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Abstract

Based on data resampling techniques, two classes of empirical Bayes estimators are pro-
posed for estimating the error variances in a heteroscedastic linear model. We concentrate
primarily on the situation in which only a few replicates are available at each design point but
the total number of observations N is relatively large. The Resampling Empirical Bayes Esti-
mators (REBE’s) are shrinkage type estimators in general, and are aiways positive and analyt-
ically tractable. Their properties, including invariance, robustness, consistency, asymptotic
unbiasedness and mean squared error (MSE) are discussed. In particular, a second order
expansion of the MSE and an upper bound of the bias of the REBE are given in terms of the
diagonal elements of the projection matrix. Using these results, we compare the REBE with
other existing variance estimators. The MSE of the REBE is smaller than that of the cus-
tomary estimator, i.e., the within-group sample variance, and the MINQUE when N is large.
The problem of estimating a linear function of the error variances is also considered. Some

simulation results are presented.

KEY WORDS: Data resampling; Empirical Bayes estimators; Shinkage estimators; Sample
variance; MINQUE. |



1. INTRODUCTION
In statistical applications, the following linear model is widely used:
, . . n
(1.1) yij—xi B+eij’ ]—1,...,mi, i=l,...,n, Zi=1mi—N.
Here yij is the response of the j-th replicate in the i-th group, X, is a kx1 deterministic vec-

tor, B is a kx1 vector of parameters, and eij are mutually independent with means zero and

. 2 2 . .
variances G, , j=1,...,mi. The o, are unknown and different ( heteroscedastic ).

Although in most situations the quantity of interest is the parameter [3, the statistical

. 2 . . 2,
accuracy of any estimator of 3 depends on c,. Having good estimates of G, is necessary for
judging the performances of the estimators of B and other statistical inferences such as setting
confidence regions for B. Also, one may utilize the estimates of. G, in improving the esti-

mates of f3.

The customary estimator of Giz, the sample variance within the i-th group, is question-
able when m, is small ( actually it is not defined when mi=1 ). The case of small m, is
important since it is often impractical to obtain more than 4 or 5 replicates at a design point
in the regression problem ( Jacquez et al., 1968 ). Usually, the number of groups » is large.
Improving the within-group sample variance is possible by using data in other groups, since

2 . .
very often S, have some features in common although they are different.

A considerable amount of literature on this subject can be found. Common approaches
have traditionally fallen into one of the two areas described below.
(i) One assumes tilat 6:'2 is a function of the design point x; anczi possibly some other unknown
quantities, i.e., o, =H (xi, 0), and then obtains estimates of S, by estimating H and 6. For
more details of this approach, see Carroll ( 1982 ) and its references.
(ii) Instead of putting some restrictions on O'iz, one can impose some restrictions (such as
unbiasedness and invariance) on the estimators, e.g., the MINQUE (C. R. Rao, 1970) and its
modifications (J. N. K. Rao, 1973; Horn et al., 1975).

The MINQUE has the following well known deficiencies: (a) the MINQUE may not
exist; (b) the MINQUE requires large computations; and more seriously, (c) the MINQUE can
be negative. In fact, if mi=1 for all i and Giz;eo; for i#j, then the MINQUE of O'iz is of the

form y’Aiy, y=(y11 Y Y ), with a symmetric matrix A which is not nonnegative

definite (Shao, 1987). Because of (c), the MINQUE is not admissible.



J. N. K. Rao ( 1973 ) proposed a modified MINQUE: the within-group average of
squared residuals (ARE). The ARE has a smaller mean squared error (MSE) than the
MINQUE in general but tends to underestimate O'iz. Horn et al. (1975) proposed an estimator
which is called AUE by the authors. The AUE was proved to have smaller MSE than the
MINQUE but under a rather unrealistic condition, i.e., oﬁe can choose correct weights (in the

. . . . 2
weighted least squares fitting model (1.1)) before_ having estimates of G, .

In this paper, we propose a class of estimators by using the empirical Bayesian method
incorporating data resampling techniques. The Bayes estimators are given in Section 2. Due
to the heteroscedasticity of the model, the Bayes estimators are not analytically tractable.
Also, the Bayes estimators are derived based on the assumption that the errors are normally
distributed, and therefore their optimality may be lost under the “violation of the normality
assumption. However, the empirical Bayes estimators derived in Section 3 are analytically
tractable and robust against non-normality. In Section 4, we discuss properties of these
empirical Bayes estimators, such as invariance, consistency, asymptotic unbiasedness and
MSE. In particular, a second order expansion of the MSE and an upper bound of the bias of
the empirical Bayes estimators are given in terms of diagonal elements of the projection (hat)
matrix. Using these results, we compare the empirical Bayes estimators with other variance
estimators. The MSE of the empirical Bayes estimators is smaller than that of the within-
group sample variance and the MINQUE when N is large. We also show that the ARE has
the same second order MSE expansion as the empirical Bayes estimators but generally has a

larger negative bias.

The empirical Bayes estimators are generally of the form
(1.2) Biai+(1—Bi)El_, OSB‘.SI,

which is a compromise between a local estimator 2‘_ using the residuals within the i-th group
( see (3.4) ) and an ensemble estimator Zz'i. A similar type of estimator was studied by Morris
( 1983 ) in a problem of estimating normal means, where Bi is called the shrinking
coefficient. As Morris discussed in his paper, the shrinkage estimator is superior to the classi-
cal method in many statistical applications because the estimators of type (1.2) incorporate the

auxiliary information provided by the data in other groups.



In Section 5, by using the estimators of c, proposed in Section 3, we consider the esti-
. . . 2 . . .
mation of linear functions of o, (e.g., the variances and covariances of the least squares esti-

mator (LSE) of B). Some extensions of the results are discussed in Section 6. The last sec-
tion contains some simulation results, which indicate that the performances of the empirical
Bayes estimators are generally better than those of the other variance estimators mentioned

above.

2. BAYES ESTIMATORS

In this section, we assume that the errors eij in (1.1) have a normal distribution
N (0, ()'iz), j=1,.,m.. Let ’ti=(20'i2)_1. Suppose that T, are independently distributed as (T,

i=l,...,n, where

P
(2.1) ni('ci) < T, exp ( oci'ci) 'ci>0,
and pi>0, o, >0 are known constants. For the parameter 8, we only assume that 3 is indepen-
dent of T i=l,...,n, and has a known prior density ®(p) with respect to a measure L on RY.

Using standard techniques in Bayesian analysis, we obtain the following Bayes estimator of

2
o, ( under squared error loss ):

2.2) v, = ig 41 Em'

i

— m, — ron2
+ O, T+ —— [, B) P Bly)du,
2p.+m, 2p4+m, T J=LH bV dp4m T ¢

1 3 ) 1 i i

- -1 m, _ 2_ -1_ . . 2
where y;=m, Ej=1yij, a, =E o, =F (Zti) =0, /(2pi) is the prior mean of S, and

2]—-(p'.+1+ml./2)

pBly) < a@®I] [0 +3" 0, ~"B)

]=1 i 2
is the posterior density of P.
In practice, if little is known about P, and ©(B), the Bayesian analysis can be carried
out via the following two commonly used techniques:

(i) The empirical Bayesian method, which we will discuss in the next section. The nonex-

changeability of the prior (2.1) does not cause any difficulty in applying this method.
(ii) The hierarchical Bayesian method (Lindley, 1971). This method needs to assume that the

prior of 0‘,2 (or the prior of p, and oci) is exchangeable in order to reduce the dimension of the
i



parameter space.

B
Another form of v which is quite easy to see from (2.2), is that

B 2p. 1 m -2 m, _ A 9
2.3 v. = L a..f. i =Y. +-——L— ._x.l +x.lz x' ,
(2.3) T apem 1 2pam 20,75 2 [0, By ) +x,% x,]

where ]§B and Ey are the posterior mean of B ( Bayes estimator of B ) and posterior variance
of B, respectively. From (2.2), the Bayes estimator is a mixture of three components: the
prior information, the within-group variation of Yy (this component is zero when mi=1) and a
smooth average of the squared "residuals" )7i—xi ’B, which captures the information from fitting

model (1.1). Equation (2.3) further decomposes the third term on the right hand side of (2.2)

into a squared residual obtained by estimating B by the Bayes estimator BB and the variance
of the posterior p (B|y). (2.3) allows us to approximate the Bayes estimator by estimating the
first two moments of the posterior density p (B|y). See Section 3.

There is no explicit form for the Bayes estimator viB. Numerical integration or Monte-
Carlo integration is necessary in order to evaluate viB. This may cause problems when &, the
dimension of [, is large. Also, vf is obtained based on normality assumptions, and hence
may not perform well under violation of these assumptions. Without normality assumptions,
the Bayes estimators are much harder to evaluate and interpret. On the other hand, the empir-
ical Bayes estimators derived in the next section are analytically tractable, easy to evaluate

and quite robust against non-normality.

3. RESAMPLING EMPIRICAL BAYES ESTIMATORS

The Bayes estimator (2.2) depends on hyperparameters a, p, and the posterior density
p(Bly). If some of these quantities are unknown, they can be estimated by the data. The

resulting estimators are known as empirical Bayes estimators.
. . 2 . .
Two classes of empirical Bayes estimators of C, are derived by using the usual moment
~ estimators of the mean of the prior T, (’ci) and data resampling techniques to estimate the

mean and variance of the posterior p (B|y). The properties of the obtained estimators, which

are called Resampling Empirical Bayes Estimators ( REBE’s ) henceforth, are discussed in the



next section.

To begin our procedure, suppose that the parameter B is estimated by B. In this and the

next two sections we will assume that  is obtained by using the ordinary least squares

methods, i.e.,

B=M"x%,
where y=(y11 Yy ynm" Y, X=(X1X2 s Xn ) Xi is a kxmi matrix whose columns
are x, i=l,...,n, and M=X'X is assumed to be nonsingular. Although all the results in this

and next two sections are still valid if we use instead the weighted least squares estimator (see

Section 6), we use the ordinary LSE for the following reasons:

" Q 2 . . . .

(i) Since c, are unknown, choosing adequate weights { w, } is hard. The weighted least
. . . . 2

squares method may not provide a better estimator of B even if one has estimates of S, . See

the results in Section 7 and Jacquez et al. (1968) and Rao (1970).

(i) When the weights are functions of data, the precision of the weighted least squares esti-

mator is not tractable and needs to be estimated.

2 . .

(iii) The inverse of the weight w, can be thought of a prior guess of c,. When little is
2 . . . .

known about . the ordinary least squares method simply uses a noninformative prior guess

2,
of O'i , Le., w= constant.

2
3.1. Estimating the Prior Mean of o,

We start with the estimation of the prior mean a. Define the residuals by

rij--yij—xi B, ]=1,...,mi, i=1,..n.
The marginal mean of r; is
2 2
[rop )y =[[[r p & It BRORB)dyddn,
where t=('cl, cen T Y, p(y |T,B) is the density of y given T and B, n(t)=1"[in=1ni (’ti ), T ('ti)

and 7(B) are priors of T, and B, and p(y) is the marginal density of y. Note that we do not

assume that p (y | T,B) is normal. Let hil =X, Mx : and hi =hil_. Since



2 2 n 2 2 2 , .
[rp @ 1uBdy=(1~h )0+ %" hym (0,=0), j=lr..m,, i=l,..n,
which does not depend on B, we have
2 2 n 2 . .
(3.1) jrijp (y)dy—ETErl_j—(l—hi)ai+ZI=1hilml (@-a), j=l,.,m,i=l,...n,

where E . and E denote the expectations taken under the distributions n(t) and p(y |%,B),

respectively.
If a=a, i.e., the prior means are all equal, we have

2 .
ETErij=(1—hi)a, j—l,...,mi.

Note that Zn IE'_n"l(l—hi Ja=(N-k)a. Hence the moment estimator of a is
1= j=

2_ vl m, 2
3.2) s"=(N-k) Zi=lzj=1rij°

However, if a, are not all equal, we have
E Elm 1~k ) 'S™ r=a +3" (1-h Y 'h2m (@ -a), i=1,..;
Llm, (1=h) Zj=1rij]_ai ZI=1( ) hom(a-a), i=l...n
from (3.1). One could obtain the estimates of a, by solving the linear system
(3.3) [m -k 'S ro=a +3" (1-h) 'hom (a-a), i=1
. m, i) Zj=1rij_ai Zl=1 ) hym(a-a), i=l...n.

We will not do so for the following reasons: (i) The linear system (3.3) may not be solvable.

(ii) Even if the solution of (3.3) exists, solving (3.3) may involve a large number of computa-

tions. (iii) The solution a, may not be nonnegative.

We will instead use almost unbiased estimates

(3.4) a.=fm (1-h )2 72,
i i i j=1u

which provide an approximate solution of (3.3).

The estimators ;i can also be used even if the a, are equal. On the other hand, s2 can-

not be used if some of the a, are not equal. We will employ a, as an estimate of a, in the

sequel.



3.2. Estimating Posterior Moments of 3

From (2.3), the Bayes estimator depends on the mean and variance of the posterior den-
sity p(Bly). We now apply data resampling methods to approximate these moments. For
given y, the resampling distributions described below have some similarities to the posterior
distribution of B, e.g., they are both close to normal when » is large. In fact p (B|y) is normal
when Giz are equal and n(B) is normal. Even though the resampling distributions may not be
very close to the posterior of B, their first two moments may be close. When o_iz are known,
Lindley and Smith ( 1972 ) showed that if the prior of B is chosen to be noninformative, the
posterior mean and variance of P is the same as the weighted least squares estimator and its
variance, which are equal to ( or very close to ) the mean and variance of the resampling dis-

tributions.

There are many different data resampling techniques in the statistical literature. We

describe and use two of them as follows.

(1) Bootstrapping residuals ( Efron, 1979 ). For given y, let e be an N-vector whose com-

ponents are iid. samples from the normalized residuals {(rij—F)/(l-—k/N )1/2,

. . — -1l m, % * A *
J=Ll..m ,i=1,.,n }, where r=N "} 12 'lr,_. Treat e as an error vector and y =XP+e
L [ = = 12

as the observed data. The corresponding LSE is

B =M""xy" =p+M X",
%
Denote the expectation under the bootstrap distribution ( given y ) by Ey. We replace the

posterior mean and variance of f in (2.3) by the mean and variance of the bootstrap distribu-

tion, which are respectively

* x A ¥ x A * A , 2. .1
EB'=p and E B -B)B -By=s, M,
y y
2 2 .. 2 2. . N_Z SN s
where 5, =S —N r I((N-k), s” is defined in (3.2). Nr /(N—k) is equal to zero when the first
components of X i=l,...,n, are all equal to one, and generally has a lower order than s2. For
simplicity we ignore this lower order term ( or simply assume there is a constant term in

model (1.1) ) so that sb2=s2.

Thus, the third term on the right hand side of (2.3) is approximated by



16— B) ks,
2pi +mi ot g

Assume that p, in (2.1) are known and let

3.5) A= i
t 2pi+mi

. .. . 2,

Then the resulting empirical Bayes estimator of G, is equal to
b ~ 2

(3.6) v.=(1-A.h)a +\ h.s”,
2 i1 3 t 1

which employs ;i (3.4) as an estimate of a,.

b, . . ” .
Note that v, is of the form (1.2) and is a convex combination of a, and s2, and s%is a

weighted average of a, ’s.

(ii) Weighted resampling ( Shao, 1986 ). We can also approximate the posterior mean and
variance of B by the mean and variance of weighted resampling distribution. By weighted

resampling we mean that for given data y, select a subset model

3.7 y,=X [3+es
with probability
(3.8) Ws oc IXS XS |

where s={ i 1,..’.,ir } is a subset of { 1,...,.N }, r<N, Yo XS and e are sub-vector and/or sub-
matrix of y, X and e consisting of the i l—th,...,ir-th rows of y, X and e, respectively. For

more details of this weighted resampling procedure, see Shao ( 1986 ).

Denote the LSE of B under subset model (3.7) by 6S and the expectation under the
weighted resampling distribution ( given y ) by Eys Then

(3.9) EB=B ad EG-BE-B=x w6 HEBr=0-ne-kTv,



where ), is the summation over all distinct subsets s of size r and V, is the weighted
r

retain-r ( or delete-d, d=N-r ) jackknife estimator of the variance-covariance matrix of [3
(Wu, 1986). The unequal probability (3.8) in data resampling procedure takes account of the
unbalanced nature of the regression data, since WS is proportional to the determinant of the
Fisher information matrix of the corresponding subset model (3.7) with iid. errors. It is

more appropriate to use a scaled variance of the resampling distribution, i.e.,

(N-r )_l(r—k+1)E:(Bs—B)([§s—|3)’, to estimate the variance-covariance matrix of B for the rea-
. .. . 2
son of moment matching ( Shao, 1986 ). Thus, the resulting empirical Bayes estimator of S,

( again we assume p, are known ) is equal to

w A 2
(3.10) v, =(1—7»ihi)ai+7\.‘,his ,
2 —
where s ; =hi lxi ’VJxl, and 7Li is defined in (3.5). This estimator is also of the form (1.2). If

| 2 A A
r=N-1(d=1), s =hi Eln_lhumlal is another weighted average of ai’s.

3.3. The Hyperparameters 7‘;’

In the above procedure the hyperparameters li (or p;, see (3.5)) are assumed to be

known. If little is known about 7\.i, one may also use data to estimate ki. For example, since
A =m [[2(SN +1)+m.], "

where SNi =(E Gf)Z/Var (ciz) is the signal-noise ratio of the prior distribution of O'iz, 7\.i can be

estimated by estimating the signal-noise ratio SNi from the data. Note that 7Li is a decreasing

function of SNi. When SNi ( or equivalently, p, ) is large, the prior is highly concentrated on

its mean a.. Then 7Li is small and the REBE puts more weight on the estimate of prior mean.

On the other hand if SNi (or p, ) is small, the prior is vague. Hence 7Li is large and the

REBE puts less weight on the estimate of prior mean.

However, the sampling properties of this kind of estimator are hardly known. Alterna-
tively, we can let ki in (3.6) and (3.10) range over [0, 1] to obtain two classes of REBE’s.
Then choose an appropriate 7"1‘ in terms of the sampling properties of the REBE under certain

criteria. This will be discussed in the next section. Note that from (3.5), O<li<1 since



O<pi <eo, But for the REBE, we can include the limiting cases Ki =0 and li=1.

4. PROPERTIES OF THE REBE AND COMPARISONS

Some properties of a class of REBE’s: vib(li) defined in (3.6) with lie [0, 1], are studied
in this section. In terms of MSE and biases, comparisons of the REBE’s with different 7";’ as
well as comparisons of the REBE’s and other variance estimators, such as the within-group
sample variance, the MINQUE and the ARE, are given. The results are obtained for the
situation where the m. are small, but N is large. A discussion for the case of small N is
given in Shao (1987). All the results stated in this section also hold for another class of
REBE’s: v, (7L ) defined in (3.10). )

The proofs of the results are omitted. The detailed proofs can be found in Shao (1987).

(1) Invariance under the translation of B. All the REBE’s obtained in Section 3 are invariant
under the translation of P since they depend on residuals (or residuals from fitting the subset
model (3.7)). The Bayes estimators obtained in Section 2 are invariant iff the prior distribu-
tion of B is invariant. If T(P) is a density with respect to the Lebesgue measure on Rk, then
the Bayes estimators are not invariant. This assertion follows since if ®(B) is invariant, then
n(B—Bo )=n(B) for all BoeRk, which implies that w(B) is improper.

(ii) Consistency when m —yoe, As mentioned in Section 1, in common situations m;, are rarely
large. However, there are still some statistical applications which involve large m, and small
n (e.g., a two sample comparison problem). Also, consistency ( as m, —yeo ) is a basic pro-

perty of an estimator. Any inconsistent estimator should not be used.
When m, —eo ( hence N —eo ), under some minor conditions such as
2 2 )
(4.1) c, SO‘U for all i,
4.2) h  =max._ h.—>0 as N —oeo,
max isn 1

vibO»i) is consistent for any ?Lie [0,1].

10



(iii) Asymptotic unbiasedness when N —c. From now on we consider the case that the m. are
fixed and N —eo, Under (4.1), the bias of v, (7\.) is of the order O(h ) for any 7L e[O 11.

Hence v, (7\. ) is asymptotically unbiased if h —-)0 as N —eo,

(iv) Mean squared error. The exact forms of the MSE of the REBE’s are extremely compli-
cated due to the non-identical distributions of the errors Instead we obtain an asymptotic
expansion of the MSE ( N o< ). Assume that P, =Var (e ) exist and are uniformly bounded.
Then the MSE of v, (7» ) has the following expansion:

(4.3) ml_ (l_hi) (l—kihi) pl,+mi (l_hi) (l—lihi)ZO(hi)+0(hihmax).

(v) Choice of A,i: A comparison of REBE’s. We now compare vibOLi) with different ?\,i. An
immediate consequence of (4.3) is that for any 0<s<z<l1,
h_l[MSE(vb (s ))—MSE(vb ()] = 2m (t=5)p, >0,

if h -—)O as N —oo, This says that for s <z, the MSE of v, (t) is less than that of 2 (s) when
N is large Hence in terms of lower MSE, v, (1) is a clear ch01ce

However, in practice the MSE is not the only measure of the precision of an estimator.
The bias of the estimator, for example, is also important in some situations. When the pur-
pose of estimating oiz is to set a confidence interval for 3, one may not use an estimator of Giz
which has a trend in its bias. When the bias of the variance estimator is always negative, the
resulting confidence interval will have a too low coverage probability. See the-simulation
results in Section 7.

A refined analysis of the bias of vib(ki) shows that vib().i) with smaller ?\.i usually has
smaller bias. That is, for 0<s<r<1,
(4.4) liminf,, ]Bias(vib a»l/ |Bias(vib )| > 1
under some conditions (see Theorem 5 of Shao, 1987).

The picture is clear now. If one uses MSE as the measure of accuracy, then vib(l,i) with
large li is preferred. On the other hand, if one is concerned about the bias of the estimator,
then vib(?ui) with smaller 7Li is better. In general, one should balance the advantage of having

a smaller bias against the drawback of a large MSE.

11



(vi) Robustness against non-normality. The REBE’s are derived based on the Bayes estimator
B

v, (2.2), which is derived under the assumption that the errors are normally distributed.

However, the above results (and also the comparisons below) are true with or without normal-

ity assumptions. Hence the REBE’s are robust against non-normality.

(vii) Comparisons between the REBE and other variance estimators. We first focus on the

MSE. For the within-group sample variance

2_ _ -1 m = 2
(45) s/=m -8 0,5
we have for any kie [0, 1],
MSE(siz)—MSE(vib(li ) — 2mi—1(mi—1)_10'i4>0
if A —0 as N —oo,
max

The MSE of the MINQUE is not easy to obtain, even in approximate form. We only
compare the REBE with the MINQUE in the following two special but quite broad situations.

(a) Consider a special case of model (1.1):
yij=u+eij, j=1,...,mi, i=l,...n, N=Zin=1mi.
Let v," be the MINQUE of .. Then for any A &[0, 11,
(4.6) N[MSE (vim)—MSE(vib(Ki Nl - 2mi—1(1+7»i )pi >0,
where pi=Var (eijz,). )
(b) Consider the general linear model (1.1) but assume m.=m for all i. For the case m=1, we
also assume that hl, <0.5 to ensure that vim exists. Then for any ?»ie [0, 1],
4.7) limian_m hi—l[MSE(v:l)—MSE(vib(li )1 2m—1(1+xi)pi > 0.
Results (4.5)-(4.7) indicate that the REBE has a smaller MSE than si2 and the MINQUE.
Finally, the MSE of the ARE

r -l m 2
(4.8) v.=m, Zj=1rij

b
has the same expansion as that of v, (D).

2 .
We now consider the bias. ' The sample variance S; and the MINQUE are unbiased.

The REBE’s are biased but their biases vanish as N —eo. vir is generally too small as an

12



2
estimator of S, i.e., it has a negative bias. Since
Blas(v )——h c. +Z h (0' —0, ),
. . 2
B1as(vir)<0 if all the G, are not far away from each other, say
2 2 <G>
sup, Iol =0, | S, .
This condition is clearly not necessary. The confidence regions of P constructed by using vir
: 2 s .
as estimators of G, are usually of low coverage probability. See Section 7.
b . . .
In fact, both v, (1) and viw(l) can be thought of bias adjustments of vir, since
b r 2
v, (1)=Vi+his ,
and

w r 2
v, (1)—vi+hisJ.

S. ESTIMATING LINEAR FUNCTIONS OF 0'2

Very often one wants to estimate a linear function of 0' ie., T]—E l 0' where I are

constants. For example, suppose that we want to estimate VarP, the variance-covariance

matrix of the LSE B Let T| be the (p,q)-th entry of VarB Then l = the (p,q)-th entry of
mM xx M

. . A . . 2,
A natural estimator of 1 is n=z_n 1livi, where v, is an estimator of S, i=l,...,n. Thus,
iI=
we can apply the results in the previous sections.

. . 2, .
Again we assume that all m, are small but N is large. The estimators of G, in previous
sections are not cons1stent ( N> ) if m. are small. However for asymptot1ca11y unbiased

estimators v, of 0' "smooth" coefficients li will stablize the variance of Z 1li v.. Hence the
. =

resulting estimator ﬁ=§_‘,n llivi is consistent as N —eo, By smoothness of li we mean that li
1=
satisfy
_ 2 _
(5.1) 3" JLi=o@v Y and 3" L= )
= 1=

13



Note that if n is the (p,q)-th element of Varﬁ, then the corresponding coefficients li
satisfy (5.1) under the weak conditions (4.2) and M=o (N—l). From Shao ( 1987 ), the esti-

mators of N of the following form:
A n A —
5.2) n_z,-=1li [(1—Bi )ai+Bi a 15
are consistent in a stronger sense that the MSE of the estimator is of the order o (N _2), where

A . - . 2 . .
a. is defined in (3.4), a= either s_ or S, Bi satisfies OSBiSI, Bi possibly depends on data

2

A n b A n w
and maxiSnsupy [Bi(y)]—>0 as N—oo, Note that n, (K)=Ei=llivi (?\.i? and M (k)=Zi=llivi (li)
( A=(A TR ln )" ) are special cases of the estimators in (5.2).

As a consequence, one can find a class of consistent and asymptotically unbiased ( as

N —e0 ) estimators of Varp.

It is interesting to note that ﬁb(0)=ﬁw (0) is identical to the weighted delete-1 jackknife

variance estimator proposed by Wu ( 1986 ). Its asymptotic properties are studied in Shao

and Wu (1987). ﬁb (0) may be improved ( in terms of MSE ) by ﬁ b(k) or ﬁw (A) with A=0,

since the covariances of the variance estimators of different groups usually are of smaller ord-
ers than their variances. Also, ﬁ ,A) or ﬁw (A) is better than ﬁ=zin=lli Vo, where v, ‘is the sam-
ple variance or vim, the MINQUE of 0'i2. Note that if v, =vim, then ﬁ is the MINQUE of n.

One may also use the estimator ﬁ R =Z,-n=11i vir, where vir is defined in (4.8). In the case of
estimating Varﬁ, ﬁ R leads to

» . ) o 20 1
= X ir M
V=M Zi=1xi izj=1 i

which has a negative bias. Hinkley ( 1977 ) proposed a weighted jackknife estimator
V,=WN-k) NV,

14



which improves IA/R but still tends to underestimate if the model is not balanced (Shao and

Wu, 1987). For example, consider the following model:

yiJ=Bi+elj J=1""’mi9 l=1’2,

. 2 . A A
where eij are independent and Eeij =0 and Var (eij )=0'i . The biases of VR and VH are respec-

tively
2 2 2
(4] 2 (m —-m_)o (m ) )o.
diag(——lz,——zz) and diag( 1 2 12, 1 22
m, m, (m m 2—2)m ) (m S 2—2)m )

The negative bias of f/R can be very large. I7H is unbiased if m =", and has a small bias if

m, and m_ are nearly equal (balanced model). When m_ and m , are quite different (unbal-

2 1

anced model), then the bias of &H may be large.

6. SOME EXTENSIONS

In Sections 3 and 4, we use the LSE as the estimator of B. The same procedure and

analysis can be carried out if we start with a weighted least squares estimator ( WLSE ) with

weights {w,, i=l,.,n }. Let W=diag (w.) and X=w"x , ;=WV2y and e=W"e. Then we

have a model

6.1) y=XP+e.

Note that the LSE B under model (6.1) is exactly the same as the WLSE under model (1.1)
.~ o~ o~ . ~b

with weights w.. Hence we can obtain residuals rl,j=yij—xi’[3 and the REBE’s v, O»i Iw,

~ W
and v, (ki )/w.. In the special case that 7Li =0,

3 Ow = Oyw = 1=k YIS (¢ —x B
v, Oyw=v, O)w=m (1-h, Zj:l TR

15



When m.=m for all i, this is the AUE proposed by Horn et al. ( 1973 ), but their formula

does not apply to general unequal m. cases.

Improved estimators of B can be obtained by using the weighted least squares method
with the reciprocal of the variance estimates as the weights. We can obtain estimates of B

2 . . o
and S, simultaneously through the following iterative procedure. That is, start with an initial

0

0 0) — ~(0)
O=p,"y". Obtain the WLSE B with w® as weights.

2 0
guess of ., say vi( ), and let w, =(vi ) .

(

1 ~(1) 1)— 1
Then obtain the REBE’s v, ) and WLSE B with (vi( )) Las weights. Treat vi( ) as the new

2 . . 2, .
guess of o, and repeat the above procedure. If little is known about G, in the beginning,
0
wi( )El can be used in the initial step. The simulation results in Section 7 indicate that there

~ (1) ~ (0)
is an improvement (i.e., B  is better than B ) by using this procedure.

Another important extension is to the case of nonlinear regression, i.e.,
(6.2) yij=f (xi ’B)+eij’ J=1,...,mi, i=1,...,n,

where f (xi,B) is a nonlinear function in B. All the estimation procedures can be extended to

this case in a straightforward manner. All we need to do is to fit model (6.2) by least squares

or weighted least squares, and use rij =yij —f (xi ,B) as the residuals.

7. A SIMULATION STUDY

In this section, we examine by simulation (a) the finite sample performances of the vari-
ance estimators considered in the previous sections; (b) the empirical coverage probabilities of
the 95% approximate confidence intervals of B; (c) the performances of the WLSE with the

reciprocal of the various variance estimators used as weights.

7.1. The Model and the Etsimators
(i) Model. In the simulation we considered the following quadratic regression model:

2 . .
)’l.j =[30 +lei+[32xi +eij , Jj=1,2,i=1,...,20.
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The values ofxi are: 04, 0.5, 0.6, 0.7, 0.8, 1, 1.5, 2, 25, 3, 3.5, 4, 5, 6, 7, 8, 10,
12, 15, and 18. Also, eij are independently distributed as N (0, Giz). We studied two models

with different variance patterns. For Model 7.1, the values of o'i2 are

(7.1) 0.20, 0.8, 0.5, 0.9, 0.8, 0.5, 0.91, 0.65, 0.77, 0.81,
0.21, 0.81, 0.12, 0.52, 0.9, 0.94, 0.67, 0.53, 0.88, 1.0.

For Model 7.2, the values of 0'i2 are propottional to X5 ie

(7.2) C'=x/4, i=l,.,20.

For each case, we have 3000 replicates in the simulation.

(ii) The variance estimators We mvestlgate the followmg vanance estimators: the within-
group sample variance s , the MINQUE v , the ARE vi and the REBE'’s v, (O)—v (O),
v, (05) v, (1) v, (05) andv (1)

(iii) The confidence intervals. The 95% approximate normal confidence intervals of Bj are:
B.—1.96v.,B +1.96v ], j=0,1,2,
[Bj 96vj Bj 96vj] Jj=0

where Bj and ﬁj are the jth components of [ and B, respectively, and v, is the estimated

standard deviation of ﬁ obtained by using the variance estimators in (ii). Let CI (v ) be the

confidence interval using v, as estimates of 0' i=l1,...,20.

(iv) The WLSE. The WLSE of B is defined to be

B=(X'WX) X'Wy,

~ -1 2 = -1
where W=diag (wi). The following WLSE are considered: Bs: W, =, Bm: w, =vl_m,
B:w =, B, :w =0, 0.5), B, cw =), B _:w =v"05)
Brw, =, Bb(O)'w =v,0), Bb(05) v _V( h By =, s B 5w =, (0.5),

and B wl 1=vi (D).

The true value of B in the simulation is B=(1 4 —0.5)".
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7.2. Summary of the Simulation Study

(i) The performances of variance estimators. Tables Al and A2 (for Models 7.1 and 7.2,
respectively) show the root mean squared errors (RMSE) and biases of the variance estima-
tors. Some conclusions drawn from these tables are:

(a) In terms of the RMSE, the REBE’s are better than the within-group sample variance and
the MINQUE for all i and both variance patterns. The improvement can be as high as 43%
under Model 7.1 and 40% under Model 7.2.

(b) The ARE has negative biases especially under Model 7.1, where the oiz are not related to

the X,

(c) The REBE with larger parameter A has smaller RMSE and larger bias (in absolute value),
especially under Model 7.1.

b . 2 . .
(d) v, is generally better than viw if the G, are not related to the X, There is no definite con-

clusion otherwise.

(ii) The performances of confidence intervals. The coverage probabilities and the average
lengths of the confidence intervals of B are shown in Tables Bl and B2. The results show
that CI (vib(ki )) and CI (viw(li )) (the confidence intervals using the REBE’s as estimates of O'iz)
have higher coverage probabilities than CI (siz). The coverage probabilities of CJ (vir) are even

lower than those of CI (siz).

(iii) The performances of WLSE. The biases and RMSE of WLSE are given in Tables C1
and C2. The results indicate that

A 2
(a) The WLSE using the REBE’s is better than the ordinary LSE B if the G, are very
2
different (Model 7.2). The improvement can be as high as 18%. When the G, are not very
different (Model 7.1), the performances of LSE and WLSE are almost the same. '

(b) In terms of RMSE, the WLSE using the REBE’s are better than the WLSE using ARE.
(c) The use of the REBE’s with larger Kl_ provides better WLSE of .

(d) The WLSE using the within-group sample variances and the MINQUE have very large
RMSE. We found that over 40% of the time the matrix X'WX is nearly singular when

18



-1 m . .
W, =v., due to the negative estimates of MINQUE.

(iv) Overall conclusion. - Combining the results in (i)-(iii), we conclude that for the models
under consideration, the resampling empirical Bayesian method with ki=1 generally provides

. 2 .
better estimators of S, confidence intervals and WLSE of f.
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Table Al: RMSE and biases of variance estimators (Model 7.1).

(The biases are shown in the second row for each i.)

i 52 v v/ v/ | v©e5) | VoS | v | v
T | 2880 | 2525 | 2198 | 2379 | 2329 | 2337 | 2292 | 2309
0004 | -0025 | 0150 | 0323 | .0476 | 0472 | 0630 | .0622

2 | L1611 | 8564 | 7528 | 8035 | .7784 | 7806 | .753% | .I578
0031 | -0015 | -.0640 | -0117 | 0156 | —0160 | —.0195 | —.0204

3 | 6768 | 5373 | 4749 | 5058 | 4908 | 4922 | 4759 | 4787
~0131 | —0090 | —0205 | 0021 | 0074 | 0070 | 0127 | 0118

4 | 13443 | 959 | 8533 | 9060 | 8805 | 8823 | 8551 | .8588
0368 | 0220 | -.0490 | 0050 | —0020 | -.0025 | -0090 | —.0100

5 | L1908 | 8624 | 7705 | 8161 | 7941 | 7936 | 7722 | 772
0256 | 0238 | -0325 | 0135 | .0094 | .0089 | .0054 | .0044

6 | 7124 | 5308 | 479 | 5050 | 4928 | 4935 | 4807 | 4822
0084 | -0032 | -.0207 | 0051 | .0093 | 0088 | 0135 | .0125

7 | 12577 | 9566 | 8828 | 9145 | 9019 | 9025 | 8844 | .8856
0013 | 0116 | -.0372 | -.0001 | -.0050 | —0055 | -.0099 | 0182

8 | 9369 | 6862 | 6405 | 6631 | .6522 | 6524 | 6414 | 6416
~0014 | 0019 | 0209 | 0017 | .0020 | 0016 | .0024 | .0016

O | 11219 | 8022 | 531 | 7773 | 1655 | 7657 | 7538 | .7541
~0101 | 0040 | —0322 | -.0079 | -.0093 | 0096 | -0108 | -0114

10 | 1.1766 | 8705 | 8167 | 8434 | 8306 | 8307 | 8178 | 8I8I
~0035 | 0031 | -.0281 | —0021 | —.0043 | —0045 | —-.0065 | —0069

1 | 3186 | 2428 | 2267 | 2353 | 2323 | 2323 | 2296 | 2297
0095 | 0035 | 0117 | 0197 | 0273 | 0272 | 0349 | 0347

12 | 11694 | 8871 | 8210 | 8543 | 8388 | 8392 | 8233 | 8241
0300 | 0346 | -.0046 | 0277 | 0245 | 0245 | 0213 | .0213

13 | 1651 | 1549 | 1411 | .1490 | .1489 | 1492 | 1497 | .1505
~0004 | —0026 | 0192 | 0265 | 0304 | 0395 | 0523 | 0825

14 | 7604 | 5891 | 5216 | .5560 | .5402 | 5417 | 5245 | 5275
0192 | 0154 | -0086 | 0247 | 0285 | 0287 | 0324 | . .0328

15 | 12967 | 9631 | 8391 | 8992 | 8689 | 8720 | 8386 | 8449
0046 | -.0083 | -.0876 | —0250 | —0323 | 0321 | —039% | —.0393

16 | 13606 | 10102 | 8666 | 9367 | 9018 | 9059 | 8671 | 8753
0081 | 0119 | -0857 | -.0121 | -.0223 | 0222 | -.0325 | —.0323

17 | 9340 | 7395 | 6265 | 6821 | 6546 | 6583 | 6273 | 6347
~0005 | -0001 | —0s63 | .0008 | .0008 | 0012 | .0008 | .0017

18 | 7791 | 6251 | 5261 | 5774 | 5546 | 5580 | .5320 | .53%
0335 | 0208 | —0036 | 0459 | .0499 | 0524 | 0540 | .0590

19 | 1.1788 | 9680 | 7532 | 8555 | 8028 | 8197 | 7506 | .7860
~0289 | -0080 | —1193 | -0049 | -.0183 | —0048 | -.0316 | —.0048

20 | 13684 | 13109 | 8026 | 10975 | 9137 | 10461 | 7369 | .9958
—0176 | —0088 | —3845 | —0419 | -.0933 | 0506 | -.1447 | -.0593
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Table A2: RMSE and biases of variance estimators (Model 7.2).

(The biases are shown in the second row for each i.)

i s? v v vO | v | vos | v V(D)
T | 1444 | 1387 1214 | 1319 | 1415 | 1314 1609 | 1324
0002 | —0016 0176 | 0265 | 0644 | 0388 1024 | 0512

2| 814 | 1570 | 1379 | 1487 | 1544 | .1466 1685 | 1454
0005 | —0019 0114 | 0211 | 0564 | 0313 0916 | 0415

3 | 2030 | 1787 1575 | 1687 | 1704 | 1652 1792 | 1623
~0039 | -.0028 0053 | 0157 | .0485 | 0240 0812 | 0323

4| 2614 | 2046 | 1816 | 1938 | .1941 | .1895 1999 | 1836
0072 | 0032 | 0058 | 0173 | 0475 | 0237 0778 | 0302

5 | 2977 | 2298 2051 | 2179 | 2164 | 2130 2151 | 2082
0064 | 0060 | 0042 | 0164 | 0444 | 0213 0725 | 0262

6 | 3562 | 2652 | 2396 | 2522 | 2477 | 2465 2460 | 2408
0042 | 0025 | -0100 | 0029 | 0273 | .0056 0516 | 0084

7| 5183 | 395 | 3649 | 3802 | 3736 | 3732 3680 | 3662
0005 | 0053 | -0119 | 0035 | .0203 | 0029 0372 | 0024

8 | 7207 | 5257 4907 | 5080 | 5000 | 4998 4925 | 4916
-0011 | 0024 | -0164 | 0009 | 0131 | .0004 0253 | ~.0000

9 | 9106 | 6571 6166 | 6367 | 6272 | 6272 6178 | 6177
—0082 | -0020 | -0197 | .0003 | .0096 | .0020 0189 | 0036

10 | 10895 | 8103 7599 | 7851 | 7733 | 7735 7617 | 7619
—0032 | 0020 | -0128 | 0117 | .0189 | 0163 0261 | 0209

11 | 13276 | 9588 8942 | 9266 | o117 | 919 8968 | 8973
0396 | 0105 | -0040 | 0271 | 0324 | 0348 0376 | 0424

12 | 14438 | 1.1247 | 10410 | 1.0843 | 10650 | 10660 | 1.0457 | 1.0480
0370 | 0425 0233 | 0642 | 0670 | 0741 0697 | 0839

13| 17199 | 13087 | 11866 | 12469 | 12178 | 12196 | 1.1887 | 1.1928
—0045 | —0215 | -0518 | 0102 | .0089 | .0243 0076 | 0383

14 | 21934 | 16043 | 14998 | 15986 | 15521 | 1.5570 | 1.5058 | 1.5159
0554 | 0432 | -0277 | 0682 | 0571 | 0788 0461 | . .0894

15 | 25213 | 19190 | 1.6668 | 17901 | 17293 | 17353 | 1.6688 | 1.6810
0089 | -0174 | -1264 | -0012 | -.0206 | 0054 | —0400 | .0120

16 | 28948 | 21872 | 18722 | 2.0277 | 19516 | 19609 | 18762 | 1.8945
0172 | 0260 | -1410 | 0191 | -0131 | 0159 | -0453 | 0127

17 | 34850 | 27178 | 23080 | 25085 | 24091 | 24219 | 23111 | 2.3359
-0018 | 0031 | -2485 | -.0389 | -0923 | —0565 | -.1457 | —0742

18 | 44101 | 33833 | 28535 | 3.1179 | 29898 | 30084 | 2.8639 | 2.8997
1895 | 1552 | -1672 | 0991 | 0178 | 0747 | -0634 | .0503

19 | 50233 | 41520 | 32241 | 3.6649 | 34423 | 35116 | 32290 | 3.3679
~1233 | —0354 | -4946 | —0051 | -.1710 | —0016 | -3368 | .0019

20 | 61577 | 58889 | 3.6281 | 49287 | 4.1562 | 4.6980 | 3.5038 | 44724
—0793 | -0496 | -17794 | -2651 | —8064 | 3223 | -1.3478 | —3795
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The average lengths of confidence intervals are shown in brackets.

Table B1: Coverage probabilities of confidence intervals (Model 7.1).

2 m r b b w b w
CI(s;) cIe; ) cIw,) CI(y, (O) CI(v, (05)) CI(y; (05) CItv, (1) CI(v; (1)
B, 9207 9353 9223 9347 9343 9347 9347 9353
(.9244) (.9329) (.8984) (.9334) (9331 (.9338) (.9327) (.9341)
B, 9260 9330 9163 .9307 9310 9317 .9307 9320
(.3413) (.3436) (.3214) (.3433) (.3419) (.3432) (.3405) (.3430)
[32 9037 9120 .8887 9160 9203 9173 9223 9183
(.0207) (.0209) (.0189) (.0209) (.0208) (.0209) (.0206) (.0209)
Table B2: Coverage probabilities of confidence intervals (Model 7.2).
The average lengths of confidence intervals are shown in brackets.
2 m r b b w b w
CIs,) cre; ) cIw,) CI(v, ) CI(v, (0.5) Ci(v, (0.5) CI(, (1) CI(; (1)
B, 9220 9377 9210 9407 9427 9417 9457 9437
(.8625) (.8683) (.8120) (.8731) (.8758) (.8757) (.8782) (.8783)
B, .5000 9157 .8983 9187 9143 9203 9117 .9207
(.5227) (.5275) (.4798) (.5264) (.5149) (.5260) (.5028) (-5256)
B, 8727 .8839 8577 .8953 .8900 8963 .8833 .8997
(.0353) (.0356) (.0313) (.0357) (.0345) (.0356) (.0332) (.0356)

22




Table C1: RMSE and biases of WLSE (Model 7.1).

(The biéses are shown in the second row for each Jj)

~

~

B ﬁs Bm Br B1:(0) Bb(O.S) Bw(o.S) Bb(l) Bwa)
2410 24250 2.0897 3082 2524 2463 2467 2453 2459
.0021 -.0017 0545 -.0021 -.0006 0010 .0009 0011 0011
.0891 5945 .8066 0977 1710 .0889 .0891 0885 .0889
0004 -.0413 0055 L0006 -.0023 0012 0012 0011 .0012
.0055 0564 .0580 0070 .0194 .0055 0055 0055 .0055
—.0001 .0052 -.0005 .0000 .0003 -.0001 -.0001 —.0001 —.0001

Table C2: RMSE and biases of WLSE (Model 7.2).

(The biases are shown in the second row for each IB)

B B.\' Bm Br Bb(O) Bb(O.S) Bw(O.S) Bb(l) Bw(l)
2219 1.2275 1.2181 1951 1954 1831 .1856 1810 .1819
.0038 -.0308 —-.0934 .0010 0018 0006 .0007 .0003 .0004
1391 4666 .6740 1355 1334 1272 1270 1266 1254
.0004 -0276 0375 .0003 0005 0018 .0018 0021 .0021
.0097 .0491 .0454 0104 .0102 0093 .0093 0093 .0092

—-.0001 .0042 -.0017 -.0000 -.0000 -.0002 -.0002 —-.0002 -.0002
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