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Abstract

The usual confidence set for a multivariate mean vector can be improved upon by
recentering the set at a Stein-type estimator: this fact is known to be true under many
different distributional assumptions. Thus far, however, the case of unknown variance has
not been dealt with analytically. In this paper we prove that recentered set estimators
dominate the usual set estimator when sampling is from any of a class of spherically
symmetric distributions with unknown variance.
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I. Introduction.

The problem of estimating the mean of a spherically symmetric distribution (s.s.d.)
has begun to receive much attention recently. In particular, the work of Hwang and
Chen (1986), in set estimation, and Cellier, Fourdrinier and Robert (CFR) (1988), in
point estimation, has greatly added to our knowledge of the problem. This paper is, in a
sense, a synthesis of the previously mentioned ones. We adapt the techniques of Hwang
and Chen (1986) (which, themselves, are adaptations of the techniques of Hwang and
Casella, 1984), to the more general case of s.s.d.’s with unknown variance, as considered
by CFR in the point estimation case.

Obtaining results that are valid for a class of s.s.d.’s containing the multivariate-t
distribution (but not the normal distribution) has important practical implications. Zellner
(1976) has shown that a Student-t model leaves more freedom to the experimenter (through
the choice of the number of degrees of freedom) and, still, gives a good approximation of
the normal model.

The general case we consider is that of z = (¢',y')’, an observation from a p + v di-
mensional arbitrary s.s.d. with location parameter (6',0') and dispersion matrix 62,4,.
The dimensionality of X and 8 are both p (assumed > 3). For the point estimation prob-
lem with ¢? unknown, CFR have shown that a rather large class of shrinkage estimators,
generalizing those of Judge and Bock (1978), was minimax for every s.s.d. In particular,
the positive-part James-Stein estimator

2\ +
§F(2) = (1 _ ‘T:g"L ) v (1.1)

is minimax for every s.s.d. if a <2 (p — 2).

It is then tempting to try to show that this robustness of shrinkage estimators carries
over to the case of confidence sets. Although Casella and Hwang (1983, 1987), and Hwang
and Casella (1982, 1984) have very general results in the normal case with 6% known, they
only have numerical evidence that the usual confidence interval can be dominated in the
unknown variance case (see Casella and Hwang (1987)). For a large class of s.s.d.’s, includ-
ing the usual ones (normal, multivariate ¢, double exponential), Hwang and Chien (1986)
have established some sufficient conditions on a (in 1.1) for the domination of the usual
set estimator in the known variance case. (These conditions depend on the s.s.d.)

In this paper, our aim is therefore more modest: we establish that, for a given class
of s.s.d.’s (which includes the multivariate-t), there exists ao such that, for a € (0, a.], the
usual confidence set can be dominated, no matter which s.s.d. in the class is sampled.
Unfortunately, this class does not contain the normal distribution with unknown variance,
a point that we discuss in more detail in the last section of the paper.

II. Domination in the Class of Spherically Symmetric Distributions.

When sampling from a s.s.d., the usual confidence set, based on the F-distribution,
maintains its coverage probability no matter what s.s.d. is sampled. A direct consequence
of the work of Kelker (1970) on the characterizations of s.s.d.’s is the following result:
Proposition 1. Let F, p , be the (1—a)-quantile of an F-distribution with p and v degrees
of freedom. Let Z = (X', Y') be a (p+v) vector following an arbitrary s.s.d. with location
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parameter (8',0') and dispersion matriz 62, y,. Then
c*={0: 0~ xIP < Lro, ¥R (21)

i3 ¢ (1 — a)-confidence interval.

Proof. From Theorem 11 of Kelker (1970), it follows that “irl_y—}ﬁzl-[/—z-yzﬂ has an F-distribution

with parameters p and v, independently of the s.s.d. O
Note that this result is true whether or not ¢? is known. In the rest of the paper, we
will suppose 02 unknown.
Using (1.1), we construct the recentered set estimator

p
ot ={0:10- & @I < EFup VI (22)

It is clear, by construction, that Volume (C}) = Volume (C°). Thus, in order to establish
dominance, we need to show dominance in coverage probability; that is, Py ,2(8 € CF) >
Py »2(0 € C°) for all 6, o2.

We have

Posr6€CH = [ flle 0l + Il

if the density of Z factors through f. Thus, defining k? = 2 Fa,p,v» We can write

Pypa(8 € CF) = / / F(lle = 61 + ly|P)de dy.
v J{z€Rr:||0—6F (2)||2<k2]y]]2}

Following the argument in Theorem 2.1 of Hwang and Casella (1982), we have

+o0
eyt | F(lle — 61 + $*)de ds -
/”ﬂL {z:116—567 (z,5%)||2<k2 52} .

k

+oo
= 2m) "L Py o2 (|10 — 6F (2, s%)||> < k%s®|s)s” L é(s)ds
U%LL )

+oo
> [ @0 Poga(10 —alfF < B s)s T g(s)ds (2.3)
l]—z-u. )
where § = ||Y|| and ¢ is its density function. In fact, due to the convexity of C°,

{z : ||0 - &§F(z,s2)||> < k2s%} contains {z : ||0 — z||2 < k2s2}if ||6]|/s < k. Integra-
tion over s? then gives inequality (2.3).
Therefore, we only need to consider the integral

i
I(a) = / (2m)7 1571 / flz — 02 + 2)de ds,  (2.4)
. el0-5F (2,2 [2<k292)
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and establish conditions under which it is an increasing function of a. At a = 0, I(a) is
equal to the integral obtained for the usual set estimator (2.1). Thus, if we establish a
range of a for which I(a) > I(0) for every 6 and every o2, this, together with (2.3), will
establish dominance of C} over C°.

Using the notation

a(r) = r* — 2||fl|r cos B+ /6P,
r3 = |I6]] cos B+ /K252 — ||9]|2 sin?B,

re = (rq +4/(r3)? + 4as? )/2, (2.5)
ks T
sin fo=—— and 0<f6,<—,
116l 2

we can write

1zl Bo pr :
I(a) = Q/ (27r)”"l.s"_1 / / i rP=1 gin P"Z(ﬂ)f(a(r) + sz)drdﬂds,

where ) is a positive constant, and can be ignored. Differentiating I(a), we obtain

lell

@) o« [T [T s e £ ) 2 )

— P Fla(r_) + 32)—8%(7'_) dfds (2.6)

lell °
— / k Sl/+1 /ﬁ Sinp—2£ [Tif(g(r'*') -2|_ 32) _ T{f(g(r") _21_ 82) dﬁds
° o ry +as r? +as

by simple algebraic manipulations.
Define f1(-) by f(t) = fi(5) V t. Using the new notation

el
o

Q&

and modifying the old ones accordingly as

rg = |[é]] cos B+ /k2w? — |[€]]? sin?B,

ra = (15 + 1/ + daw)/2,
kw

o(r) =1 —2||€]|r cos B+ [¢[*, and sin fo = Tl

we see that -2 I(a) is proportional to

/neu/kwqu1 /ﬂo o ﬂ[ri fila(rs) +w?) 12 fi(a(ro) +w?) dpd.

rﬁ_ + aw? r2 + aw?




As we want a condition uniform in ||8||, we have only to consider the case 6% = 1, even if

o? is unknown.

To show that
rifl(a(m_) + w?) S r? fi(a(r-) + w?)

r? + aw? r2 4+ aw?

, (2.7)

for each B and w?, and hence that dominance can be attained, we can apply the result of
Hwang and Chen (1986). A sufficient condition for (2.7) to hold is

! 2 _ 2
inf fl(v+w)> p—2 an-l—\/k +a

wo<v<ar fi(v+w?) T 2wk/a Ja s (2.8)

where
ag = (k — Va)’o?,
{ oy = (k2 + a)w2.
Therefore, we have established
Theorem 2.1. If a is such that

fi(v +w?) p—2 , k+Vi2+a
o) = R,

then Ct dominates C° for every 6§ and every o?.

inf{w2 inf

ao<v<ay fl ('U + w2)

ITI. Discussion.

It is clear from expression (2.8) that there is a restriction on the s.s.d.’s to which
Theorem 2.1 applies. In particular, the theorem can be applied only if the first term of
the inequality is finite, i.e. if

1 2
2 fi(v 4+ w®)
w” n _— 3.1
aosvéal fl(’U +w2) ( )
is bounded from below for every w?. In the normal case, Jﬁ% = —%; therefore we cannot

apply Theorem 2.1 to show dominance in this case.
For the double-exponential distribution, we have

||z — 6|

F(e10,0%) o exp {~ 2=l
and thus f1(t) < exp (—v/). Therefore, we get
AO_ 1 feted) 11
A®) T 28T Al+w?) T 2 /v +w?)

Thus (3.1) cannot be bounded from below. Similar to the normal distribution, the double
exponential has tails that are not flat enough to satisfy this condition. We will see below
that the multivariate-t is a limiting case with respect to this criterion.
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Consider now the multivariate-¢ distribution with parameters 8,62 and N (degrees of
freedom):

1 9 ~(N+p+v)/2
#el6,%, ) o« {14 gzl — 011+ 111?) (5.2)
For this distribution, we have
fit) _ N+p+v
f(t) 20N +1) 7
an increasing function of ¢. Thus
inf fllo+w?)  N4pt+v N+p+v
ao<v<ar F(v+w?) 2N 4oao+w?) 2N+ (14 (k- a))w?)’
and
inf{— W (N +p+v)/2 } ___ N+p+v
o U N+ 1+ (k—-+a)?)w?) 2(1+ (k- Va)?)’
We now just have to solve the equation
N+p+v _p—2£n E+VEk2+a (3.3)
14+ (k—+ap? ~ ky/a Va '

to get an upper bound a,. And, applying Theorem 2.1, for every a € [0, a.], C;* dominates
C°.

Note that, as N — oo, the solution to (3.3) goes to zero, again showing that we
cannot deduce anything for the normal distribution with unknown variance. The reason
why the normal case cannot be covered by Theorem 2.1 is that it cannot be handled by
‘any technique that operates conditionally on S2. That is, in order to prove dominance in
the normal case one cannot work with the square-bracketed expression in (2.6), but rather
with the entire integrand. This presents an analytical problem of great difficulty, as the
entire integrand is extremely unwieldy.

The fact that the proof conditional on $? would not work for the normal distribution
can be deduced from Hwang and Casella (1984), since a reparametrization shows that the
domination of C° by CJ is equivalent to the domination of the set

{o:tu-mir <<}
+ L
Ca = 0”:“’— 1- ”T”2 T” <c ’

where T ~ N(u,72), for every p and 7. As a is fixed, this is not possible (Hwang and
Casella, 1984).

by the recentered set




This surprising difference between normal and multivariate-¢ cases can also be found
in Hwang (1985), which is concerned with stochastic domination of point estimators. In-
formally speaking, one estimator will stochastically dominate another only if its confidence
sets dominate for all confidence levels. Hwang proved that the mle can be stochastically
dominated in the multivariate-¢ case but not in the normal case. (See also Brown and
Hwang (1989).) As §}(z) also depends on 52, we cannot apply his result to the sets (2.2).
However, the similarity between the two problems suggests a possible relationship between
stochastic domination and set domination.

The difficulty of the normal case is also illustrated by Kim (1987). The estimators
considered in this thesis are more complex than (1.1), as the constant a is replaced by a
function a(s). However, the author still needs a lower bound on ¢ to get a domination
result. '

Table 1 gives some values of a, for & = 0.05. As one can see, the obtained values are
far from

a" = —=(p-2) : (3.4)

‘optimal choice’ for the point estimation problem. The bounds given in Table 1 are logi-
cally decreasing functions of » and N since, as v or N goes to infinity, the multivariate—t
converges toward a normal distribution. Although the decrease is not very rapid in N, if
we compare our values with those of Hwang and Chen (Table 1, 1986), we can see that
our values are much smaller: working conditionally on S? gives restrictive conditions.

Hwang and Chen (1986) also note that the general solution for a, yields a rather small
upper bound, one that can be improved upon in special cases. It is clear that their result
(Theorem 3.1) can be generalized in the following way.

Proposition 3.1 If
(a) g =4£nfi is convez,
() {t > L22 4 as?g'(s%a(t — t71) + (1 + (k — Va)?)s2)(1 + #2) > 0}
is an interval (possibly degenerate),
(c) 9as?(t" — &) + (1+ (F — vay)s?) — (L + (k — vay)s?) > —(p — Dfn £,
k2+ta .

with t* = ﬁﬂ\ﬁz, for every s2,
then CF dominates C° for all 0 and all o?.

In the normal case, we have g(t) = —%. Even if conditions (a) and (b) of Proposi-
tion 3.1 are satisfied, we have

gtF —

g(as? (@ — ) + (1 + (k — va)?)s?) — g((1 + (k — Va)*)s?) = —as 2

which cannot be bounded from below.

For the double-exponential distribution, we get the same conclusion as before (g(t) =
¢nM — \/t where M is a normalizing constant).

Consider now the multivariate-t distribution; we have (see (3.2))

_ _NAptv 2y
g(t) =— 5 En(l—l— N)



It has been proved in Hwang and Chen (1986) that conditions (a) and (b) are satisfied for
this function. We have

9ot = )+ 1+ (b~ Va)s?) — g((1+ (k — va))s")

__N+p+un ~ 2 k+vVk:+a)l—a
B E{”f (k+¢—k2+a><N+<l+(k—¢6>2)52>}

As this expression is a decreasing function of s2, we get the sufficient condition

N+p+v (k+vk +a)—a _ o (k+VE +a
2(p — 2) £n<1+\/5(k+\/k2+a)(1+(k—\/5)2)>—£n< Va ) (35)

Therefore we have established

Theorem 3.2. Ifa € (0,a,) where ao is solution of (8.5), CF dominates C° for multi-
variate —t distribution with N degrees of freedom.

The bounds obtained in Table 2 are larger than their counterparts in Table 1, as in
the known variance case. As p grows larger, the improvement increases. Table 3 gives the
coverage probability of the recentered confidence interval at § = 0 using the values of Table
2, i.e. the solutions of (3.5). Despite the fact that the bounds are by far too small (see
below), the gain at § = 0 (which is the maximum gain) is still quite substantial. One may
also notice that, while the solutions of (3.5) are decreasing with p and v, the improvement
these bounds bring is increasing with p and v.

Yet these bounds still remain significantly inferior to the “optimal” bound for point
estimates, given in (3.4). In fact, Hwang and Ullah (1989) obtained some asymptotic
bounds much larger than (3.4) which seem to insure uniform domination of C°. This fact
definitely shows the need for methods which do not work conditionally on S? but which,
roughly speaking, stay “inside the integrals”. Unfortunately, the proper method to attack
the problem yet remains to be discovered. .
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) 10 20 25

p
) 0.50 0.19 0.09 0.07
10 1.40 0.49 0.23 0.19
20 3.21 1.06 0.52 0.39
30 5.02 1.60 0.70 0.56
60 10.42 3.40 1.31 1.03

N=5
v

) 10 20 25,

p
) 0.40 0.16 0.08 0.07
10 1.23 0.44 0.21 0.18
20 2.97 0.99 0.45 0.36
30 4.76 1.53 0.67 0.54
60 10.14 3.12 1.28 1.00

N =10
5 10 20 25

p
5 0.3 0.12 0.07 0.06
10 1.02 0.37 0.19 0.16
20 2.65 0.89 0.41 0.34
30 4.37 1.41 0.63 0.50
60 9.68 2.98 1.22 0.96

Table 1. Solutions of (3.3) for a = 0.05.
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5 10 20 25
p
5] 0.74 0.25 0.11 0.09
10 2.41 0.79 0.33 0.29
20 6.00 191 08 0.62
30 9.68 3.02 1.24 0.96
60 20.80 6.32 2.52 1.94
N=5
L .
) 10 20 25,
p
) 0.58 0.21 0.10 0.08
10 2.03 0.68 0.30 0.24
20 5.42 1.73 0.73 0.57
30 8.98 2.81 1.17 0.91
60 19.84 6.05 2.42 1.87
N =10
v
) 10 20 25
p
5 0.41 0.16 0.08 0.07
10 1.60 0.56 0.26 0.21
20 4.66 1.51 0.65 0.52
30 8.03 2.56 1.06 0.83
60 18.64 5.72 2.32 1.80

Table 2. Solutions of (3.5) for a = 0.05.
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5 10 20 25
p
) 0.969 0.975 0.981 0.983
10 0.977 0.986 0.992 0.995
20 0.981 0.990 0.996 0.998
30 0.983 0.992 0.997 0.998
60 0.984 0.993 0.998 0.999
N=5
v
5 10 20 25
p -
) 0.966 0.973 0.980 0.981
10 0.975 0.983 0.991 0.992
20 0.980 0.989 0.996 0.997
30 0.982 0.991 0.997 0.998
60 0.983 0.992 0.998 0.999
N=10
v
5 10 20 25
p
) 0.962 0.969 0.976 0.979
10 0.972 0.980 0.989 0.991
20 0.977 0.987 0.995 0.996
30 0.980 0.990 0.996 0.998
60 0.982 0.992 0.998 0.999

Table 3. Maximum coverage probability
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