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Integration by part is the main tool used to establish minimaxity in shrinkage esti-
mation. In this paper, we extend it into two directions. First, we give a generalization of
Stein’s lemmae (1973) to non continuous functions; this result is obtained by the use of
a very powerful analysis method, the distribution theory. We apply then the generalized
lemmae to a class of discontinuous shrinkage estimators of a normal mean vector and de-
rive a necessary condition of admissibility, generalizing Hwang’s result (1982a) to the case
when the variance is known up to a multiplicative factor.

Secondly, we propose a notion of integration by part with respect to the parameters
in the general exponential family and we obtain some sufficient conditions of risk domina-
tion for estimators of the mean. These conditions can be expressed as partial differential

inequalities; we give some applications in the gamma and normal cases.
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Two Techniques of Integration by Parts and Some Applications

1. Introduction.

Integration by parts is the most widely used technique in shrinkage estimation. Intro-
duced by Stein (1973), it has been generalized by Berger (1975) to spherically symmetric
distributions and Stein (1981) to ‘vectorial’ shrinkage estimators. Concerning a very gen-
eral class of distributions, Shinozaki’s proof of minimaxity (1984) is based upon repeated
integrations by parts (see also Akai (1986)). In the normal case, Gleser (1986) has also
proposed some integrations by part techniques when the variance is unknown, generalizing
Berger and Haff’s results (1983). Integration by parts often leads to the notion of ‘unbiased
estimator of the risk’ (see, e.g., Berger (1985), §5.4.2) which has revealed itself to be a very
powerful tool to get sufficient conditions of minimaxity; for some distributions (Rukhin
(1988)) or some classes of estimators (Brown (1987), Bock (1987)), it is yet useless.

One drawback of this technique is that the shrinkage function must be ‘a.e. differen-
tiable’ (see Stein (1981)): it excludes discontinuous functions and therefore pre-test estima-
tors (see Judge and Bock (1978)). In order to allow some discontinuities of the shrinkage
functions, Cellier and Fourdrinier (1985) have used Stieltjes integration but their method
does not produce compact expressions and, further, a Stieltjes integrability condition must
be satisfied by the shrinkage function. The generalization we propose in Section 2 includes
a wide class of shrinkage functions for which the usual notion of differentiability does not
make sense. It has been first used by Hwang (1982a) in a special case to establish necessary
conditions of admissibility.

In Section 3, we use this generalized integration by part to deduce necessary conditions
of admissibility for shrinkage estimators of a normal mean vector when the variance matrix
is known up to a multiplicative factor. The class of shrinkage estimators we consider is the
class obtained in Fraisse, Robert and Roy (1987) and Proposition 3.5 is the generalization of
Hwang (1982a) to our model. This condition allows to exclude wide classes of inadmissible
estimators by defining a ‘reasonable’ amount of shrinkage. DasGupta (1984) gives a similar
result for the gamma distribution.

Another drawback of the usual integration by parts techniques is that they work only
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for continuous families. Hwang (1982b) has developed an alternative method to deal with
the estimation of natural parameters of discrete exponential families; Haff and Johnson
(1986) have proposed, for some continuous exponential families, a generalization of Stein
(1981). We propose in Section 4 a new way to get sufficient risk domination conditions for
estimators of the mean for general exponential families (discrete and continuous); they are
expressed through differential inequalities. Very few results have been obtained for this

problem (see Brown (1985)).

2. Distribution theory.

This theory, which has no direct relationship with probability theory, has been intro-
duced by Schwartz (1966) in order to formalize some tools used mainly by physicists; with
respect to our problem, its main interest is that it generalizes the ;10tion of differentiability
to discontinuous functions.

If (D) is the vector space of functions from R™ into R which are infinitely differentiable
and have a compact support, a distribution T is a real-valued linear functional on (D) which
is ‘continuous’ in the following way: if (p;) € (D) is a sequence of functions whose supports
are included into a common compact set and which um'forhzly converges to 0 in (D), then

T - (v;) is converging to 0. Distributions are also called ‘generalized functions’.

If f is a (Lebesgue) measurable function on R", it is a particular distribution, defined
by
7-@)= [ f@e)ds Vo)

Rn
In the same way, a measure y on R™ defines a distribution. But there exist also distribu-

tions which are not functions, nor even measures. One well-known example is the Dirac

derivative defined by (for n = 1)

T - (p) = ¢'(0) for every pe(D),

where ¢’ is the derivative of .

Given a distribution T, the derivative, %, of T is defined by

(2.1) ( SZ ) ) =T (g;) for every pe(D)
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Note that, if f is a differentiable function, the derivative of the distribution defined by f
and the distribution defined by a%e are the same:

[ L= [ 1052 =-0)-(52),

n 0L T

because f and ¢ are continuous and ¢ is null outside a compact set. Therefore integration
by part is the basis of this definition (Schwartz (1966, p. 35)).

Another useful notion introduced by Schwartz (1966, p. 116) is the multiplication of
two distributions, which cannot be defined for two arbitrary distributions. For the product
ST to be defined, the more irregular T is, the more regular S has to be. If Se(D), ST is

defined for every T by

(ST)(p) =T(Sp) for every we(D). :

Let (D™) be the vector space of functions on R™ with compact support which have deriva-
tives of order at least m. A distribution will be said of order < m if it is defined on (D™)

and not on (D™~1). We have the following result (Schwartz (1966, p. 118)):

lemma 2.0. If T is a distribution of order < m, S must be an m continuously differentiable
function in order for the distribution T'S to be defined. In particular, if T is a measure u,

S has only to be a continuous function.

When the product ST is defined, we have the following rule of derivation (Schwartz
(1966, p. 120)):

0 9 0
520 (3°) 7+ (357)

The Dirac distribution in a eR™, §,, is defined by ,(p) = ¢(a) for every function ¢
defined in a. Then

(2.2)

lemma 2.1. If (a,b)eR? and l[53) ts the indicator function of [a,b] (i.e. ljgp)(z) = O if
z & [a,b], 1 if ze[a,b]), the derivative of ljqp) s (6o — 6b).
In fact, we need more and less than what was established for the original theory of

distributions. We will observe the image of the multivariate normal density by some distri-

butions; this function is infinitely differentiable but does not have a compact support. On
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the other hand, we will only consider distributions deduced from functions. Let us denote

Ps,o the density function of the normal distribution N, (6,021,) and Ey , the ezpectation:

Eorlo(@) = [ o@)pao(a)ds

We will then consider (™) to be the set of functions on R™ such that

0 om

(9) - (po,o)s (9) - ( @po,a), s (@) ( Po,o)

62:1;1 ...8:1:-,;m

are defined. In particular, these functions must satisfy to:

Hm  g(y1,- -, ¥n)l|9:l|™Po,o (Y1, - -+, Un) = O for almost every (Y1, ..o, Yiv1,Yit1y--+»Yn)

yi—too
Usually we only have to work on (£1).
With these restrictions, we can generalize the lemmas of Stein (1973) in the following way:

lemma 2.2. (i) Let g be a function in (€1). Tﬁen, if y ~ No(0,0%1,),

o7 Eocls = 0040 = () (ous) (1S in)

(77) Let h be a real function and K ~ o?x2. Then

. 01_2 EX[Kh(K)] = pEX [R(K)] + 2(R) - <K¢p (g))

where ¢p is the density of the distribution x2.

Proof. (i) We have

7 Eooli = 0050) = [ s0)ES poat)iy

= /n 9(v) (_a%ip""’(y)> dy

3]
= <ai) - (po,s) by definition.

(ii) Given that 2(r¢,(%)) = (=2 + p)ép( ),
o5 B () == (50) =2 [ tr) (18, (5)) ar
= pE* (h(K)) + 2(h’) - (Kcﬁp ( g—)) O
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We will now apply this result to discontinuous shrinkage functions. Hwang and Casella
(1982) also present in their techniques of proof another application of the distribution

theory.

3. A consequence.

3.1. Model. Let y € R* be an observation of a normal vector with unknown mean 6 and
covariance matrix 0 Iy, where o? is unknown. We assume that an estimator of 02, s2, is
available; it is independent of y and follows a o2x2 _ . distribution (note that the usual
model of linear regression can always be written in this form).

Estimators of § are compared with respect to the usual quadratic loss

L(5, 0) =g 2 zk:(&; — 05)2

Since Stein (1956), who has established the inadmissibility of the usual least squares esti-

mator, numerous papers have dealt with this model. We consider estimators of the form
(3.1) ©(y,s*) =y — h(y'By, s*) By

where B is a non-negative definite symmetric matrix and A is a function from Ry xR+

into R,.. Fraisse et al. have established that, in the class of estimators
©(y,5%) =y — h(y' By, s?)Cy,

where C is a k X k matrix, admissible estimators are necessarily of the form (3.1). Further,
Cellier, Fourdrinier and Robert (1987) have established the following sufficient condition

of minimaxity.

Proposition 3.1 If
(a) there exists Ay > 1 such that t* h(t,u) is non-decreasing for every u > 0,

(b) there exzists Ay > 1 such that u**h(t,u) is non-increasing for every t > 0,

(c) for every (t,u),

— h{t,u) <2
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where tr and chmqs denote respectively the trace and the marimum eigenvalue of the

considered matriz, © s uniformly (in (0,0)) better than the least squares estimator.
Note that, for this model, the least squares estimator is ©°(y, s%) = y.
3.2. Admissibility conditions. Within the extensive literature on shrinkage estimation,
few papers have considered admissibility problems for this model because the estimated

parameters are not natural parameters. However, a very general lemma of Hwang (1982a)

also applies in our case:

lemma 3.2. If ;1 and pa are two estimators of § such that o, dominates 1 for the usual

quadratic risk and if

d(y,s?) = p2(y,s?) — v1(y, s?),

any estimator & satisfying
(3.2) d(y, s*)"6(y,s%) < d(y,s*)p1(y, %)

for every (y,s?) is inadmissible.

A first application of this lemma is the following result.

Proposition 3.3. If there exists o such that, for all (t,u) € Ry x Ry,

t k—2
— < —_—
(a) uh(t,'u,)_a<n_k+2
or
t k-2
— > _
(b) uh(t,u)_a>n_k+2,

© is inadmissible in the class (3.1).

2 w2 —-
Proof. Let ¢1(y,s2) = (1 — ﬁ)y and a(y,s?) = (1 — ﬁz—)y, where a* = %3

It is known that ¢ dominates 1 for any o (James and Stein (1961)). Then

32

d(y,s%) = (a— a*)wy

and
o(y, %) d(y, s?) < p1(y,s%)d(y, s?)
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if
2 (82)2

* S *
(e — a*)h(y* By, s?) Wthy > (a— oY)

(a) if @ < a*, the condition becomes %ﬂh(thy,ﬁ) <a < k=2

n—-k+2;
4 t
. y'By —
(b) if @ > o, we get e h(thy, 32) > o> nfkiZ .

A dominating estimator in the class (3.1) can be deduced from Hwang (1982a). O

We deduce immediately from Proposition 3.3 (a).
Corollary 3.4. A necessary condition of admissibility for estimators satisfying the condi-

tions of Proposition 3.1 is
k+2
2

tr(B) > chmaz(B).

This result is interesting because it is stronger than the usual nec:essary condition of min-
imaxity (Brown (1975))
tr(B) > 2¢chmaz(B)

and thus allows to eliminate a larger class of matrices B if one is interested in estimators
which perform well on the average (minimazity) and at a particular spot (admissiblity).
In particular, estimators which shrink towards projections over subspaces of too large

dimension are excluded by this condition.

Using lemma 2.2., we generalize now the results of Brown (1971) and Hwang (1982a)
and obtain a sufficient condition of inadmissibility weaker than in Proposition 3.3.
Proposition 3.5. If there exist a, My > 0 and M3 > 0 such that
(a) for all (t,u) € [My,+00) x (0, Ms],

k—2

t
Z < -~
" h(t,u)_a<n_k+2
or
(b) for all (t,u) € [0, M1] X [Ma,+00),
¢ k-2
- > e
" h(t,u)_a>n_k+2,

© is not admissible in the class (3.1).



Proof. The proof is a generalization of the proof of Hwang (1982,a): we first establish the
domination of a truncated James-Stein estimator over a given class and then apply lemma
3.2. The dominating estimator in the class (3.1) can again be deduced from Hwang(1982a).

The estimators we consider are

(3.3) vy, ) =y — T2 la(y,s?)y (¢ > 0)

where A is [K1, +00)* x [0, Ma] or [0, K1]* x [Ma,+00) with K; > 0. We will prove that,
if
. k—2

n—k+2
e+ is ‘optimal’ in a way defined below.

The difference between the risk of the least squares estimator and the risk of . is

1 1
Ac= —5 Eoollly - 9]|%) — = Eo,o(||0c(y, %) — 0][?)
2 cs? 1
3.4 = = Epol(y — 0)'y — la(y,5%)] — = Eo,0[||ly y, s>
(3.4) p [(y - 6) T2 (v, %) — = [l]]? || ||4 la(y,s%)]

From lemma 2.2 (i), we deduce

=¥ IICITZ '4 (e ]

Es

( _20) yz” ||2 l4 (y, )>
<6y1 b i 14 ) v

The function g;(y,s?) = ”y”2 being smooth enough, we can deduce from (2.2) that

1

— Eoo [(y —0)'y ﬁ 4 (v, 62)]} =
¢ (é ((;Zy) (laps,o) +Z<

(]

) gzp0I0)>

As g; is differentiable, we have

<gzz> . (HAPO,U) = /R dg; ( Y, s )"A(y,s2)p0’0_(y,82)dydsz

kxR Ayi
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Therefore

)t [0 B8) 0]

=1 =1

o [i- )]

which is a term we usually obtain in the decomposition of the risk.

Consider now the second term in (3.4): lemma 2.2 (ii) implies

2 6282

oo 15 T Lalors?) = (0= ) Eny | i (%)
+2 (2[5 146:)]) - onolons?)

=k e [ 0] 42 () - (R et

Therefore the difference of the risks can be written

A, =Epq {ﬁ H'A(y,s2)j| (2(k—2) —c(n—k+2))c

+2c2<

d
> gzPG a') — 2¢? <ﬁ"A> . (gk+1pe,a),

where gr+1(y,s?) = ﬁIT The first part of this sum is maximized for ¢ = ¢*. Therefore,

to establish optimality of ¢}, we have only to show

(3.5) (¢ —¢%) {Zk: (a(; IA) - (9ipo,o) — <B%HA> * (gr+1Po,0) (¢ + c*)} < 0

=1

(a) If c < c¢* and A =[K1,+00)* x [0, M;], we have

(3?11' IA) - (9ipo,0) =

' 2
s 9 )
- YT P0,0\Y>8
/[K1,+oo)k—1 x[0,Mz] < ||y||2 ( )

2
K/ ( P60 y,s2>
L s reoprixion \TRTEP7 )

10
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following from lemma 2.1. And

) / ( st 2>
— . o) = — ,ollYs$S 82= 2d ...d
<6s2 A) (9k-+1Pé,0) s ooy TP P? (¥,5%) ) ls2=ns,dy1 .. . dyp,

1
= —MzZ/ T3 Po,o(y, Mz)dy; ...dyx < 0.
Ky, +o0) [[Y]]

Therefore (3.5) is satisfied. For this choice of A4, ¢, dominates @, for every ¢ < c*.

If we apply now lemma 3.2., we have
d(y,s*) = 03 (y,8%) — e (y, s%)
(e =) ol alt, 5%}y
=\—C )m7714lY,
||y]|?

and, for ¢ defined by (3.1),

d(y,s*)o(y,s?) = (c - C*)ﬁh(y,sz)(llyllz — h(y*By,s*)y' By)

with
2\t 2 o S 2 2 cs® 2 2
d(y, %) pe(y,s*) = (c ~ ¢ )WHA(y,s )(Hlyll* = WﬂA(y’s Nyl[*]
As ¢ < ¢*, the inequality (3.2) is equivalent to
tB.
(3.6) y—zyh(thy,sz) <e for every (y,s?) € A.
s

The part (a) of Proposition 3.5. follows from the fact that, if y € [K1,+00)¥,

y'By > chumin(B)kK? = M;.

Therefore, if £h(t,u) < ¢ for every (t,u) € [M1,+00) x [0, M2], (3.6) is satisfied for

A= [Kl,—l-oo)k X [O,Mz].

(b) If ¢ > ¢* and A = [0, K1]* x [My,+00), the ‘opposite’ choice of A implies that (3.5) is

satisfied. And a proof similar to the previous one gives the part (b) of Proposition 3.5 as

y € [0, K;)* implies
Y'By < chpmas(B)kK? = M.

Remark 1. We can see from this result that the original James-Stein estimator gives

a ‘minimal amount of shrinkage’ for large values of % and a ‘maximal amount’ for small
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values of 5 As DasGupta (1984) points out, this estimator “stands as a dividing line
between admissible and inadmissible estimators”. However, it is not admissible (because it

is dominated by its truncated counterpart).

Remark 2. (3.3) is not the class of positive part James-Stein estimators. However, for
A = [My,+00)* x [0, M2), p¥ still dominates the least squares estimators (¢ = 0). This -
class appears as a direct generalization of the estimators introduced in Example 3 of

Baranchik (1970).

Remark 3. The conditions of Proposition 3.5 may appear rather counter—intuitive be-
cause, in the class of positive-part James—Stein estimators, for small values of 110]], the
estimator associated with 2(k — 2) dominates all the other ones and, for large values of
|0]], the estimator associated with (k — 2) is the best one. However those estimators are

not admissible (see e.g. Brown (1985)).

Remark 4. The second part of the result can be deduced more directly from Judge
and Bock (1978). In fact, if & satisfies to this inequality, the shrinkage factor will become
negative for 5 small enough and the associated estimator will be dominated by its positive—

part.

4. A general differential inequality fqr the exponential family.
4.1. As it is pointed out in the introduction, usual integration by parts techniques only
apply to continuous distributions. We propose here a new type of integration by part which
covers discrete and continuous exponential families of distributions. It gives a sufficient
condition of domination of an ‘usual’ estimator; this condition is expressed as a partial
differential inequality (see (4.2) or (4.5)).

Let y be a random vector in R* with density f(y|d) = ¥(8)e®?Y w.r.t. a o-finite

measure v; we assume that § belongs to the natural parameter set, i.e.

C = {/e"’ydu(y) < +oo} C R*.

This class of distributions is called the ezponential family (the measure v allows to include

both discrete and continuous distributions in our model) and is rather exhaustively studied
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in Brown (1985). A lot of papers deal with the problem of the estimation of the natural
parameter 0, in continuous (Berger (1980), Chen (1983), Ghosh, Hwang and Tsui (1983),
Berger and DasGupta (1986)) and discrete (Hwang (1982b)) cases. We are mainly con-
cerned in this paper with the estimation of the mean of the observation and the comparison
with the estimator po(y) = y. A few papers actually consider the estimation of the mean
(Brown and Hwang (1982), Brown and Farrell (1985), DasGupta and Sinha (1986)) for
other distributions than the normal distribution; their main concern is admissibility, not

risk domination.

4.2. A first class of estimators we consider is

(4.1) we(y) = (1 - ch(y))y

where ¢ € R and 0 < A(-) < 1. It contains both shrinkage estimators (¢ > 0) which perform
well in the normal case and ‘expanders’ (¢ < 0) which can be of interest for the gamma
distribution (see Berger (1980), DasGupta (1984)).

For a function k, defined on R*, we define the generalized Laplace transform of h w.r.t.

v to be
7(0) = / ¢ h(z)dv(2)
Rk
(see Brown (1971) and also Berger and Srinivasan (1978), Brown (1985)). We have then
#(60) = Eo(h(z)) = ¥(0)h(6) - |

For a function A from R* into R, we use the notations

Vh) = (@) () and AB) =3 Zay)

Thus
Proposition 4.1. If, for every § € C,
vy \?
(12) @ 0u(bs-p—o-ap)+2e(1-0) (L) (V4 4-vve) 20,
©c dominates o (for the usual quadratic loss).

Before establishing this result, let us recall the following well-known identities (see e.g.

Brown (1985)).
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lemma 4.2. If z has density ¥(0)e?* w.r.t. v,
(?) Es(z) = —VLIny
(1) Ep(||z + VLng||?) = —ALnp.

Proof. The difference between the risk of o and the risk of ©e is

2¢Eo[h(y)y" (y + VLnp(0))] — c*Eq[h2(y)||y]|?]
We have _
Eg[h(y)yi <y,~ + 3(31; Ln¢(0)>] = A;k h(y)yi (y,; -+ 3(31; Ln¢(0)> e&*y+Ln¢(0)dV(y)

7] ¢
= / h(y)y;e’ y"'me(a)dz/(y)
807_‘ Rk B

- Ea(h()y)

In the same way,

Eo(h(3)3:) = 55 Eo(hv) - -(Ln ¥ (0)) Ea(h(s)

d0;
Furthermore,
Ea (k) [411") < Eo(h(o)llu”)
and
Eo(h(4)9?) = 55-(Ea(A(u)us)) — - (Lnb(0))Eo (h(s)ue)
Therefore

Eo(lly + VLng(0)|1*) — Eo(lloe(v) + VLnp(6)]?)

k

k |
2203 { grrEathln) |~ Y- { 2 Eotntm) - 2 (Lr(0)Eo (k)

=1

k
=2-9e) o { 32590 0) ~ - (L O)Eo (b | +

k

=1 .
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= (2~ c)eAd(0) — (2~ c)cALn(6) - $(8) — (2 — c)e(VLni(6))'V(9) +

e*(VLny(0))*V(0) ~ ¢2||V Lnay(6)])26(6)

= (2 = ¢)c[Ag(d) - Al?()) $(0)] +2¢(1 — ¢) ||V Lnyp(9) ||? ¢(0) ~ (VLny(6))'V(9))
as ALny = — [I[VLn3||%. The last term will be non-negative if and only if
(z—c)c(A¢-¢—A¢-¢)+zc(1—e)(%) (Vo6 Vg-4) >0 o

By elementary manipulations, we obtain

Corollary 4.3. A sufficient condition of domination of po by p, is

(1) if e>0,(VY?)!(Vh) + (2 — c)y2Ah > 0,
(1) f ¢ <0,(V®)!(Vh) + (2 — ¢)yp?Ah < 0.

Example. Consider k independent gamma r.v.’s Y1,Y2,..., Yk with respective densities

~

eo‘y‘(—ﬂi)ay‘-"

1

fo,-(yi)=l,(a) <0, i=1,...k,

where o > 0 is known. With the previous notations, we have

1\ LA
P(0) = H( 8:)%, V(0) = atp(8) <0 e E) and A(8) = a(a—1)y Z—f

Therefore, if we consider the estimator ©o(y) = (1 - c)y, we get #(0) =1 and (4.2) implies

k k
1
2
(2—c)ca(a—lz 2—l—2c(1 c)o 20—220,
=1 7' i=1 *
ie. ¢ < —%=. Note further that the constant maximizing the right hand side of (4.2) is

c= 54-_1 . ThlS constant gives the natural estimator of the mean,

a
oa+1

(4.3) | vly) = Y.
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Berger (1980) and DasGupta (1984) give estimators which improve over the estimator
(4.3), but they are not of the form (4.1), the shrinkage factor being different for each
component. However, there exists a similar differential inequality which gives a sufficient

condition for the domination of (4.3).

The class (4.1) contains in particular the positive-part shrinkage estimators which are
of main importance for normal distributions (see e.g. Judge and Bock (1978)). In the nor-
mal case, the minimaxity conditions usually consider th(t) bounded rather than A bounded
(see Proposition 3.1). The next paragraph gives domination conditions corresponding to

this class of estimators.

4.3. Consider now the class

(4.4 )= (1 -

where ¢ € R and 0 < r(z) < 1. We note again I_ﬂzﬁé = h(z). Thus
Proposition 4.4. If

(4.5) 2cA¢ -9 ~2eV -V + (2| VY||* — cp? — 2A9 - ) 2 > 0,

<o

e dominates po. If r is éonstant and equal to 1, this condition is also necessary.
Proof. As 0< r(-) <1, we have
2Eo[ch(z)a(z + V Lnh(0))] — e2Eq[h? (z)|[a]|?]
2> 2Eq[ch(z)z(z + VLnyp(6))) — *Eg[h(x)]
This inequality is an equality if  is equal to 1. From the proof of Proposition 4.1, we

deduce

2¢Eo[h(z)2" (z + VLny(0))] = 2¢{Ad — ALnp - $ — (VLny)tVeg)

— ?p_c{A(ﬁ Y= A d+ (VLIny) (¢Vy — YVg)}

A sufficient condition is then

A%
P
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Note that the class (4.4) contains the estimator introduced by James and Stein (1961) to
dominate o . We will show in §4.4 that it is a solution of (4.5).

Once again, if we express the condition (4.5) with respect to h, we get simpler condi-
tions.

Corollary 4.5. ¢, will dominate pq if
e {28y + (Vo?)'Vh - cw?h} >0

4.4. The normal case. The normal distribution allows some simplifications in the pre-
vious conditions. In fact, except for the uniform distributions on spheres, it is the only
usual spherically symmetric distribution which belongs to the exponential family.

We suppose that h is only a function of ||z||2. Then # is ‘only a function of [|0]|?
and can be written (f) - 9(]16]|?). With this assumption, condition (i) of corollary 4.3

becomes
0 < (~20e71IP)’ (200/(([8]%)) + (2 - )11 (2keg(1[0]17) + 4]10)1%4" (116]]2)

which is a unidimensional differential inequality

(4.6) —2tg'(t) + (2 — ¢)(kg'(t) + 2tg" (£)) > 0

In the same way, when ¢ > 0, corollary 4.5 can be written

(47) 49" (t) +2(k ~ 1)g'(1) — 29(t) 2 0

Among the solutions of (4.6) (or (4.7)), one has then to choose the solutions g such that
1017) = [ wlal)e” =11 2

and 0 < A(t) <1 (or 0 < th(t) < 1).
One of these solutions is the original James—Stein estimator. In fact, in this case, we

have h(z) = ” Then

h(8) = e”””z/on( |z||2)

- )’ E[1/x2 i (116113’ 1
Xk+2i] 204! k+2+2




due to the Poisson decomposition of the non-central x% distribution. Therefore (4.7)

becomes

o0 . .
k+2+20 . .. c t*
ST —(2i+ )Y > 0.
z_z_%{k+4+2z'(z+k) (’+2)}2u‘!(k+2z’+z)—o

And
k+4

(k+2420)(20 + k) — (26 + )(k+4+2z)_z(2(k 2)—c)+(k+2) k—

which is positive for every 7 if and only if ¢ < 2(k — 2). We have then obtained by this

method the classical necessary and sufficient condition of James and Stein (1961).

Another application of these inequalities can be found in truncated parameters esti-
mation. For simplicity’s sake, we consider only the normal case. Let us suppose that §

belongs to the ball of radius p,
© = {[l6]]* < p} .

We are looking for sufficient conditions of domination of the restricted mle,

z ifzreo,
wo(z) = pI—,zT otherwise,

by shrinkage estimators in the class

(4.8) ve(z) = {g(olo—(—mih(x))m i)ft}:zefw?s’e.

where 0 < h(z) < 1and ¢ € R. It is then straighforward to prove that a sufficient condition

for this domination is

(49) o2 )AP(0) + 2e(1 — 0V (6) + c(p(2 — ) — cl|8][2)8(8) > 0

where ¢(0) = Eg (h(z)lo(z)) = e I1¥1I*/24(0). In the particular case where h(6) = g(l19]1%),
(4.9) becomes

(4.10) ¢[2(2 — )tg" (1) + (p(2 — ) — 26))'(8)] > 0.

For instance, for ¢ > 0, a necessary condition for (4.10) to be satisfied is ¢ < 2. And,

if p < p, it can be shown that (4.10) is satisfied for any function k2 (bounded by 1) if
¢ < 2(p - p)/p. |
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