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A Lower Bound for the Risk of Classes of Shrinkage
Estimators in a General Multivariate Estimation Problem
and Some Deduced Estimators

Abstract

-Given an arbitrary quadratic loss, we propose a lower bound for the associated risk
of shrinkage estimators which is of interest for a wide field of estimation models. With
respect to the considered class of shrinkage estimators, this bound is optimal.

In the particular case of estimation of the location parameter of an elliptically sym-
metric distribution, this bound can be used to find the relative improvement brought by a
given estimator using the Monte-Carlo method. We also consider a new type of shrinkage
estimators whose risk can be as close as one wants of the lower bound near a chosen pole
and yet remain bounded.
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A Lower Bound for the Risk of Classes of Shrinkage
Estimators in a General Multivariate Estimation Problem
and Some Deduced Estimators

‘1. Imtroduction

In many multivariate estimation problems, when new estimators are considered —
for Bayesian or frequentist reasons —, it is often very difficult to evaluate their interest
compared with existing estimators. Even if it is sometimes possible to show that they
dominate, w.r.t. a given criterion, an “usual” estimator (e.g. the best invariant one), the
improvement they bring and the remaining possible improvement are most of the time
unknown.

In particular, this is often the case for the wide field of shrinkage estimation. In most
of the cases, shrinkage estimators are shown to dominate the least squares estimator by
using an “unbiased estimator of the risk” introduced by Stein (1973) but the comparison
with other minimax estimators is not undertaken; Bock (1987) -and Brown (1987) have
even established that it is impossible to show that some inadmissible estimators, like the
positive-part James-Stein estimator, are dominated using these methods.

We give in this paper a method to compute a lower bound of the quadratic risk of a
shrinkage estimator, for a wide class of multivariate estimation problems. We also derive
from this lower bound, in the spherically symmetric case, some interesting new shrinkage
estimators, whose risk near the pole can be a,rbltra.rlly near of this bound and yet remain
. uniformly bounded

2. A Lower Bound of the Risk in the General Case
The following general framework contains a lot of classical statistical models.
2.1. Model

In a real vector space E of dimension n, we observe a random variable v. We suppose
that its distribution belongs to a parametrized set,

F= {Fo,,s; (0, 5) € 0 x A},

where © and A are contained in some vector spaces. The parameter we are considering
is u(0), where p is a mapping from © into E, vector space of dimension k (note that
u has not to satisfy u(®) = E). Let us define a symmetric bilinear form q on E. The
associated quadratic form is denoted g (i.e. §(z) = ¢(z,z), V = € E). The estimators of
1(0), mappings from E into E, are compared w.r.t. the risk associated with ¢ (see below).

2.2. Shrinkage Estimators

We suppose that we already have an estimator of u(f), ©°, such that the risk of ©°
is finite:
Eo,s[q(¢°(y) —u(8))] <+oo V9,8,
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where the expectation is taken w.r.t. the distribution of y, Fo5.

Let ¢ be a linear mapping on E. For every function h from E into R, we consider
the associated “shrinkage” estimator

(2.1) en(y) = ©°(¥) — h(y) - c(°(v)),

whose form is inspired by the normal case (see Judge and Bock (1978)). Then

Proposition. Among the estimators pp, for a given §y € O, the estimator associated

with the function
2(¥°(y) — 1(80), c(¥°(v)))

9(c(¥°(v)))

minimizes the risk Eg 5[@(@n(y) — 1(0))] for every 8 such as u(8) = u(6o).

hg, (y) =

Proof.
The risk can be written
Es,5[@(°(y)—1(9))] — 2Eo,5[h(y)a(¢°(v) — 1(6), c(soO(y)))]
+ Eg,5[R* (¥)a(c(2°(v)))]

and, for every y € E,

h(y) {a(c(2°(¥)))h(y) — 2a(°(y) — 1(8), ¢(¥°(v)))}

is minimized by hg.

Furthermore the risk of the estimator ¢4, is finite at 4. It follows from the Cauchy-
Schwartz inequality that it is sufficient to show

Es,5[q(c(¢°(¥)))R5(y)] < +oo.

Note that

< Eos[2(¢°(v) — #(0))] < +o. O

2.3. Remarks

1. This result can be easily generalized to the case when the estimator is shrinking
towards an arbitrary pole k. The estimators we consider are thus

(2.2) | enly) = ©°(¥) — h(¥)e(¥°(y) — x)

¢
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and the function associated to the estimator minimizing the risk at u(6) is

_ a(e(°(y) — ), 0°(y) — u(6))
Pl = T W

2. That hg depends upon ¢°(y) is fairly natural (in particular, if ©°(y) = u(6), we
must have h(y) = 0). What is more surprising is that hy does not depend upon other
functions of y. For example, in the case of the estimation of a normal vector when the

variance is known up to a multiplicative factor 02, an estimator of 02 usually appears into
the estimators. :

3. When u(6) = 0, hy is equal to one if ¢ is a orthogonal projection for the scalar
product defined by gq. Furthermore, if ¢ is the identity linear mapping, the estimator
associated with hg is s, (y) = 0. Thus its risk is equal to 0. For u(6) # O (which is the

chosen pole), the risk of 4, is always positive, except if £ = 1 where our result is of no
interest.

4. The estimator minimizing the risk at x(8) depends obviously upon (). Therefore
we find again the well-known result that there cannot exist a uniformly optimal estimator.

5. The bound we can deduce from the proposition by considering, for every 4,
Eo,5(@(n, (y) — 1(0))] is optimal because, for every #, there exists an estimator in the
class (2.1) which reaches this bound. Therefore, if an estimator in this class has a risk
equal to the bound for a given u(f), it will be “pseudo-admissible” in the sense that it
will be only dominated by estimators which also reach this bound. This class of pseudo-
admissible estimators is interesting only in a neighborhood of u(f), seen as a “second
possible pole”. In fact, it seems that these estimators do not have good uniform properties
(w.r.t. u(0)) like minimaxity or even finiteness of the risk. (See Figure 1)

k=6, sampla siza 5000

12 14 18

10

Figure 1 - Risk of ¢y compared with the lower bound (8 = (1,..., l)t).
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3. Elliptically Symmetric Distributions
3.1. General Model

The estimation of the location parameter of an elliptically symmetric distribution
is a particular case of the previous framework which has been widely considered in the
literature, especially in the normal case (see, e.g., Berger (1980), Bock (1985), Cellier,
Fourdrinier, Robert (1987)).

-We consider a random vector y € R*¥ whose distribution is an elliptically symmetric
one with dispersion matrix ¥ and location parameter §. If this random vector is absolutely
continuous with respect to the Lebesgue measure, its p.d.f. can be written

fy— 03" (y-9),

where f is a function from R into R;. We suppose here that ¥ is unknown but the lower
bound is the same when X is partially or totally unknown (see Remark 2).

Most of the shrinkage estimators of § considered in this problem can be written (see
Judge and Bock (1978))

©(y) = (Ir — h(y)C)y

where C is a (k, k) matrix. Therefore they appear as a particular case of the class (2.1).
Let Q be a p.s.d. matrix; if the risk is defined by Eg 3[(y —0)*Q(y — 0)] and o is a given
vector of R*, the estimator minimizing this risk at , is, according to the Proposition,
associated with the function

y — 00)'QCy

ha ) = y*eiQCY

and the lower bound is then

((y — 00)tQC_y)2]
yiCiQCy 7

tr(m_lQ) - Eoo,m[

which can be easily computed for any 8o through simulation. Note that this minimum is
always less than tr(¥!Q), the risk of the least squares estimator.

3.2, The Symmetric Case
When C = X = Q = I, the estimator associated with hy is

and the lower bound depends only upon '8 because of the spherical symmetry of the dis-
tribution. This result allows easier computations because the problem becomes essentially
unidimensional (see attached figures).



In the symmetric case, for the normal distribution one well-known shrinkage estimator
is the positive-part James-Stein estimator,

G(y)=(1- (k- Z)y y) Y,
where (z)* = max(0, z). It performs well but it is known to be inadmissible. However, an
estimator uniformly dominating this estimator is unknown. As one can see on Figures 2
and 3, the difference between the risk of the positive-part James-Stein estimator and the
lower bound is approximately one for every value of §%0; we have thus refined the result of
Spruill (1986) who shows that the risk of a spherically symmetric shrinkage estimator is
at least the risk of the “primitive” James-Stein estimator minus two.

Even if the positive-part James-Stein estimator is almost admissible, one can hope to
gain over it in some bounded regions of the parameter space. The shrinkage estimators we
consider now can be used in that purpose.

3.3. Some Deduced Estimators

As we have already said, for an arbitrary § € R¥, the choice of the estimator ©4, is
only sensible in a neighborhood of 8y (see Figure 1). In order to apply the result of the
previous proposition, one can replace 8 in hy by an estimator 4. But, if this estimator 4 is
a scalar estimator (e.g. the positive-part James-Stein estimator), the resulting estimator
is also 4.

Another possibility is to consider a convex combination of estimators Yo, for a collec-

tion of fixed 0;, 7 € I,

y) =Y pi(y)en (v),

el
where, '
' Vye Rk,Zp;(y)=1andOSp,-(y) <1,Viel.
iel

For this “multiple shrinkage estimator” (see George (1986)), it would be interesting to take
the weight p; non null only in a neighborhood of 6;(i € I). Consider then a partition of
R* into “hypercubes” associated with the collection {#;,¢ € I}, the 8;(¢ € I) being the
vertices of these hypercubes. The simplest case is to use a uniform partition where each
hypercube has edges of constant length d; d is said to be the diameter of the partition.
Thus, if 8y is a given vertex of the collection {#;,7 € I}, this collection can be rewritten

{60 +d¢, EeIt}.

Now, if y belongs to a given hypercube, it is natural to shrink y toward the vertex of this
hypercube which is nearest to 0; in other words, the “neighborhood” of 8 = (vy,vs,...,vk)
will be the hypercube

{(vy + —L e dvy+ — d,...,vk+|z—:|ekd);e,-e[0,1,lgigk}

II |2|



with the convention ]%r = 1. And 0 must be obviously shrunken towards itself; this implies

that O is a vertex of the partition. Therefore, for every d € R%, the partition Ty of R* is
the collection of hypercubes of edges of length d and vertices in {0¢; ¢ € d- ZF}.

Let [z] denote the integral part of z (with [-2.3] = —2); for d € R*_, we define ip; to
be the mapping from R* into d Z* which associates to every y € R*

pale) = (@ a2 e
de(y) = (d[ d ]1d[ d ]’---’d[ d ]) .
It is easy to check that, for the partition Ty, y always belongs to the hypercube whose
vertex nearest to O is 7ps(y).

Consider the following choice of the weighting functions:

_J1 if € =ipa(y)
p‘é(y) - {0 otherwisg (éed-7F).

This choice can be smoothened to make the weighting functions continuous or even C°.
With this crude choice, the resulting estimator,

Galy) = ) rv)eelv),

¢edzk

does not appear anymore as a multiple shrinkage estimator but rather as an estimator of
g where 0 is estimated by 64(y) = 1pi(y). We have then

tc
. v ipa(y)
Cily)= —7]—"Y.
(v) vty

But, as we are estimating § and ¢ uniformly dominates the least squares estimator,
we can logically substitute for §; the estimator 64(y) = ipa(5(y)). The simulations we
have done show that this choice significantly improves the estimation of 8. Note that, as
d goes to 0, 6 goes to P and

Bal) = y*ipa(S(y))
vy

goes also to B(y), for every y € R,

This class of estimators is interesting from the point of view of our lower bound. In
fact, as the following figures show, the risk of (B4 goes closer to the lower bound near 0
as d grows larger. One drawback is that these estimators are no longer minimax even
though the simulations seem to establish that their risk levels off for 6%0 large enough.
The maximum risk is an increasing function of d (see Figure 2); the more one gains near
0, the more one loses (w.r.t. the least squares estimator) for large values of §. Another
drawback is that they do not bring any improvement for large values of 4.
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We have then got a family of e-minimax shrinkage estimators which dominate the
positive-part James-Stein estimator near 0, even if the rigorous determination of the &
associated with a given 4 seems rather difficult. But it is worthwhile to note that, for this
kind of problems, restricted risk Bayes estimators are nearly optimal (see Berger (1982),
Chen (1983), Spruill (1986)). Given a prior, the associate estimator nearly minimizes the
corresponding Bayes risk among the e-minimax shrinkage estimators; in particular, one
can choose the prior to be the uniform distribution over a region of interest.

However, even if these estimators (4 are not optimal in this way, they provide, for
“good” values of the diameter, performing competitors of the positive-part James-Stein
estimator, . To compare them, let us define the two following distance indicators:

(2) the proportional saving performance (PSP)

sgp{R(é,ﬂ) — R($q,0)}
sgp{R(‘ﬁd, 0) — R(5,0)}’

PSP(gq) =

~(b) the relative proportional saving performance (RPSP)

Sup{ (R(‘ﬁsg(_é’o()éd ,0)) }

RPSP(pg) = 4——— -
($a) sup (240 R0}

where R(p, 0) = Eql|l(y) — 0][2]-

Both of them evaluate the ratio of maximal improvement over maximal loss, the inter-
esting estimators being associated with indicators greater than one. RPSP evaluates the
performance of an estimator in terms of percentage of improvement (or loss) with respect
to ¢ and is, from our point of view, more reliable. Note that the denominators will always
be positive, as $ is nearly admissible.

Table 1 contains some simulation results about the performances of estimators ¢ 4 for
both indicators (the numbers between parentheses are the numerators of the corresponding
indicators).



d
0.05 0.1 0.2 0.5 0.8 1 Adaptive
k
(0.08) (0.16) (0.3) (0.65) (0.88) (1.0) (0.45)
16.05 8.56 4.32 1.58 0.85 0.62 7.69
6 (0.086) (0.12) (0.22) (0.48) (0.66) (0.74) (0.34)
72.46 38.48 19.11 7.05 3.80 2.75 29.25
(0.09) (0.17) (0.33) (0.69) (0.93) (1.03) (0.42)
12.51 6.73 3.41 1.16 0.61 0.44 6.13
9 (0.07) (0.14) (0.26) (0.54) (0.73) (0.81) (0.33)
- 88.63 47.58 23.99 8.22 4.29 3.10 37.13
(0.10) (0.20) (0.37) (0.76) (0.98) (1.08) (0.41)
11.18 5.53 2.69 0.91 0.46 0.33 6.11
13 (0.08) (0.16) (0.3) (0.61) (0.79) (0.87) (0.33)
116.86 57.84 28.09 9.37 4.75 3.36 47.44
(0.11) (0.21) (0.40) (0.79) (1.01) (1.09) (0.41)
11.56 5.47 2.50 0.79 0.39 0.27 5.33
16 (0.09) (0.17) (0.33) (0.65) (0.83) (0.90) (0.34)
150.64 71.19 32.49 10.24 5.11 3.55 57.79

Table 1 — Values of PSP ($4) and RPSP (3,).

The ‘adaptive diameter estimator’ is a modification of the estimator P4 where d is
replaced by d = (yty)_l/ 2, the diameter being inversely proportional to the norm of y.
As one can see in the previous table, this estimator performs rather well, giving good
indicators and significant improvement over the positive-part James-Stein estimator (see

also Figure 3).
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Figure 3 — Risk of the adaptive diameter estimator compared with the risk
of ¢ (k = 6, 5000 observations)
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