! L(u) Z, + O(n~Y2(logn)3/?) ... (2.6)
By moderate deviation result,
P(||Z.|| > C(logn)'/?) = 0(n~!) and
P(lon — o] > Cn~Y?(logn)Y/?) = 0(n™1).
We claim that ]

An = P*(||Z2]] > C(logn)/2) = 0(n~1) w.p. 1 — O(n"1).

In what follows, 8, will denote any quantity which is bounded on the set where the
third moment is bounded (which happens with probability 1 — 0(n~!)). Note that from
the results of Babu and Singh (1984a) (see Theorem 2)

2 | (140" V2p(a, Fa))d®s, (z)do] < n" B
{llz][=C (log n)*/2}

By moderate deviation results,
P{||Z — Z,]| > Cn~Y%(logn)*/?} = 0(n"1).

The moments appearing in p(y, Fy,) are bounded w.p. 1 —0(n~!). Thus it suffices to show
that

]/{II [|>C (log n)1/ }(1 + nwl/zp(z))¢z(z)dz| <Cn™?
z||Z2 ogn 1/2

for any polynomial p. This can be shown very easily. So the claim is proved.

Combining all these estimates we can say that
T(X*, Fo) = Yo (Z2)o7' + R, w.p. 1 —0(n™1)

where . ,
Yu(Z2) =V(Xn)Z; +n~ V22 L(X,)Z;

and
R, = 0(n"(log n)®/?).
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Denote the distribution function of Z} by H};. With probability 1 — 0(n 1),

P*(T(X*, F,) < z) = [ dH? (2)
{z: Yo (2)+R.<onz}

(1+ n_l/zp(z,Fn))qbzn (2)dz +n"18,

/{;z: Y, (2)+R.<onz}

where the last equality follows from the expansion of the distribution function of Z} given
in Babu and Singh (1984a).

Note that w.p. 1 — 0(n™1),

¢z, (2)dz = / és, (2)dz +n"(log n)s/zﬂn

~/{z: Yn(2)+R.<onz} {z: Y, (2)<onz}

and

/ | n~M?p(z, Fo) ¢, (2)dz
{z: Yn(2)+R.<onz}

/ n"l/zp(z, Fp)és, (2)dz + n=3/2 (log n)3/2ﬂn
{z: Yn(2)<onz}

Thus with probability 1 — 0(r 1),

P*(T(X*, Fa) < z) = / (L +n~Y2p(z, F,)) b5, (2)dz + n~" (log n)*/28,
{z: Yn(2)<onz}

which by Lemma 2.2 (i)

= / (1+05p1(y, Fr))é(v)dy + n_l(iog n)3/28,.

A similar expansion holds for P(T(X, F) < z):

z

P F) <2) = [

— 00

(1+ bap1 (u: F))$(0)dy +0(n ™" log m)*/%)

Note that b,, b}, are smooth functions of the moments. The coefficients in the polynomial
p1 are also so. Hence proceeding as in the last part of the proof of Result 2.3,

P{n||H, — H:|| > C(logn)*/?} < Cn~ 1.

The proof of (i) now follows from Lemma 2.1.

Now assume that K is four times continuously differentiable. 7 and T* are now
expanded upto three terms and the remainders are 0(n=3/2(logn)*). The proof now is
exactly as before except that we now have to use Lemma 2.2 (ii). This finishes the proof
of Result 2.6.



We now discuss Studentized versions of the statistics of Result 2.3 and 2.6.

Let
tX, F) = n'/3(K(Xa) — K1) /v(n' Y A(X))
i=1
t(X*, F) = o} (K(X,) - K(Xa))/v(n™' ) NX7))
i=1
where A(-) = (A1(-),...,A¢(+)) is a continuous function from R* to R9. v(:) is a real valued

function on RY such that

v(ErpX(X1)) = (V(0)Zi(u)? = o
v(ErA(X7)) = (I'(Xn)Eal(n))/? = 0.

As before I’ is the vector of first derivatives of K, ¥ and I, are the population and
sample covariance matrices of X;. :

Let L(X;) be a linearly independent subcollection of (X;, A(X;)), such that all the ele-
ments of (X;, A(X;)) can be expressed as linear combinations of those of L(X;). The follow-
ing theorem gives bootstrap accuracy of t. As before the accuracy depends on smoothness

of K (and v).

Theorem 2.7: Suppose that the distribution F of L(X;) satisfies (2.1) and (2.2).

(i) I K is thrice continuously differentiable and v is twice continuously differentiable
then

sup |[P(t(X,F) < H,";—l(a)) — a| =0(n"(logn)*?) ... (2.7)
0<a<ll

(ii) If K is four times continuously differentiable and v is thrice continuously differentiable

then the rate in (2.7) is 0(n~!(log n)'/2).

Proof: Let .
n
v2=v(n 1) AX7)) I
=1

Mo = n~ /2 Z(L(Xi) — Er(L(X3)))

n
Zp =012y (X — )
i=1

n

Y, =n"1/2 Z(A(Xi) — Er(A(X1)))

1=1
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and 7;,, Z; and Y;} are their corresponding bootstrap versions. e.g.,

n

my, =n"Y2 Y (L(X}) - Er, (L(X}))).

i=1

Let
Crn = {lInnll + lIns|| < C(logn)'/?}.

We will prove (i) first.
On C,, T and T* have the expansions (2.5) and (2.6) and

on — 0 =n"2Y M (Ep(A(X71))) + 0(n~ ! log n)
vn — 0n = n~ V2V V) (B, A(X?))) + 0(n ™ log n)

where (1) is the vector of first partials of v. Combining these expansions we can write,

tX, F) = U'ttn + n~ 20}, B, + 0(n~" (log n)*/?)
t*(X*, F) = Uln; +n~Y2p Bunt + 0(n~1(log n)*/2)

n n

where U, B are functions of moments of L(X,) and I and v(1), U, and B,, are same as U
and B, with the population moments replaced by the sample moments. Now the proof is
as in Result 2.6.

(ii) In this case, T, T*, 0, — ¢ and v, — 0, are expanded upto one more term. Thus
t and ¢* are expanded to three terms with error 0(n~!). Now the proof is same as in the
last part of Result 2.6.

Remark 2.8: (i) The usual choice of v(:) is such that

v(n™' ) " A(X;)) = V(X a)Enl(X,) and

=1

vn Y NX))) = H(Ro) DX

where D, is the dispersion matrix of X}. But in some parametric situations, simpler
options are available.

(ii) An inspection of the proof of Theorem 2.7 shows that Edgeworth expansion for
the distribution of Z, is not enough because of the product factors coming from 7' and
0y. These involve linear and quadratic terms of L(X) and as we have seen in Result 2.3,
we need the 12th moment of L(X;). For the Student’s ¢ statistic, L(X;) = (X1, X?) and
hence we require E|X;|?* < co. We believe that some alternate approach will reduce this
moment condition.
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