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ABSTRACT: We investigate the problem of deriving two-stage allocation
procedures for selecting the best normal population. If the prior distribution is
assumed to be known, an exact Bayes two-stage allocation procedure is obtained.
If the prior distribution depends on some unknown parameter, an adaptive two-
stage allocation procedure is proposed. Using the empirical Bayes formulation,
we prove that the proposed adaptive two-stage allocatlon procedure has some
asymptotic optimality property.

1. INTRODUCTION

Suppose that an experimenter (a customer) wishes to purchase M items of some product.
We assume that these items are supplied by k different manufacturers (suppliers), say,
T1,...,Tk. At first, the experimenter carries out an inspection on m items of the product
from each of the k suppliers in order to obtain data for determining their quality. Then,
based on the resulting information, he allocates the remaining M — km items to the k

suppliers, say, Ni,..., N, respectively, where N;, ¢ = 1,...,k, are nonnegative integers

~such that zk: N; = M — km. Let 8; denote a measure of the quality of the product from
the 2th mez;lilfacturer mi. Let O < ... < 8z} be the ordered values of the parameters
01,...,60r. It is assumed that the exact pairing between the ordered and the unordered
parameters is unknown. The supplier 7; with 8; = 6 is called the best. Of course, the
experimenter would ideally like to allocate (purchase) the remaining M — km items from
the best supplier. Thus, the experimenter is faced with the so-called two-stage allocation
and selection problem.

For the two-stage allocation problem described above, we define the loss function:

k k
L(@;m,Ny,...Np) =m Z(e[k] —6;) + Z Ni(8py — 65), (1.1)
1=1 =

k
WhereQ=(01,...,0k),OSmS[%], 0<N;<M~km, i=1,...,k,;Ni=M—km,
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and [y] denotes the largest integer not greater than y. Note that the first summation
in (1.1) is the loss due to the choice of the common initial number of items to be supplied
by each of the ¥ manufacturers, and the second summation in (1.1) is the loss due to
the allocation made at the second stage. Our goal here is to derive optimal two-stage
allocation procedures with respect to the loss function (1.1). We study the problem for
normal populations, say m,..., T, with unknown means 6;,..., 68, and a common known
variance o2. The unknown means 4y,...,6) are assumed to be independent and identically
distributed (iid) with a normal prior distribution N(8p,72), where the parameter 72 may
be either known or unknown.

We note that Somerville [6, 7] studied a two-stage minimax allocation procedure for the
normal distribution model with a different loss function. However, since the loss function
considered by Somerville [6] is not bounded, the minimax solution does not exist (see Ofosu
[3] for a comment). Ofosu [4] also studied a two-stage allocation procedure via a Bayesian

approach (see Gupta and Panchapakesan [2]).

2. NORMAL MODEL

Let my,...,mr be normal populations with unknown means 6,,...,6;, and a common
known variance ¢2. The unknown means 61,...,0; are assumed to be iid with a normal
prior distribution N(fp, 7%). In this section, we assume that 72 is known. Also, for
simplicity, we assume that M = kN for some positive integer N.

2.1. Bayes Allocation Procedure for a Fixed m

First, we take m, 0 < m < N, random observations from each of the k populations.

Let X; denote the sample mean of the m random observations taken from population

m; and let T; denote the associated observed value, : = 1,...,k. At the second stage,
based on the observed values T = (Z1,...,Tk), allocate N;(Z) random observations to
population mi, © = 1,...,k, where N1(T),..., Ni(T) are nonnegative integers such that

Z Ni(Z) = k(N — m). Let Y; denote the sample mean of the N;(Z) random observations

taken from the population w; at the second stage, and let y; be the associated observed
value, i = 1,...,k. Also, let ¥ = (7;,...,¥x). Note that when either m = 0 or m = N, the
above allocation procedure is reduced to a one-stage allocation procedure.

At stage two, given X = 7 and ? =7, respectively, the posterior expected loss is:

rm(Z,7) = E[L(§;m, Ni(Z),...,Ne(Z)IX =%, Y =7
(2.1)

k
=kNE[byX =%, Y =7 - Z (m+N;(@D)E6;[X =%, ¥ =7

Therefore, at stage one, given X = T, the posterior expected loss is given by

sl



rm(Z) = Blrm(X,Y)[X =7

k
= kNE[§yX =2] - > _(m+ N;(@))E[6;|X = 7]

J=1
k
- b0 + mr?T; (2.2)
= kNE[fyX =2] - > _(m+ N;(T)) 00_2 e
j=1
k
6oo? + mr2T; 600 + m7%;
= kNE[G[k]lX =7Z| — mz o2 + mr? ;NJ(Q) o2 +mr2

For each observed X = 7, let A(Z) = {i|F; = max. Z;}. Then, for a fixed m, the Bayes
<<

allocation at the second stage is to choose the nonnegative integers Ni(Z),... Ni(Z) such

that > Ni(Z) = k(N —m). Then, conditional on m and the observed value X = T, the
zGA(.’II)
minimum posterior expected loss is:

6oc? + mr? T;

rB(z) = kENE[f,y|X =] - mz

02 4 mt2

k(N — m)[ﬂoa + m7? max ;]

1<i<k

B 02 +mr? ’ (2:3)
and the minimum Bayes risk for a fixed m is:
rm = Elrp (X))
bo0? + mT2E[X ;]
= kNE[fp) —m E p (2.4)

k(N — m){Goa +m7'2E[ max X]]}

h 02 4+ m7?
Note that under the statistical model, 71, ceey X are iid and have a margina,l normal dis-

tribution with mean 6y and variance %2%-7'2. Thus, E [lréla<xk X;] =6+ + T2E| max Z; Z;]
<i< <<

=6y + \/%:- + 72 a, where Z3,...,Z; are iid N(0,1) and a = E[lrgaéck Zj]. Also, E[fy] =
<<

6o 4+ Ta. Hence, we have

r8 =kra{N — (J:f/:znj_)—\/n—zT} (2.5)

Note that the minimum Bayes risk r2 does not depend on the parameter 6.

2.2. Optimal Initial Sample Size

Next, we want to find an integer, say mp, 0 < mp < N such that rfm < rﬁ for all
integers m in [0, N]. We call such an integer mp as an optimal initial sample size. When

mp is determined, a Bayes two-stage allocation procedure, say Pg, is given as follows:



First, take mp random observations from each of the k& populations. Compute the
observed sample mean T;, ¢ = 1,...,k. Then, take k(N — mp) random observations from
the population which yields the largest sample mean value.

Note that finding an integer m in [0, N] to minimize the Bayes risk r2 is equivalent to
finding an integer m in [0, N] to maximize (N —m)\/m/v/o% + m72? [see (2.5)]. In general,

we assume m to be a variable and for each fixed 72 > 0, let

(N —m)’m

Hrz(m) = 02 + mr?

(2.6)
be a function defined on the interval [0, N]. Then, the first derivative of the function
H.2(m) with respect to m is

(m — N)[(3m — N)o? 4+ 2m?27?]
(02 + m72)?

Hp.(m) = ;
which is nonpositive if % < m < N. That is, the function H,2(1m) is nonincreasing in m
for m in the interval [£, N]. Thus, to find a number m in the interval [0, N] to maximize

the function H,2(m), it suffices to consider those m in the subinterval [0, £']. Let
2 2.2 N
G(m) = (m — N)[(3m — N)o* + 2m*7*], m € [0, ?]

Then,

N
G'(m) = (3m — 2N)(20* 4+ 2mr?) < 0, for all m € [0, 3]

In other words, G(m) is a decreasing function of m for m € [0, &]. Also, note that
G(0) > 0, G(%L) < 0. Thus, there exists a unique number in (0, %), say m*, such that
G(m*) = 0. Hence, H',(m) > 0 for all m € [0,m*); H.,(m) < 0 for all m € (m*, &), and
H!,(m*) = 0. This implies that the function H,.(m) achieves its maximum at m = m*.
Note that m* is the positive solution of the equation (3m — N)o? 4 2m?72 = 0. "That is,

m* = (—30% + \/8N7202 + 904)/(47%)

=2Na/[v/8N712 4+ 902 + 30]. &7
Let
{ i Ha(m*]) > Hea(fm] + 1),
mpg = (2.8)
[m*] +1 if Hp2([m*]) < He2([m*] +1).

Therefore, the minimum Bayes risk, denoted by r2, of the Bayes two-stage allocation

procedure is:

N —mp)/mp 7
B~ pra{N _ & __ BV BT 2.9
r Ta{ o (2.9)



Remarks 2.1
a) For fixed N and o2, the optimal initial sample size mp can be viewed as a function of
the parameter 72, and hence is denoted by mp(7?). From (2.6), (2.7), (2.8), one can see
that
1 <mp(r?) < [_];] +1 for any 7% > 0.

Furthermore, we have the following results:

lim mp(t?) =1 and
200

(5] if N=0or 1 (mod 3),
{[N]+1 if N =2 (mod 3).

b) From (2.7), m* is a decreasing function of the parameter 72. Thus, from (2.8), one may

expect that mp(7?) is nonincreasing in 72. Actually, we have the following results:

{If 72 > 72, then mp(r?) < mB(Tz) (2.10)

If mp(r?) <mp(r?), then 72 > 12,

which can be obtained directly from the following lemma.
Lemma 2.1. Let H,2(m) = %, 1<m< [&]+1andr? >0 If H.2(m) 2

H. 2(m + 1), then H,2(m) > H,2(m + 1) for all 2 > 7.
Proof: By the given condition,

0< Hy(m)— Hoz(m+1)

(N m)zm[a + (m + 1)72] - (62 + mr2)(N — m——l)z(m—}—l)
(02 +mr)lo? + (m + 1)r3]

Let
h(1?) = (N — m)’m[o? + (m + 1)7*] — (¢ + m7®)(N —m — 1)} (m + 1).

Hence, h(72) > 0. Also, the first derivative of h(72) with respect to 72 is

dh(Tz) m(m + 1)[2(N — m)—1]>0fora111<m<[_]+1

R(r?%) =
which implies h(7'2) is an increasing function of 72. Thus, A(7Z) > h(72) > 0 since 77 > 73.
Therefore, we have H"f (m) > Hp2(m +1).

3. An Adaptive Two-Stage Allocation Procedure

In this section, we still assume the normal model except that the value of the parameter
72 is unknown. Thus, the Bayes two-stage allocation procedure derived in Section 2 can not
be applied in this situation. To overcome this difficulty, we propose an adaptive two-stage
allocation procedure via the empirical Bayes approach.

We now consider the following situation. Suppose that one is confronted repeatedly and
independently with a sequence of the allocation problems as described in Section 1. We
can then use the past observations at hand to construct an estimator for the unknown

2

parameter 7. This estimator is then applied to form an adaptive two-stage allocation



procedure for the next allocation problem. Suppose now, we are at time t = n + 1. We

have already had n past observations at hand. We let m; denote the adaptive optimal

initial sample size taken at stage one at time ¢t = j, 7 = 1,...,n. The determination of m;
will be described later. From Remark 2.1 a), 1 < m; < [—];—7] + 1. That is, we take at least
one observation from each of the k populations at each time j =1,...,n. Welet X;; denote
an observation taken from population 7; at time 7, j = 1,...,n. Then, under the normal

model, X;; has a marginal normal distribution with mean 6 and variance o2 + 72. Also,
following the usual empirical Bayes formulation (for example, see Robbins [5] or Gupta
and Liang [1]), we can assume that X;;, j = 1,...,n; ¢ = 1,...,k, are independently
distributed. In the following, we only consider the case when the parameter 6 is unknown.

Let

== . (3.1)
§%(n) = g3 2 2 (Xij — X(n))%.

=1 y=1
Then, (kn —1)S%(n)/(c? + 72) has a x?-distribution with kn — 1 degrees of freedom. Since

72 is positive, we suggest using

Tag1 = (8%(n) = o*)* (3.2)

to estimate the unknown parameter 72, where y* = max(0,y). When 72,, > 0, we define
mp+1, the adaptive optimal initial sample size at time ¢ = n + 1, to be an integer in the
interval [0, N] which maximizes the function H 2, (m) = %;Lz among all the integers
in the interval [0, N]. From Remark 2.1 a), 1 < mp41 < [%] + 1. When 7',2H_1 = 0, we let
M1 = [F] (or [§] +1) if H7'3+1([%]) > (<)HT’3+1([%] + 1). Note that when n =0, i.e.
there is no past observation available, we arbitrarily choose an integer m; in the interval
(1, [£] + 1] as the initial sample size.

We then propose an adaptive two-stage allocation procedure, say Pny1, at t =n + 1 as
follows: ’

At time t = n+1, first take m,; observations from each of the k populations. Compute
the observed sample mean T; based on the m,4+; observations taken from population 7;,
i =1,...k. Then, take k(N —my41) random observations from the population which yields
the largest sample mean value.

We denote the conditional Bayes risk given my4+; and the Bayes risk of the adaptive

two-stage allocation procedure P,y1 by rp41(mnt1) and rp41, respectively. That is,

{ Pat1(Mnt1) = kTa{N — (N = mnt1)y/Mny1 7/1/0% + mn+172}’ (3.3)

Tnt1 = E[rng1(Mas1)];

where the expectation F is taken with respecpt to m,41 or the probability space generated
by (Xij, 7=1,...,n, 1 =1,...,k).

Note that rp4i1(mpy1) — rB > 0 since r?

is the minimum Bayes risk, and therefore

B

Tntl — rB > 0. The two differences Trt1(May1) — rB and rnt1 — 7 are always used as

measures of the performance of the proposed two-stage allocation procedure P, 1.



Definition 3.1
a) The sequence of adaptive two-stage allocation procedures {Pn41} is said to be asymptot-
ically optimal in probability of order {a,} if for any € > 0, P{rp4+1(mn41) =78 > €} <
0(an) as n — oo where {a,} is a sequence of positive numbers such that lim a, =0.
b) The sequence of adaptive two-stage allocation procedures {Prn41} is said to be asymp-
totically optimal of order {8} if rnt1 — 2 < 0(8,) as n — oo where {B,} is a sequence
of positive numbers such that lim 8, =0.
In the following, we will invest?ga?e some asymptotically optimal properties of the pro-
posed adaptive two-stage allocation procedures {Ppy1}.
Let I = {m|m is an integer in [1, [&] + 1] such that H,2(mp) — H,2(m) # 0}, and let
¢ = min{H 2(mp) — H,2(m)|m € I}. Then, by the definitions of mp and the set I, ¢ > 0.
Lemma 3.1.

a) Suppose that m,4+1 € I and mpy1 < mp. Then
¢ < Hpa(mp) — Hoa(mag) < d= (2, — 72)
where d~1 = N*/(160*).
b) Suppose that muy1 € I and mp41 > mp. Then,
C S H.,.z(mB) — H,.z(mn..}.l) S d_l(T2 — 7'34_1).

Proof:
a) By Lemma 2.1, as mp41 € I and mp > mp41, we have < T72l+1. Thus, on the event

that mpy; € T and 72 < 7',214_1, we have

C S H.,-2(’ITLB) - H.,.z(mn+1)
- (N - mB)ZmB _ (v _mn+1)2mn+1

02 + mpr? 0% +mpy172
_ [(N —mp)’mp _ (N —mp)*mp (3.4)
Tt 624+ mpT? o? —}-mB'r,zl+1 '
N —mp)’mp N —mpp1)?mpyr
+[ _ + + ]
0% +mptl,, 0 + mpiaTi
+ [(N — Mpt1)’Mnt1 (N —May1)’maqgs

02 + Mp4172 02 + mpg172
In (3.4), (N —mp)*mp/(6?2+mpr2 ) — (N —mnq1)*mny1/(0? +mny172, ;) < 0 which
is obtained by the definition of my41, and (N — mp41)?mnt1/(0? + mn_HT,f_H) — (N -~
Mnt1)*Mat1/(0? + Mmatp172) < 0 by noting that 72 < 72,,. Thus, we obtain

¢ < Hp2(mp) — Hp2(mpy1)
(N —mp)*mp (N —mp)’ms

0?2 +mpT? o2 +mpt2,,
_ (N — mB)ZmZB(T12z+1 - 7'2) (3'5)
(02 + mp7?)(c? + mBT,f_H)
4
< W(T§+1 —7?)

=d i —7°)




which completes the proof of part a).
b) By Lemma 2.1 again, as mp41 € I and mp < mpy;, we have 2 > 7'3+1. Thus, under

the event that mn41 € I and 72 > 72, we have

C S H.,-2(mB) - Hrz(mn_l_l)
= (N —mp)’mp (N — mni1)’mnss

02 4+ mpTt? 02 + mpy172

_ [(N —mp)imp 3 (N -—mB)sz] [(N —mp)’mp 3 (N — mypy1)’mns1
o2 + mBT,zH_1 0% + M pa72

02 +mpt? o2 —I—mBT,%_H

(N —mn41)’mnyr (N — mn+1)2mn+1]
o? +mn+17-121,+1 0% + mpy172 ’

+1

(3.6)

where (N —mg)?mp/(0? +mpr?)— (N —mp)?*mp/(0® + mpr2,,) < 0since 72 > 72,
and (N —mg)*mp/(0? + mpr2,1) — (N — mpy1)?muy1/(0% + mpy172,;) <0, by the

definition of my4+1. Therefore,

¢ < Hr2(mp) — Hr2(mng1)
< W — M1’ Mntr (N = mat1)’mat
- 0?24 mn+17'3+1 02 4+ Mmpy172
_ (N — mn+1)2mi+1(7'2 - 7'3+1)
B (02 + mn+17'13+1)(02 + Mpt172)
<d7Hr? - i)

(3.7)

Lemma 3.2.
a) P{rpy1(mps1) >rp} < P{|r2,, — 72| > dc}.
b) rat1 — i < kar?[Hys(mp)|F P{r,, — 77| > de).
Proof:

a)

P{rps1(mn+1) > rp}
= P{H,:(mp) — Hy2(mpt1) >0, mpy1 € I}
= P{H,;2(mB) — Hr2(Mn+1) > ¢, Mny1 € I}
(by the definition of the set I)
= P{H,:(mp) — Hr2(mpt1) > ¢, mpt1 € I, mp < Mpy1}
+ P{H,2(mp) — Hr2(Mn41) = ¢, Mny1 €I, mp > mpi1}
< P{r® —1h4 2 de} + P{rhy — 7° 2 dc}
(by Lemma 3.1)
= P{|r2,; — %] > dc}.



b)

Tn+1 —TB

= Elrnt1(mnt1) — 78]

= Elkar?[(H,2(mp))? — (Hr2(mnt1))?]

< kar?[H,2(mp)|? P{H,2(mp) — Hy2(mny1) > 0}
= kar?(H,2(mp)|? P{H,2(mp) — Hy2(mn41) > c}
< kar?[H,2(mp)]? P{lrpy; — 7% > de}

where the last equality is obtained from the definition of the constant ¢, and the last

inequality is obtained from the proof of part a) of this lemma.

From Lemma 3.2, in order to investigate the asymptotic behavior of P{rp41(mnt1) >
rg} and r,41 —rp, it suffices to study the asymptotic behavior of the probability P{|r2,; —
72| > dc}.

Lemma 3.3. Let {72,;}°2; be a sequence of estimators defined in (3.2). Then, 72,
converges to 72 in probability. Furthermore, for any € > 0, we have P{|72,; — 72| > ¢} <
0(n~!) as n — oo.

Proof: First note that Y = gkn_;_%f;@ follows a x2-distribution with (kn — 1) degrees of

freedom. By the definition of 72, given in (3.2), letting &1 = ¢/(0? + 72), we have
P{l7'12z+1 — 1% > €}
=P{7'§+1 ZT2+5}+P{7}2»+1 37'2_5}
< P{S§%*(n) > 1> 4+ 0® + €} + P{S*(n) < 7%+ o* —¢}
=P{Y > (kn—-1)(1+e1)}+P{Y <(kn—1)(1—¢1)}
Y —(kn-1 kn—1
(o, [Ty

V2(kn — 1) 2
<2
~ (kn —1)e?

which can be obtained by Chebyschev’s inequality. Hence we obtain that
P{|7'12;+1 — 7 >e} < O(n_l) as n — oo.

From Lemmas 3.2 and 3.3, we conclude the following theorem.

Theorem 3.1. The sequence of adaptive two-stage allocation procedures {Pp41} is
asymptotically optimal in probability of order {n~'} and asymptotically optimal of order
{n=1}. That is,

P{rns1(mns1) — 12 > €} <0(n7!) asn — oo for any ¢ > 0,

and

Pag1 — 18 < 0(n™') as n — co.
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