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Abstract

Properties of the resampling empirical Bayes estimators (REBE’s) of the error variances
in a heteroscedastic linear model (Shao, 1987) are studied. We concentrate on (i) the con-
sistency, bias and mean squared error (MSE) of the REBE and (ii) the comparisons between
the REBE and other variance estimators such as the within-group sample variance, MINQUE
and the within-group average of squared residuals. In particular, we obtain an upper bound
for the bias and a second order expansion of the MSE of REBE, and show that the REBE has
smaller MSE than the within-group sample variance and MINQUE if the total number of
observations is large. The consistency of a class of estimators of a linear function of the error

variances is also studied.

Key words and phrases. Data resampling, empirical Bayes estimators, sample variance,

MINQUE, consistency, bias, mean squared error.






1. Introduction.

We consider the estimation of the variances o, in the following heteroscedastic linear

model:
2 ' . n _
(1.1 yij =X, B+ eij’ j—l,...,mi, i=1,..,n, Ei=1mi_N’

where Pe R is the unknown parameter, x € R* are deterministic, and e, are mutually
. . 2 2 . 2 .
independent with Eei,=0 and Eeij=6i , j=1,...,mi, i=l,...,n. The Gi are assumed uniformly

) 22 . .
bounded (i.e., c, <o U for all i) but otherwise unknown.

Since in most practical situations m. are small although » and N may be large, it is
difficult to obtain good estimators of 0;'2 without putting any restrictions on Giz or their estima-
tors. A great deal of research work has been done in this area by assuming 01,2=H (xi ), where
H is unknown or is known up to several unknown parameters, and estimating H from data.
See Carroll (1982) and its references for further details. On the other hand, C. R. Rao (1970)
developed the MINQUE (minimum norm quadratic unbiased estimator(s)) by imposing some

. L . 2 .
restrictions on the estimators of S, (see Section 6.2).

By incorporating data resampling techniques, Shao (1987) proposed two classes of
empirical Bayes estimators (1.3)-(1.5). The purposes of this paper are: (i) to study the proper-
ties of the empirical Bayes estimators (1.3)-(1.5), and (ii) to compare them with other variance
estimators. Formally we define the Resampling Empirical Bayes Estimator (REBE) as fol-

“lows. For their derivations, we refer to Shao (1987).

Let
y=(y,, ¥, Yum ) o

and

X=(X1X2--~Xn) X =(x, x. - x.)

i=1,...n.
Nxk ’ i i i i "kxm.’ [

Assume M=X'X is nonsingular. Let

where B=M _IX’y is the least squares estimator of B3, and

A -1 “lem 2
(1.2) a =m (1-h) Ej=1rij’



where hizxi M —lxi, i=l,...,n, are the diagonal elements of the "hat" matrix XM X' A class
of REBE’s of Giz obtained by using the bootstrap method is

(1.3) vib O)= -k )Zi +Ahs?,

- 2, . . 2
where ?\,ie [0,1] and s2=(N k) lzn 1ani1rij is the usual variance estimator when o, =6 for
1= j=

all i. A class of REBE’s obtained by using the weighted resampling method is

(1.4 v, (7\, r)-(l—lh)a +7thJ B

where Kie[O,l], r is an integer satisfying k<r<N and r/N —1, s —h 1Jc ’V X and V)

, » T

is the weighted retain-r jackknife estimator of the variance-covariance matrix of [3 (Wu,
1986). In particular, if r=N-1, (1.4) reduces to

w A 2
(1.5) v, O"i) = (l—lihi)ai + ?\,ihl_sj, s ZI 1hdm a

-1
where h. =x'M "x..
iy o J

The estimators (1.3)-(1.5) are shrinkage estimators. Similar to the MINQUE, they esti-

2
mate ©, by using not only the data in the ith group, but also the data in the other groups.
These estimators are usually superior to the customary estimator, the within-group sample

. . 2 .
variance, especially when c, have some features in common.

We study the properties of REBE’s in Sections 2-5. Section 2 contains a result for the
consistency of the REBE. An upper bound of the bias of the REBE and a second order expan-
sion of the mean squared error (MSE) of the REBE are given in Sections 3 and 4, respec-
tively, in terms of the diagonal elements of the "hat" matrix. The problem of choosing a
"best" estimator within class (1.3) or (1.4) is discussed in Section 5. Except in Section 2, we

concentrate on the situation where m, are small but N is large.

Comparisons between the REBE and other variance estimators are given in Sections 6
and 7. In addition to such properties such as invariance, asymptotic unbiasedness and robust-
ness against non-normality (Shao, 1987), the REBE has smaller MSE than the within-group
sample variance and the MINQUE when N is large (Sections 6.1 and 6.2). In Section 6.3, we
compare the REBE with the within-group average of squared residuals (ARE), which is pro-
posed by J. N. K. Rao (1973) as a modification of the MINQUE. It turns out that the ARE



has the same second order MSE expansion as the REBE v, (1) and v, (1) but has a larger
negative bias, and v, (1) and v, (l) are actually bias ad_]ustments of the ARE. The perfor-
mances of these variance estimators in the case of small N is discussed through an example in
Section 7. Shao (1987) contains some simulation results which show that the REBE’s gen-

erally perform better than the other variance estimators under consideration.

A brief discussion of estimating linear functions of S, i=1,...,n, by using the REBE of

individual G, is given in the last section.

2. Consistency of the REBE when m, is large.
We consider the consistency of the REBE ( when m.—>eo ) for the following reasons:

(1) Although in common situations m. are small, there are some statistical applications consid-

ering large m, and small n.

(2) Consistency is a basic requirement for any estimator.

Theorem 1. Suppose that
2.1 h =max._ h — 0 asN-oo,
max isn i
Then for any ?»ie [0,1], as m,—eo,
b
() v,(\) = o, in probability;
2
(ii) viw(ki, r)y— o, in probability.

Proof. Under (2.1), it is easy to see that as m =0,

A 2
a. =0, in probability.
2
From (1.3) and (1.4), it remains to be shown that Es® and Es , , are bounded. From Lemma
2 t)
2.1 of Shao (1986), max, jErij are bounded if the o, are. Hence Es® are bounded. That

2
Es ,, are bounded is proved in the following lemma. O



Lemma 1. Suppose that

2.2) limsupN__m(N —r )hmax < 1.

Then

(2.3) Exi VJ’ X = 0 (hi)'

Proof. Let s={i TR ’ip 1c{l,...,N} be a subset of integers and Xs be the submatrix of

X containing the i 1th,..., ipth rows of X. Let MS=XS'XS and s be the complement of s.
From the proof of Theorem 1 of Shao and Wu (1987),

EVJ,r=VarB+S1—S2+S3,

where

S, = O W-r)Varf,

2 N
<
S,s0,(

-k -1 -1 -1 , -1
) T, IMITAM 1M, DM X X M
2, Nk -1 -1 ] -1 .1
Sy<0,G ) X (M -MTOMM_-M"),
and ), is the summation over all distinct subsets s of size . Now, there is a constant ¢ 1>O
s

such that
’ _1 ’ A 2 _1
x, S & sc 1N (N-r )xi (VarB)xi <c 1()'UN (N-r )hi

-1 2 _ _
<k clcU(N_r)hihmax =0[IN r)hihmax],

1 Also,

where the last inequality follows from h_ 2N _IE,-n:lmi h,=kN
xS x5 <o (k! > MM |-1M, 1) x, ’M_IXF’XEM_lxi
<o G E, MM I-IM DX, kh,
<o -k (NS MM -1m )
= o, -rkh_ - = ot -ron 1,
and there is a constant ¢ 2>O such that

’ 2 N-k -1 P S | -1 1
xS S0 G X & M -M MM M )x,



2 N-k -1 n vyl a1l 2
= Oy lrts1) ZSZI=1ml be, /G =M x|
N-k ~1 n PN -1
Se,W-rhh G L3 mx M X X Mx,
&k -1
<c,N-r)hh (N I mE,

= szZ(N_r )h,-h ( —k+1)_1(N_ ) =0 [(N—r)hihmax]’

—I,]

where the second inequality follows from
’ -1 -1 2 , -1 -1 , -1 -1
[x‘, (Ms -M )xl] S[x‘, (Ms -M )xi][xl (MS -M )xl]
and the fact that
-1

-1 -1 =1, ~1y, » -1 -1
Ms -M "<[1-(N-r )hmax] M XE XEM S(N—r )hmax[l—(N —r)hmax] M

(Lemma 4, Shao and Wu, 1987). Thus (2.3) follows. OO0

3. The bias of the REBE.

From now on we consider the case that m. are small but N is large. Asymptotlc
unbiasedness of v, (7\, ) and v, (K r) follows from the following result which gives an upper
bound on the order of the magnitude of the bias of the REBE. For a variance estimator v, let

. 2 '
Bias (vl_ )=Evi =0, .

Theorem 2. Let Xie [0,1].
() I

(3.1) limsup,, b <1,

max
then there is a constant ¢>0 (independent of i and N) such that
(3.2) |Bias (v, ()] < ch.

(i1) Under (2.2), (3.2) holds with vib(ki) replaced by viw(?\.i,, r).

Proof. From the proof of Theorem 1, Es® and Es ., are bounded under the given condi-

tions. Note that (l—k h )G =0, +0 (h ). The results follow if



(3.3) E?zi = oiz+0 *).
From (1.2),

"_—1 —l o, 2_2__1n2 2_2
Eai =m, (1—hi) ijlErij—o", +(1 hi) Zj=1hijmj(6j c, ).
Now (3.3) follows from
13" (1-h) 0 ’m (6°—00)] <c2" him. = ch
=1 R A S T SRS U A
-1

. 2 .
for sufficiently large N, where c—GU(l—lzmsupthax) .

Hence if h‘_ —0 as N—oo (which is implied by (2.1)), then.-vib(li) and viw().i, r) are

asymptotically unbiased. Condition (2.1) is quite weak since it is known to be necessary and

sufficient for the asymptotic normality of ﬁ in the case of homoscedastic errors (Huber, 1981).

4. The MSE of the REBE.

The exact form of the MSE of the REBE is extremely complicated due to the nonidenti-
cal distributions of the errors. The following theorem gives asymptotic ( N —oo ) expansions
of the MSE of REBE’s. Assume that the fourth moments of the error distributions exist and

2
'ci=Var (eij), J =1,...,mi, i=l,...,n, are uniformly bounded.

Theorem 3. For any lie [0,11,
(i) MSE (Vibo‘,-)) =mi‘1(1—hi)‘2(1—xihi)2[1i+o (h)]+ Ok _) if (3.1) holds.

(i) MSE (v’ (A, r)) = mi—l(l—hi )‘2(1—xihi )2[1i+0 (k)1 +O@h_ ) if (22) bolds and N-r
is fixed (independent of N).

Remark. From the proof of Theorem 3, the above expansions hold uniformly in Z, i.e., there
is an absolute constant ¢>0 (independent of i and N) such that O(hi) and O(hihmax) in the

above expansions are bounded in absolute value by chi and Chihmax’ respectively.



We need the following results for the proof of Theorem 3.

Lemma 2. Let g, be independent with Ee =0, Var (e )<<>o i=l,..,n, and ¢ - be some con-

stants, 1<p, g<n. Then
22

Var(E) 3" =3 e Var(£)+4Z c2Ee’e®

qIPQPq 1<p<qs<n Pq P q

The proof of this lemma is straightforward and is omitted.

Lemma 3. There is an absolute constant ¢>0 such that if (i, j)#(¢, r),

2 2
4.1) |Cov ( rij’ r, )| £ chiht,
and
4.2) Var (r;) =T+, with |G |<ch.
Proof. Let

l—hi if I=i and j=p

u,L =
ijip { ]
—h. ; otherwise.
L

n m
Then r. = "'u,. e and
if Ez: Z ‘p=1 ijlp Ip

2 2
+2% U, U. U U OCOC .
ylp trlp l A, p)ym, q) ilp ijmg trlp trmgq 1 m

4.3) Cov(r o T ) Z E 1
If (i, j)#(z, r), then

1z Z ’ ,],p t,,p Tl —21h T X it ,,l < Q2+kyth b,

where T = supl'cl, and

c _20' h +o' hh
d, p)£m, q) l]lp ijmq trlp trmq l | (Z Z

< (2+& )GUhi ht .

Also, from (4.3),



2 _ 4 n 4 m, 4 2
Var(rij) = (1-h) T+ E1¢zmlhil T+ Zp;&jhi T, +23
Note that
" mhl ™ it < t(1+k)h
Zz;e,'ml iltl + Zp;ej iTi < ) i
and

2 2 22 4_.n 2 4 _n 2.2 4
u, u. 6 6 <20 mh +0C mh_ ) <30 _h..
A, p)em, q) ijlp ijmg 1 "m U21=1 1 U(Zz=1 4 d) Ui

Hence the result follows. [

U, u, O© 0 .
d,p)em, q) ijlp ijmg 1 “m

Proof of Theorem 3. (i) From Theorem 2(i), the bias of vib(?»i) is of order O (hi). Hence

MSE ("ib("i » = -\ k) Var (Zi) + 20k (1-A b )Cov (21., 3

+ 00 Var(sh + 0 ).
By Lemma 3, Var (s 2) is bounded. Therefore,
AR Var(sh) = 0 ).

Also, from Lemma 3,

(4.4) Var (Qi) = mi_z(l—hi )_2[2;":1 Var (r;) +2Y Cov (r;, r;)]

Isj<i<m,
=m  (1-h) [t +0 (h
=m, (1-h) [t+0(r)],

and

» =1, 1 m 2 2
Cov(a,, ) = [(N~k)m, (1=h,)] 12j=-121=12p=rlcov (o) =0 ).

The result follows.

(i) We only give a proof for the case of r=N-1 for illustration. From (1.5), 4.4) and

Theorem 2(ii), it suffices to show that

A 2
4.5) Cov (ai, sJ) = O(hmax)



and

(4.6) Var(s 12) = 0().

From Lemma 3, max, Var(a )=0(1). Since s —h ZI 1Iz dmlal, (4.5) and (4.6) are implied
by (4.4) and

ax#j | Cov (ai, aj)l = O(hmax),

which follows directly from Lemma 3. []

5. The choice of 7Li.

A consequence of Theorem 3 is the following,

Theorem 4. Under the same conditions as in Theorem 3, for any 0< s<z<1, we have
h”MSE (v} (s)-MSE O 2m " (t~s Y. >0

if hmax—>0 as N —oo, The same result holds if v:J is replaced by viw.

Proof. From Theorem 3, the difference of the MSE between v, (s) and v, (t) is
m (l—h ) (t—s)[2—(t+s )h ]h [1: +0 (h N+ 0(h h ax).

The result follows. The proof for vi is the same. O

Thus, if 0<s<z<1, the MSE of v, (t) (or v, (t)) is less than that of v, (s) (or v, (s )) when
N is large enough If one wants to choose a variance estimator in terms of lower MSE, then

a clear choice is v, (1) (or v, (1))

However, the MSE is not the only measure of the accuracy of an estimator. In practice,
other measures of accuracy, such as the bias of the estimator, are also important. If we want
to construct a confidence region for B by estimating 0"_2 by Vis the coverage probability of the
confidence region will be too low if v, always has a negative bias. See the discussion in Sec-

tion 7 and the simulation results in Shao (1987).



A refined analys1s of the biases of v, (7& ) and v, (7L ) gives the followmg theorem. The
result indicates that v, (7» ) (or v, (7& ) w1th a smaller X will usually have a smaller bias (in

absolute value).

-l 2 2 2 [P T _ 2 2
Theorem 5. Let AN—hi Zl=lhilml(0'1-o'i ), BN—(N k) El=lml(1 hl)(cl S, ), and
O<s<z<1. Assume that hi —0 as N —eo,
(1) If liminf N_)wlAN |>0, then
4.7) liminf,, _[|Bias (v )|/ |Bias(v)(s)|] > 1.
. .. . w b
(i) If lzmmfN_wlBN |>0 and ANBNZO, then (4.7) holds with v, rep}aced by V..

Remarks. (1) The condltlon lzmznf A >0 (or lzmznf B >O) ensures that the biases of

v, (s) and v, (t) (or v, (s) and v, (2)) are comparable in terms of their first order terms.

(2) The condition ANBN_>_O is satisfied for some balanced models. An example is model (5.9)
of Wu (1986) or any model satisfying condition (5.4) of Wu (1986).

Proof. (i) Note that for any 0<r<1,
. w _ 2 n 2 2 2 n 2 2
Bias (vi @) =-t hioi + Zz=1hi1ml (0'1 -0, )+ tzz=1hilmlol + o(hi)
n o2 2 2 ,
= (1+t)21=1hilml (cl ~o, )+ O(hi) = (1+t)hiAN + o(hi).
Hence
|Bias(viw(t))l/ | Bias (vl,w(s))l = |(1+0)A, +o (1)|/ | (14+)A,+o (1)].
Since lz'mian_m IAN [>0
liminf,,__[|Bias (v:v(t)) |/ | Bias (viw(s NI1 = (L+)/(1+s) > 1.
(ii) For 0<z<1,
. b -1 n 2 2 n 2 2 2 2
Bias(v, (1)) = t(N—~k)"h, 3" m (1~h)(0,-C,) + X, h,m(©,~0)+0 )
= hi [AN+tBN+O (hi IR

Let € =h " Bias(v,(t)), n, =k Bias (v (s)) and G =& M. . If liminf, |G, |=oe, the result

follows. Suppose that liminf IC I—a <eo, Then there is a subsequence { € .} such that

N()

10



either lim CN o2 o hm C_,N o4 Since n, are bounded, there is a subsequence

{N(@) }c{ N() } such that hm S
either an or —am. Note that

=n. Then hm E_,

NGy = . Sy gy My eduals

NG)

&y = Angy T Bugy oD

nN(i) =AN(i) +sB NG) + o(1).

Hence the limits of AN ) and BN ) exist. Let A=11mj_mAN ) and B=11mj_mBN Gy Under

the conditions of the theorem, B0 and A/B>0. Then

a R[e

vy = 1A+B I/|A+sB | = | 1+(t—=s)A/B+s)}| > 1.O0

Hence for the choice of 7";" we need to balance the advantage of having a smaller MSE
against the drawback of a larger bias. 7&‘, may also be determined by other theoretical or prac-

tical considerations (Shao, 1987).

6. Comparisons between the REBE and other variance estimators when N is large.

We compare the REBE with the other variance estimators, such as the within-group sam-
ple variance, the MINQUE and the ARE, in the case that m, are small but N is large. The

case that N is also small is discussed in the next section.

6.1. The REBE and the within-group sample variance.

The customary variance estimator is the within-group sample variance

2 _ _ -1 m = 2 —
S =m0, Y=m T iy
It can be shown by using Lemma 2 that
- - -1 4
MSE(s))=m 't +2m " (m -1 s,

2, . .
where ti=Var (eij), J=l,...m_,i=1,..,n. Thus from Theorem 3, we have
[

11



Theorem 6. Assume the conditions of Theorem 3. If (2.1) holds, then for any Kie [0,1],
- -1 4
MSE (s )-MSE(v/(A.)) = 2m ' (m.~1)"'" >0

as N —oo, The same result holds if vib(li) is replaced by viw(?»‘,).

6.2. The REBE and the MINQUE.
The MINQUE of ()'iz is generally of the form
(6.1) y’Aiy ,
W
where Ai—( apq )N N
(6.2) AiX = 0.

is an symmetric matrix satisfying

Note that all the REBE and sl_2 are of the form (6.1)-(6.2). The MINQUE requires an addi-
tional unbiasedness requirement

(6.3) EGAy)=0,,

which often leads to a negative estimate of O'iz. For example, if mi=1 for all i, then (6.3)

implies Ai is not non-negative definite. For if Ai 20, then from (6.3), ap(;)=0 unless p=q=i,

and aifi)=1. Then (6.2) holds unless xi=0.

Exact unbiasedness may not always provide a good estmator. As usual, a slightly biased
estimator (the bias vanishes as the sample size tends to infinity) such as the REBE may per-
form better. Since the MSE of the MINQUE is not easy to obtain in general, we only com-
pare the REBE with the MINQUE in the following two special but quite broad sittiéitions.

(a) A special case of model (1.1) is

. . n
yij =U+ eij’ J=1,...,mi, i=1,..n, N=Zi=1mi'

2
The MINQUE of o, is
V= mi_l(N—Z)_lNZ;:'l(yij 5P - =212

— -l 2 sl 72
here y= i =-1 R
where y=N Z,-=1Ej=1yij’ s“=(N-1) Zi=12j=1(y,.j y)

12



Theorem 7. Assume (2.1) and the conditions in Theorem 3. Then for any Kie [0,1],
NIMSE (v)")-MSE (v, \))] - 2m " (14L ), > 0

as N —oo, where T, =Var (e;). The same result holds if vib(l‘_) is replaced by viw(?ui).
Proof. Since vi”‘ is unbiased,
MSE () = Var(v) = N-2) °N’Var [mi“lzf”_-'l(yij H+onND
]=

=m N-2"N’[+0 VI + 0D,
Note that 4. =N"", i=l,...,n. From Theorem 3,
MSE (vib ) = mi_l(N—l)—Z(N—li )Z[fci+0 N H1+ovH.
Since (V-2)"N*~(V-1)*(V -1, =211 ) V-1 -2 N o (v D),
- MSE (v, )-MSE (vib ) = 2mi"1(1+xi ye. (V-1 (V-2)"N* + o v D,

Hence the result follows. The proof for viw(li) is the same. [

(b) Consider the general model (1.1) with m.=m for all i. For the case m=1, we also assmue
that hl_< 0.5, i=l,...,n, to ensure the existence of vl,m. A similar result to Theorem 7 can be

obtained.

Theorem 8. Let vim be the MINQUE of 0'i2. Assume (2.1) and the conditions of Theorem 3.
. 2
If 11mN_m(hmax /hi )=0, then for any }\.iE [0,1],

. -1 m b -1
liminf N-mhi [MSE (vi )-MSE (vi (7\.i N]=2m (1+?»i )‘!:i > 0.
b
The same result holds if v, (Ki) is replaced by viw(}.i).
Proof. Let A=( aij )nxn, where aij=1--2hi+mhi2 if j=i and aij=mh; if j#i. Since m>2 (or
m=1and h__ <05), A"=(a" ) exists and max.¥" |a” | < co. Then
max nxn i“~p=1

64) max 3 la”a" | <max (%" |a” ) <o
p:

1<p<g<n
From Lemma 4.5 of C. R. Rao (1970), vim= the ith component of A_lR, where R is an »-

. . ~lem, 2
vector whose ith component is m Y, T Hence,
j=

13



(6.5) MSE(™) = ij’=1(a"f Y1-h Var (Zj)

ip i _ _ A A
+2Y aa’'(l hp)(l hq)COV(ap,aq),

1<sp<g<n

where 2;' is deﬁned in (1. 2) From 4.1) and (6 4), the second term of the right hand side of
(6.5) is O (h ) Since a' >a —(1—2h +mh ) , the first term of the right hand side of (6.5)
is not smaller than m a [1: +0 (h )] Thus,

MSEG)2m™a ['ci+0 (k)1 + O(hiax),
which and Theorem 3 imply that

MSE(v )—MSE (v (l N=2m [a —(1-h ) (l—kihi)lj[ti+0 (hl_)] + O(hjm ).

Note that
aﬁ‘z—(l—hi )‘2(1—xi hy = {[1=h,~(1-\ h)a N1 +(1-\ b )aii]}/aiiz(l-—hi )
2 [1-h~(1-, hi)(1—2hi+mhi2)][2—0 ()]
= 20142, )h +0 ().
Hence

MSE (v"-MSE (vi”(xi ) 2 2m (AR L5 4O ()] + Ok )
=27 (140 )R T + O (hjm).

The result follows. The proof for viw(li) is the same. O

6.3. The REBE and the ARE.
J. N. K. Rao (1973) proved that the ARE

r -lem 2

vi - mi Z _'qu
has smaller MSE than the MINQUE in some situations. The following result indicates that vr
has the same MSE as v, (1) (or v, (1)) up to the order O(h h ), and generally has negative

bias.

14



Theorem 9. The MSE of the ARE has the following expansion:

r -1
(6.6) MSE (vi) =m, ['ci+0 (hi )]+ 0 (hihmax).
If
2 2 2
(6.7) supp# Icp—ci | < S,
then
(6.8) Bias(v)) <.

Proof. Since vir=(1—-hi );i, the proof of (6.6) is the same as that of Theorem 3. (6.8) follows
from (6.7) and

. r 2 n 2 2 2
Bias (vi) = -—hi c, + Zz=1hil m, (O'I =0, ).O

Condition (6.7) is clearly not necessary for (6.8) (see Section 7). Because of (6.8), the
2
confidence regions for B obtained by using vir as the estimators of S, i=l,...,n, usually have

low coverage probabilities. See the simulation results in Shao (1987).

Note that
(6.9) vib(l) = vir + his2
and
w r 2
(6.10) v, = v, + hisJ.

Hence vib(l) and viw(l) are bias adjustments of vir. The second terms of the right hand side of

(6.9) and (6.10) are positive but are of low orders so that they have small effects on the MSE
b w i

of v, (1) and v, (D).

7. The case of small N: an example.

When N is small (consequently, m, and n are small), it is hard to compare variance esti-
mators analytically, and there is no definite conclusion in general. The improvements by
using empirical Bayesian methods become "small", since there is little auxiliary information to

be used.
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We compare the REBE with other variance estimators through the following example.

Consider the model

yij = Bi + eij’ j=1,...,mi, i=1,2, N=m1+m2.

Let
S, 0.5Y F=m 3™ i=1,2
—Z 1 l] y b yi - i Ej=1yij’ Y
This model can also be viewed as a two sample problem If m, are large, the estimators

under comparison perform equally well. The MINQUE, s; and the REBE v, (7L ) (0<?» <1l) in

this case are the same and equal to

(m-1)7'sS,, i=12.
Hence the use of the MINQUE and viw(?»l,) does not achieve an): improvement on siz. vir
equals

m'SS..

i t
All the above estimators do not use the data from the other group. The REBE vib(li) equals
b
v (&) = (1=c)SS,/(m~1) + c (SS +S5 )/ (N-2), ¢, =) Im..
Note that s —(SS +SS )/(N —2) is the pooled vanance estimator when 0'2 are assumed to be

equal or nearly equal The REBE v, (k )is a comprormse between the w1thm -group sample
2
variance s, and the pooled estimator spz. When 7Li =0, v, (li) equals s

To compare these estimators let us first look at their biases. The MINQUE and s are
-1 2
unbiased. The bias of v is —m. G, which is always negative and can be very large The
bias of v, (7L ) is

2 2
A, (m.~1)(c o, Vm (N-2), j#i
= (0'2—0'2)/2m, if m1=m2=m
Hence v, (7.. ) does correct the negatlvc b1as of v i.e., its bias does not have any deterministic

2
trend and is smaller than that of vi v, (7\, ) w111 perform well if G, are close (since we use

the data from two groups). The bias of v, (ki) may be small even if m, is not large.

Next, we consider the MSE of these estimators. For simplicity we assume that

2 2 .
m =m =m and el_j are distributed as N (0, c, ). The MSE of ; and vir are respectively

16



26?/(mi—1) and (2mi-—1)0'i4/mi2.
For t€[0,1],
MSE (vib ) = m—z(m—l)_lo'?[Z(m 112242 ei/2)2+(t /2)2(m—1)(6i—1)2],

where 0 1=0'22/0'12 and 92=(>'12/<)'22 . This is a decreasing function of ¢ when O<9i <@Bm-1)/(m+1).
Hence if max(0 r 62)3(3m—1)/(m+1), then for s<¢,

b
MSE(vib(t ) < MSE@(s)), i=1,2.
b 2
In particular, the MSE of v, (7Li) is less than that of the MINQUE or s -

b
It is not difficult to see that the MSE of vir is less than that of v, (Ki), and is therefore
less than that of the MINQUE or siz. vir is further improved (in terms of MSE) by

v =(m +1)‘lssi.
2
But vir and vic are rarely used when m is small since they underestimate S, seriously. For
example, when m=2,
2 _ o 32 r_ o N2 c_ o V2
5; —0’,.1 yi2) /2’ vi —(yil yi2) /4’ v; _(yn yiz) /6
and
b\ _ v 2 Yy 2 ‘e
v, () = (1-0.250)(, ~y,) /2+0.257»i(yj ;9 /2, j#i.
Clearly, vir and v: are too small. In fact, in this case the silly estimator viEO has MSE half

2
that of s ! As we commented earlier, the MSE should not be the only criterion for choosing

an estimator.

2
8. Estimating linear functions of .

. . . . . 2
We consider in this section the estimation of 1‘1=E_n 1li S, where li are known constants.
i=

For example, 1 is the (p, ¢)th element of VarP, the variance-covariance matrix of B, if l‘,=
the (p, ¢)th element of miM_lxixi'M"l. Again we assume that m, are small but N is large.

Consider the following general class of REBE’s:

(8.1) n= Z,:llz [(1-B,)a+B,a ],

17



” - . 2 . .
where a, is defined in (1.2), a= either s> or s i Bi possibly depend on data and satisfy

J,
OSBiSI and

8.2) maxi<nsupyBi(y) — 0 as N—oeo,
Note that E_n 1li vib(ki) and Z" 1li viw(?»‘,) are special cases of (8.1).
1= i=

Theorem 10. Assume (2.1) and the conditions of Theorem 3. If

(8.3) X Ll=00T)
and
(8.4) E'n—lliz =o(N D),

then ﬁ defined in (8.1)-(8.2) satisfies

(8.5) MSEM) = o (VD).

Remarks. (1) (8.5) means that 1 is consistent in a stronger sense that
N’E (11—1])2 - 0.

The asymptotic unbiasedness and consistency of ﬁ follow from (8.5).

2 :
(2) The REBE’s of G, are not consistent if m. are small. However, for asymptotically

. . 2 . . . .
unbiased estimators v, of S, "smooth" coefficients li will stablize the variance of

and therefore ﬁ is consistent as N —oo, Conditions (8.3) and (8.4) are the smoothness condi-

tions for li. These conditions are quite weak. See the corollary below.

(3) For the asymptotic unbiasedness of ﬁ, (8.3) is sufficient.

18



Proof. From (8.2), (8.3) and Theorem 2,
~ n ~ n —
N|En—nm| =N lzizll‘,E(Biai)—zi=ll‘,E(Biai)[ + 0(1)
n ~ —
< cl(maxiSnsupyBi)[Z‘Ellli I(Eai+Eai)] + o(1)—>0
since E;i and EEi are bounded, where ¢ ) is a positive constant. Also, from Lemma 3,

maxiSnVar (ai) =0(1)

and

A A -1 m, m: 2 2 _
maxi#j | Cov (a‘,, aj)l < [mimj(l—hi)(l—hj)] Zp=lzqil | Cov (rip, rjq)l = O(hmax).

Then from (8.2) and (8.4),
N¥ar) e N°S" 17+ e N (E" 111 =0,

where c, and c, are positive constants. Thus the result follows. O -

The following result provides a class of asymptotically unbiased and consistent estima-

tors of Varﬁ.

Corollary. Let lf ? be the (p,q)th element of miM'lxix‘,’M_l, Varﬁ=(npq)k &’ and

I O L4 b w N
npq—Zizll,. v., where v,=v, () orv, (), A,€[0,1]. Assume (2.1), M"'=0(N"") and m Sm_
for all i. Then

~ 2 -2
- =oN 7).
Em, =) oN )
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Proof. We only need to check (8.3) and (8.4). From M =0 ~N —1), there is a constant ¢>0

such that M—IScN_llk . Then
n o ,pd n g2 . - _ -l
Zi=1|li |SZi=lmixiM X, <cN Zi=1mihi =kcN .
Similarly,
n ..pq.2 n 2, 2 2 2 2,2 2
< < <
Z,':l(li ) _Zi=1mi (xiM xi) <c Z.'=1mi hi <c mokhmax.

This completes the proof. [J
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